MOSFET – Power, Dual, P-Channel, ESD, μCool, **UDFN, 1.6X1.6X0.55 mm** -20 V, -2.1 A #### **Features** - UDFN Package with Exposed Drain Pads for Excellent Thermal - Low Profile UDFN 1.6x1.6x0.55 mm for Board Space Saving - ESD Protected - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### **Applications** - High Side Load Switch - PA Switch - Optimized for Power Management Applications for Portable Products, such as Cell Phones, PMP, DSC, GPS, and others #### MAXIMUM RATINGS (T_J = 25°C unless otherwise stated) | Parameter | | | Symbol | Value | Units | |---|-----------------|-----------------------|--------------------------------------|---------------|-------| | Drain-to-Source Voltage | | | V_{DSS} | -20 | ٧ | | Gate-to-Source Voltage | | | V_{GS} | ±8.0 | V | | Continuous Drain | Steady | T _A = 25°C | I _D | -1.7 | Α | | Current (Note 1) | State | T _A = 85°C | | -1.2 | | | | t ≤ 5 s | T _A = 25°C | | -2.1 | | | Power Dissipa-
tion (Note 1) | Steady
State | T _A = 25°C | P _D | 0.8 | W | | | t ≤ 5 s | T _A = 25°C | | 1.3 | | | Continuous Drain | Steady
State | T _A = 25°C | I _D | -1.3 | Α | | Current (Note 2) | State | T _A = 85°C | | -0.9 | | | Power Dissipation (Note 2) T _A = 25°C | | | P_{D} | 0.5 | W | | Pulsed Drain Current tp = 10 μs | | | I _{DM} | -8.0 | Α | | Operating Junction and Storage
Temperature | | | T _J ,
T _{STG} | -55 to
150 | °C | | Source Current (Body Diode) (Note 2) | | | I _S | -0.6 | Α | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). - 2. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu. #### ON Semiconductor® http://onsemi.com | MOSFET | | | | | |----------------------|--|--------|--|--| | V _{(BR)DSS} | V _{(BR)DSS} R _{DS(on)} MAX | | | | | -20 V | 200 mΩ @ -4.5 V | | | | | | 290 mΩ @ -2.5 V | -2.1 A | | | | | 390 mΩ @ –1.8 V | 2.171 | | | | | 650 mΩ @ –1.5 V | | | | P-Channel MOSFET #### **MARKING DIAGRAM** **UDFN6** CASE 517AT μCOOL™ AD = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location) #### PIN CONNECTIONS #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. #### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Units | |---|-----------------|-----|-------| | Junction-to-Ambient – Steady State (Note 3) | $R_{\theta JA}$ | 155 | °C/W | | Junction-to-Ambient – t ≤ 5 s (Note 3) | $R_{\theta JA}$ | 100 | | | Junction-to-Ambient – Steady State min Pad (Note 4) | $R_{\theta JA}$ | 245 | | | Parameter | Symbol | Test Condition | | Min | Тур | Max | Units | |--|--------------------------------------|--|------------------------------|------------|------|------|-------| | OFF CHARACTERISTICS | | • | | - 1 | 1 | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | | -20 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | I _D = -250 μA, ref to 25°C | | | -10 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | $V_{GS} = 0 \text{ V},$ $T_J = 25^{\circ}\text{C}$ | | | | -1.0 | μΑ | | | | $V_{DS} = -20 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$ | | | -10 | | | | Gate-to-Source Leakage Current | I_{GSS} | V _{DS} = 0 V, \ | $I_{GS} = \pm 8.0 \text{ V}$ | | | ±10 | μΑ | | ON CHARACTERISTICS (Note 5) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}$, | I _D = -250 μA | -0.4 | | -1.0 | V | | Negative Threshold Temp. Coefficient | V _{GS(TH)} /T _J | | | | 2.8 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | $V_{GS} = -4.5$ | V, I _D = −2.0 A | | 160 | 200 | mΩ | | | | V _{GS} = -2.5 | V, I _D = −1.2 A | | 226 | 290 | | | | | V _{GS} = -1.8 \ | /, I _D = -0.24 A | | 300 | 390 | | | | | V _{GS} = -1.5 \ | /, I _D = -0.18 A | | 390 | 650 | | | Forward Transconductance | 9FS | V _{DS} = -10 \ | V, I _D = -1.5 A | | 3.7 | | S | | CHARGES, CAPACITANCES & GATE | RESISTANCE | | | | | | | | Input Capacitance | C _{ISS} | $V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} $ $V_{DS} = -10 \text{ V}$ | | | 300 | | pF | | Output Capacitance | C _{OSS} | | | | 34 | | | | Reverse Transfer Capacitance | C _{RSS} | | | | 29 | | | | Total Gate Charge | Q _{G(TOT)} | | | | 4.2 | | nC | | Threshold Gate Charge | Q _{G(TH)} | V _{GS} = -4.5 V | . Vne = -10 V: | | 0.3 | | 1 | | Gate-to-Source Charge | Q _{GS} | $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V};$
$I_D = -1.7 \text{ A}$ | | | 0.7 | | - | | Gate-to-Drain Charge | Q_{GD} | 1 | | | 1.1 | | | | SWITCHING CHARACTERISTICS, VG | S = 4.5 V (Note 6) | • | | • | | | | | Turn-On Delay Time | t _{d(ON)} | | | | 17.4 | | ns | | Rise Time | t _r | V _{GS} = −4.5 V, | $V_{DD} = -10 \text{ V}$ | | 32.3 | | | | Turn-Off Delay Time | t _{d(OFF)} | $I_{\rm D} = -1.5 A$ | $A, R_G = 1 \Omega$ | | 149 | | 1 | | Fall Time | t _f | 1 | | | 74 | | | | DRAIN-SOURCE DIODE CHARACTER | RISTICS | • | | | | | L | | Forward Diode Voltage | VSD | $V_{GS} = 0 \text{ V},$ $I_{S} = -0.6 \text{ A}$ | T _J = 25°C | | 0.8 | 1.2 | V | | G T | | | T _J = 125°C | | 0.68 | | 1 | | Reverse Recovery Time | t _{RR} | | 1 | | 10.6 | | ns | | Charge Time | t _a | Voc - 0 V die | /dt = 100 A/us | | 8.7 | | | | Discharge Time | t _b | $V_{GS} = 0 \text{ V, dis/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -1.0 \text{ A}$ | | | 1.9 | | | | Reverse Recovery Charge | Q _{RR} | | | | 5.1 | | nC | - 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). 4. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. - 6. Switching characteristics are independent of operating junction temperatures. #### **TYPICAL CHARACTERISTICS** $(V) = V_{DS} \le -10 \text{ V}$ $V_{DS} V Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance vs. Gate–to–Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage 0.85 0.75 0.65 0.55 0.35 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 Figure 11. Threshold Voltage 200 175 150 125 100 75 50 25 0 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03 SINGLE PULSE TIME (s) Figure 12. Single Pulse Maximum Power Dissipation #### **TYPICAL CHARACTERISTICS** Figure 13. Maximum Rated Forward Biased Safe Operating Area Figure 14. FET Thermal Response #### **DEVICE ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|--------------------|-----------------------| | NTLUD3A260PZTAG | UDFN6
(Pb-Free) | 3000 / Tape & Reel | | NTLUD3A260PZTBG | UDFN6
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. DETAIL A ## **UDFN6 1.6x1.6, 0.5P**CASE 517AT ISSUE O **DATE 02 SEP 2008** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL - 0.30 mm FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | |-----|-------------|------|--|--| | DIM | MIN | MAX | | | | Α | 0.45 | 0.55 | | | | A1 | 0.00 | 0.05 | | | | A3 | 0.13 | REF | | | | b | 0.20 | 0.30 | | | | D | 1.60 BSC | | | | | E | 1.60 BSC | | | | | е | 0.50 BSC | | | | | D1 | 1.14 1.34 | | | | | D2 | 0.38 | 0.58 | | | | E1 | 0.54 | 0.74 | | | | K | 0.20 | | | | | L | 0.15 | 0.35 | | | | L1 | | 0.10 | | | # GENERIC MARKING DIAGRAM* XX = Specific Device Code M = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. #### ·D В 0.10 C **DETAIL A** PIN ONE REFERENCE OPTIONAL CONSTRUCTION 0.10 C MOLD CMPD EXPOSED Cu-**TOP VIEW** АЗ (A3) **DETAIL B** 0.05 С **A1 DETAIL B** OPTIONAL 0.05 C CONSTRUCTION **SIDE VIEW** C SEATING C A B С моте з 0.10 0.05 **BOTTOM VIEW** **E**1 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON32372E | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|----------------------|---|-------------| | DESCRIPTION: | UDFN6, 1.6X1.6, 0.5P | | PAGE 1 OF 1 | onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales