

Product Group: OPT/Fri Dec 17, 2021/PCN-OPT-1191-2021-REV-0

TSMF1000, TSMF1020, TSMF1030 - Change in Chip

DESCRIPTION OF CHANGE: A new chip generation will be introduced in TSMF1000, TSMF1020, TSMF1030 dome lens products.

With the new chip, the devices will have more than 5 times increased radiant intensity and narrow emission angle. The high performance chip allows customers to achieve the required intensity with lower driving current.

REASON FOR CHANGE: Introduction of new chip generation with improved electro-optical performance.

EXPECTED INFLUENCE ON QUALITY/RELIABILTY/PERFORMANCE: No influence on quality and reliability expected. Nevertheless, we recommend

to test the product in customers application.

PART NUMBERS/SERIES/FAMILIES AFFECTED: TSMF1000, TSMF1000-GS15, TSMF1020, TSMF1020-GS15, TSMF1030

VISHAY BRAND(s): Vishay Semiconductors

TIME SCHEDULE: Start Shipment Date: Sun May 1, 2022

SAMPLE AVAILABILITY: 31. Jan.2022

PRODUCT IDENTIFICATION: Date code

QUALIFICATION DATA: Available upon request

This PCN is considered approved, without further notification, unless we receive specific customer concerns before Fri Apr 15, 2022 or as specified by contract.

ISSUED BY: Mohankumar Kannusamy, mohankumar.kannusamy@vishay.com

For further information, please contact your regional Vishay office.

CONTACT INFORMATION:

Americas	Europe	Asia
VISHAY Intertechnologies, Inc.	VISHAY Semiconductor GmbH	+1 408-240-5687
2585 Junction Avenue	Theresienstr. 2	25 Tampines Street 92
SanJose California United States 95134	Heilbronn Germany 74072	Singapore Singapore 528877
Phone: 1-408-567-8358	Phone: +49-7131-7498-645	Phone: +65 6780 7879
Fax: +1 408-240-5687	Fax: +49-7131-67-3144	Fax: +65 6780 7897

Vishay Intertechnology, Inc.

Corporate Headquarters 63 Lincoln Highway, Malvern, PA 19355-2143 U.S.A. Phone (610) 644-1300 Fax (610) 296-0657 www.vishay.com ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENT

TSMF1000, TSMF1020, TSMF1030 - Char Change overview

STER

PCN: OPT-1191-2021 Rev. 0

Change Overview

Before PCN

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							BASIC CHARACTERISTICS (T		
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	PARAMETER		
Forward voltage	I _F = 20 mA	VF		1.3	1.5	v	Forward voltage	-	
	l _F = 1 A, t _p = 100 μs	VF		2.4		v			
Temperature coefficient of V _F	$l_F = 1 \text{ mA}$	TKVF		- 1.8		mV/K		H	
Reverse current	V _R = 5 V	1 _R	_	()	10	μΑ	Temperature coefficient of V _F	\rightarrow	
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	G		160		pF	Reverse current	+	
Radiant intensity	I _F = 20 mA	le le	2.5	5	13	mW/sr	Junction capacitance	\rightarrow	
	Ie = 100 mA, to = 100 µs	le le	_	25		mW/sr	Radiant intensity	_	
Radiant power	I _F = 100 mA, t _p = 20 ms	\$ 0		35		mW			
Temperature coefficient of ϕ_e	I# = 20 mA	TKộe		+ 0.6		%/K		\rightarrow	
Angle of half intensity		φ		± 17	0	deg	Radiant power	\rightarrow	
Peak wavelength	Ic = 20 mA	λο		890		nm	Temperature coefficient of ϕ_e	_	
Spectral bandwidth	I# = 20 mA	Δλ		40		nm	Angle of half intensity	_	
Temperature coefficient of λ_n	I# = 20 mA	ΤΚλα		0.2		nm/K	Peak wavelength		
Rise time	Ir = 20 mA	L,		30		ns	Spectral bandwidth		
Fall time	I _F = 20 mA	t,		30		ns	Temperature coefficient of λ_p		
Cut-off frequency	I _{DC} = 70 mA, I _{AC} = 30 mA pp	fe		12		MHz	Rise time		
Virtual source diameter		d		1.2		mm	Fall time	-	

amb

Main changes:

- Higher radiant intensity (Typical : 5mw/sr to 27mw/sr)
- Emission angle/angle of half intensity has been reduced from +-1

Thank you

© 2020 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.