SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

•	<i>UBT</i> ™ (Universal Bus Transceiver) Combines D-Type Latches and D-Type	SN54ALVTH1 SN74ALVTH16601		G, DG	, OR DL PACKAGE
	Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode	OEAB	1	56	CLKENAB
•	State-of-the-Art Advanced BiCMOS	LEAB] CLKAB
	Technology (ABT) <i>Widebus</i> ™ Design for 2.5-V and 3.3-V Operation and Low	A1 [] B1
	Static-Power Dissipation	GND [] GND
•	•	A2 [B2
•	Support Mixed-Mode Signal Operation (5-V	A3 [] B3
	Input and Output Voltages With 2.3-V to	V _{CC}			V _{CC}
	3.6-V V _{CC})	A4 L			B4
•	Typical V _{OLP} (Output Ground Bounce)	A5 [B5
	<0.8 V at V _{CC} = 3.3 V, T _A = 25°C	A6 [] B6
•	High-Drive (–24/24 mA at 2.5-V and	GND [] GND
	–32/64 mA at 3.3-V V _{CC})	A7 [] B7
•	I _{off} and Power-Up 3-State Support Hot	A8] B8
	Insertion	A9 [] B9
•	Use Bus Hold on Data Inputs in Place of	A10] B10
	External Pullup/Pulldown Resistors to	A11] B11
	Prevent the Bus From Floating	A12] B12
•	Auto3-State Eliminates Bus Current	GND] GND
÷	Loading When Output Exceeds V _{CC} + 0.5 V	A13 [A14 [] B13
•	Flow-Through Architecture Facilitates	A14 L A15 [] B14] B15
•	Printed Circuit Board Layout				
•	-	VCC L A16 [] VCC] B16
•	Distributed V _{CC} and GND Pin Configuration	A10 L] B17
	Minimizes High-Speed Switching Noise	GND] GND
•	ESD Protection Exceeds 2000 V Per	A18] B18
	MIL-STD-883, Method 3015; Exceeds 200 V				CLKBA
	Using Machine Model (C = 200 pF, R = 0)	LEBA			CLKENBA
	Latch-Up Performance Exceeds 100 mA Per		-0	20	

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package
- NOTE: For tape and reel order entry: The DGGR package is abbreviated to GR and the DGVR package is abbreviated to VR.

description

The 'ALVTH16601 devices are 18-bit universal bus transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The devices combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UBT and Widebus are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

description (continued)

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. Output enable OEAB is active low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, CLKBA, and CLKENBA.

This device is fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down. which prevents driver conflict.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ALVTH16601 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH16601 is characterized for operation from -40°C to 85°C.

		FUNCTIO	N TABLE [†]		
	I	NPUTS			OUTPUT
CLKENAB	OEAB	LEAB	CLKAB	Α	В
Х	Н	Х	Х	Х	Z
Х	L	Н	Х	L	L
Х	L	Н	Х	Н	н
н	L	L	Х	Х	в ₀ ‡
н	L	L	Х	Х	в ₀ ‡ в ₀ ‡
L	L	L	\uparrow	L	L
L	L	L	\uparrow	Н	н
L	L	L	L or H	Х	в ₀ ‡

[†]A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, CLKBA, and CLKENBA.

[‡] Output level before the indicated steady-state input conditions were established

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

logic diagram (positive logic)

To 17 Other Channels

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} 0.5 V to 4.6 V Input voltage range, V _I (see Note 1)0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V_O (see Note 1)0.5 V to 7 V
Output current in the low state, I _O : SN54ALVTH16601
SN74ALVTH16601
Output current in the high state, I _O : SN54ALVTH1660148 mA
SN74ALVTH16601
Input clamp current, I_{IK} (V _I < 0)
Output clamp current, I_{OK} (V _O < 0)
Package thermal impedance, θ _{JA} (see Note 2): DGG package
DGV package
DL package
Storage temperature range, T _{stg} –65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54	ALVTH1	6601	SN74	ALVTH1	6601	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		2.3		2.7	2.3		2.7	V
VIH	High-level input voltage		1.7		11	1.7			V
VIL	_ow-level input voltage			Vir.	0.7			0.7	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
ЮН	High-level output current			1	-6			-8	mA
	Low-level output current			5	6			8	mA
IOL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz	20,	5	18			24	ША
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	9		10			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200			200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

recommended operating conditions, V_CC = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH1	6601	SN74	ALVTH1	6601	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2		2	2			V
VIL	Low-level input voltage			N.	0.8			0.8	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
ЮН	High-level output current			7	-24			-32	mA
le.	Low-level output current			22	24			32	A
IOL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz	0	2	48			64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	9		10			10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate		200			200			μs/V
Т _А	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES143A – SEPTEMBER 1998 – REVISED JULY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

	DAMETED	TERTO		SN54	ALVTH1	6601	SN74	ALVTH1	6601	UNIT	
PA	RAMEIER	TEST CO	JNDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		V _{CC} = 2.3 V,	lj = -18 mA			-1.2			-1.2	V	
		V_{CC} = 2.3 V to 2.7 V,	I _{OH} = -100 μA	V _{CC} –0.	.2		V _{CC} -0.	.2			
VOH	VOL	Vac = 2.3.V	I _{OH} = –6 mA	1.8						V	
		VCC = 2.3 V	I _{OH} = –8 mA				1.8				
		V_{CC} = 2.3 V to 2.7 V,	I _{OL} = 100 μA			0.2			0.2		
			I _{OL} = 6 mA			0.4					
VOL		$V_{CC} = 2.3 V$	I _{OL} = 8 mA						0.4	V	
	$\frac{V_{CC}}{V_{OH}} = \frac{V_{CC}}{V_{CC}} = 2.3 \text{ V to } 2.7 \text{ V}, I_{OH} = -100 \text{ V}_{CC} = 2.3 \text{ V}}$ $\frac{V_{CC}}{V_{CC}} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}, I_{OL} = -6 \text{ m}} \text{ I}_{OH} = -8 \text{ m}} \text{ I}_{OH} = -8 \text{ m}} \text{ I}_{OH} = -8 \text{ m}} \text{ I}_{OL} = 6 \text{ mA}} \text{ I}_{OL} = 8 \text{ mA}} \text{ I}_{OL} = 8 \text{ mA}} \text{ I}_{OL} = 100 \text{ µ}} \text{ I}_{OL} = 000 \text{ I}_{OL} = $	I _{OL} = 18 mA			0.5						
			I _{OL} = 24 mA						0.5		
V _{RST} ‡	:	V _{CC} = 2.7 V	$I_{O} = 1 \text{ mA},$ $V_{I} = V_{CC} \text{ or GND}$			0.55			0.55	V	
ų	Controlingute	V _{CC} = 2.7 V,	$V_I = V_{CC}$ or GND		ŝ	🖞 ±1			±1		
	Control inputs	V _{CC} = 0 or 2.7 V,	V _I = 5.5 V		25	10			10	μA	
		A or B ports $V_{CC} = 2.7 V$	V _I = 5.5 V		7	10			10		
	A or B ports		$V_I = V_{CC}$		20	1			1		
			V _I = 0		3	-5			-5		
loff		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V	2					±100	μΑ	
I _{BHL} §		V _{CC} = 2.3 V,	V _I = 0.7 V		115			115		μΑ	
I _{BHH} ¶		V _{CC} = 2.3 V,	VI = 1.7 V		-10			-10		μΑ	
IBHLO [‡]	#	V _{CC} = 2.7 V,	$V_I = 0$ to V_{CC}	300			300			μΑ	
		V _{CC} = 2.7 V,	$V_I = 0$ to V_{CC}	-300			-300			μΑ	
IEX☆		V _{CC} = 2.3 V,	V _O = 5.5 V			125			125	μΑ	
IOZ(PU	J/PD)□	$V_{CC} \le 1.2 \text{ V}, V_O = \frac{0.5}{0.5} \text{ V}$ V _I = GND or V _{CC} , OE =	/ to V _{CC} , don't care			±100		115 -10 00 00 125 ±100		μΑ	
		$V_{CC} = 2.7 V_{.}$	Outputs high		0.04	0.1		0.04	0.1		
ICC		$I_{O} = 0,$	Outputs low		2.5	4.5		2.5	4.5	mA	
			Outputs disabled		0.04	0.1		0.04	0.1		
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0		3			3		pF	
Cio		V _{CC} = 2.5 V,	$V_{O} = 2.5 \text{ V or } 0$		7			7		pF	

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}C$.

[‡] Data must not be loaded into the flip-flops/latches after applying power.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max.

The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to V_{CC} and then lowering it to VIH min.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 \star Current into an output in the high state when V_O > V_{CC}

□High-impedance state during power up or power down

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

	DAMETED	TEOT		SN54AL	VTH16601	SN74AL	VTH16601	UNIT	
PA	RAMETER	IESTO	CONDITIONS	MIN T	YP [†] MAX	MIN T	ΥΡ [†] ΜΑΧ	UNIT	
VIK		V _{CC} = 3 V,	lj = -18 mA		-1.2		-1.2	V	
		V _{CC} = 3 V to 3.6 V,	I _{OH} = -100 μA	V _{CC} -0.2		V _{CC} -0.2			
VOH			I _{OH} = -24 mA	2				V	
		V _{CC} = 3 V	I _{OH} = -32 mA			2			
		V _{CC} = 3 V to 3.6 V,	I _{OL} = 100 μA		0.2		0.2		
			I _{OL} = 16 mA				0.4		
V _{OL}			I _{OL} = 24 mA		0.5			v	
		VCC = 3 V	I _{OL} = 32 mA				0.5		
			I _{OL} = 48 mA		0.55				
			I _{OL} = 64 mA				0.55		
V _{RST} ‡	:	V _{CC} = 3.6 V	$I_O = 1 \text{ mA},$ $V_I = V_{CC} \text{ or GND}$		0.55		0.55	V	
	Control in pute	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND		2 ±1		±1		
ц	Control inputs	V _{CC} = 0 or 3.6 V,	V _I = 5.5 V		10		10		
			V _I = 5.5 V	50	10		10	μΑ	
	A or B ports	V _{CC} = 3.6 V	$V_I = V_{CC}$	20	1		1		
			$V_{I} = 0$	4	-5		-5		
loff		V _{CC} = 0,	V_{I} or V_{O} = 0 to 4.5 V				±100	μA	
I _{BHL} §		V _{CC} = 3 V,	V _I = 0.8 V	75		75		μΑ	
IBHH		$V_{CC} = 3 V,$	$V_{I} = 2 V$	-75		-75		μA	
IBHLO	#	V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	500		500		μA	
Івнно		V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	-500		-500		μA	
I _{EX} ☆		V _{CC} = 3 V,	V _O = 5.5 V		125		125	μA	
IOZ(PL	J/PD)□	$V_{CC} \le 1.2 \text{ V}, V_O = \frac{0.5}{0.5}$ V _I = GND or V _{CC} , OE	V to V _{CC} , = don't care		±100		±100	μA	
		V _{CC} = 3.6 V,	Outputs high	(0.06 0.1		0.06 0.1		
ICC		$I_{O} = 0,$	Outputs low		3.5 5		3.5 5	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled	(0.06 0.1	(0.06 0.1		
∆ICC◊		$V_{CC} = 3 V$ to 3.6 V, Or Other inputs at V_{CC} or	ne input at V _{CC} – 0.6 V, [.] GND		0.4		0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0		3		3	pF	
Cio		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		7		7	pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

[‡] Data must not be loaded into the flip-flops/latches after applying power.

S The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

#An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 \star Current into an output in the high state when V_O > V_{CC}

□High-impedance state during power up or power down

◊ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES143A – SEPTEMBER 1998 – REVISED JULY 1999

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

				SN54ALVT	H16601	SN74ALVT	H16601	UNIT
				MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency				150		150	MHz
	Pulse duration	LE high		1.8		1.8		
tw	Pulse duration	CLK high or low		2.3		2.3		ns
	Setup time		Data high	4		4		ns
		A or B before CLK↑	Data low	5.2		5.2		
		A or B before LE \downarrow	CLK high	0.7	EW	0.7		
t _{su}			CLK low	0.9	E	0.9		
			Data high	1.7	6	1.7		
		CLKEN before CLK↑	Data low	2.3		2.3	150 MHz 1.8 ns 2.3 1 4 5.2 0.7 ns 1.7 1.7	
		A or B after CLK↑	Data high	0.5		0.5		
		A or B after CLK	Data low	0.5		0.5		
			CLK high	2.3		2.3		
th	Hold time	A or B after LE↓	CLK low	2.4		2.4		ns
			Data high	0.5		0.5		
		CLKEN after CLK↑	Data low	0.5		0.5		

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

				SN54ALVT	H16601	SN74ALVTH16601		UNIT	
				MIN	MAX	1.8 2.3 2.4 3.8	MAX	UNIT	
fclock	Clock frequency				150		150	MHz	
	Dulas duration	LE high		1.8		1.8			
tw	Pulse duration	CLK high or low		2.3		2.3		ns	
	Setup time		Data high	2.4		2.4			
		A or B before CLK↑	Data low	3.8		3.8		ns	
		A or B before LE \downarrow	CLK high	1	EN	1			
t _{su}			CLK low	0.6	EL	0.6			
			Data high	1.4 🭳	G	1.4	MAX 150 M		
		CLKEN before CLK [↑]	Data low	1.9		2.3 ns 2.4 3.8 1 ns 0.6 ns			
		A or B after CLK↑	Data high	0.5		0.5			
		A or B after CLK	Data low	0.5		0.5			
			CLK high	2		2			
th	Hold time	A or B after LE↓	CLK low	2.3		2.3		ns	
			Data high	0.6		0.6			
		CLKEN after CLK1 Data lov		0.5		0.5			

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALVT	H16601	SN74ALVT	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
fmax			150		150		MHz
^t PLH	B or A	A or B	1.1	<u>4</u> .1	1.1	4.1	ns
^t PHL	BOLA	AUB	1.6	4.8	1.6	4.8	115
^t PLH	LEBA or LEAB	A or B	2.1	5	2.1	5	ns
^t PHL		AUB	2.4	5.4	2.4	5.4	115
^t PLH	CLKBA or CLKAB	A or B	2	5	2	5	ns
^t PHL	CLKBA OF CLKAB	AUD	2.5	5.9	2.5	5.9	115
^t PZH		A or B	Q 1.2	4.8	1.2	4.8	ns
^t PZL	OEBA OF OEAB	DEBA or OEAB A or B	1	4.6	1	4.6	115
^t PHZ	OEBA or OEAB	A or B	1.2	5.2	1.2	5.2	ns
^t PLZ	UEDA UI UEAD	A 01 B	1	3.9	1	3.9	115

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVT	H16601	SN74ALVT	H16601	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
fmax			150		150		MHz
^t PLH	D en A	B or A A or B	1.4	3.9	1.4	3.9	ns
^t PHL	BOLA		1.1	3.9	1.1	3.9	115
^t PLH	LEBA or LEAB	A or B	2	4.6	2	4.6	ns
^t PHL		AUB	2.1	4.6	2.1	4.6	115
^t PLH	CLKBA or CLKAB	A or B	1.9	4.5	1.9	4.5	ns
^t PHL	CLKBA OF CLKAB	AUB	2.2	4.6	2.2	4.6	115
^t PZH		A or B	Q 1	4.2	1	4.2	ns
^t PZL	OEBA OF OEAB	3A or OEAB A or B	1	4.4	1	4.4	115
^t PHZ	OEBA or OEAB	A or B	1.8	5.3	1.8	5.3	ns
^t PLZ	OEDA OF OEAB	A OF B	1.7	4.6	1.7	4.6	115

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

- NOTES: A. Cl includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES143A - SEPTEMBER 1998 - REVISED JULY 1999

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \le 10 MHz, Z_O = 50 Ω, t_f \le 2.5 ns. t_f \le 2.5 ns.
 - C_{1} An input pulses are supplied by generators having the following characteristics. PRR \leq 10 MHz, 20 = 50.22, $t_{1} \leq 2.5$ Hs, $t_{1} \leq 2.5$ Hs

D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated