

NTE74HC299 Integrated Circuit TTL – High Speed CMOS, 8–Bit Universal Shift Register with 3–State Output

Description:

The NTE74HC299 is an 8-bit shift/storage register with three-state bus interface capability in a 20-Lead DIP type package. The register has four synchronous-operating modes controlled by two select inputs as shown in the mode select (S0, S1) table. The mode select, the serial data (DS0, DS7) and the parallel data ($I/O_0 - I/O_7$) respond only to the low-to-high transition of the clock (CP) pulse. S0, S1 and data inputs must be stable one set-up time prior to the clock positive transaction.

The Master Reset (\overline{MR}) is an asynchronous active low input. When \overline{MR} output is low, the register is cleared regardless of the status of all other inputs. The register can be expanded by cascading same units by tying the serial output (Q0) to the serial data (DS7) input of the preceding register, and tying the serial output (Q7) to the serial data (DS0) input of the following register. Recirculating the (n x 8) bits is accomplished by tying the Q7 of the last stage to the DS0 of the first stage.

The three-state input/output (I/O) port has three modes of operation:

- 1. Both output enable (OE1 and OE2) inputs are low and S0 or S1 or both are low, the data in the register is presented at the eight outputs.
- 2. When both S0 and S1 are high, I/O terminals are in the high impedance state but being input ports, ready for parallel data to be loaded into eight registers with one clock transition regardless of the status of OE1 and OE2.
- 3. Either one of the two output enable inputs being high will force I/O terminals to be in the offstate. It is noted that each I/O terminal is a three-state output and a CMOS buffer input.

Features:

- Wide Power Supply Range: 2V to 6V
- High Noise Immunity: $N_{IL} = 30\%$, $N_{IH} = 30\%$ of V_{CC} at $V_{CC} = 5V$
- Buffered Inputs
- Four Operating Modes: Shift Left, Shift Right, Load and Store
- Can be Cascaded for N–Bit Word Lengths
- I/O₀ I/O₇ Bus Drive Capability and Three–State for Bus Oriented Applications
- Typical $f_{MAX} = 50$ Mhz at $V_{CC} = 5$ V, $C_L = 15$ pF, $T_A = +25$ °C
- Fanout (Over Temperature Range): Standard Outputs ... 10 LS-TTL Loads
 - Bus Driver Outputs . . 15 LS-TTL Loads
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LS-TTL Logic ICs

Absolute Maximum Ratings: (Note 1, Note 2)

Supply Voltage, V _{CC}	–0.5 to +7.0V
Clamp Diode Current, I _{IK} , I _{OK}	±20mA
DC Drain Current (Per Output), I _{OUT}	
For Q Outputs	±25mA
For I/O Outputs	±35mA
DC Output Source or Sink Current (Per Output), I _{OUT}	±25mA
DC V _{CC} or GND Current (Per Pin), I _{CC}	±50mA
Maximum Junction, T _J	+150°C
Storage Temperature Range, T _{sta}	65°C to +150°C
Typical Thermal Resistance, Junction-to-Ambient, RthJA	69°C/W
Lead Temperature (During Soldering, 10sec), T _L	

Note 1. Absolute Maximum Ratings are those values beyond which damage to the device may occur. Note 2. Unless otherwise specified, all voltages are referenced to GND.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	2.0	-	6.0	V
DC Input or Output Voltage	V _{IN} , V _{OUT}	0	-	V _{CC}	V
Operating Temperature Range	T _A	-40	-	+85	°C
Input Rise or Fall Times V _{CC} = 2.0V	t _r , t _f	_	_	1000	ns
$V_{\rm CC} = 4.5 V$		-	-	500	ns
$V_{\rm CC} = 6.0 V$		-	-	400	ns

DC Electrical Characteristics:

					T _A :	= +25°C	$T_A = -40^\circ$ to $+85^\circ$ C	
Parameter	Symbol	Tes	at Conditions	v_{cc}	Тур	Guar	ranteed Limits	Unit
Minimum HIGH Level Input Voltage	V _{IH}			2.0	-	1.5	1.5	V
				4.5	-	3.15	3.15	V
				6.0	-	4.2	4.2	V
Maximum LOW Level Input Voltage	V _{IL}			2.0	-	0.5	0.5	V
				4.5	-	1.35	1.35	V
				6.0	-	1.8	1.8	V
Minimum HIGH Level Output	V _{OH}	$V_{IN} = V_{IH}$	I _{OUT} = -20μA	-	V_{CC}	V _{CC} -0.1	V _{CC} -0.1	V
Voltage		or V_{IL}	I _{OUT} = -6mA	4.5	-	3.98	3.84	V
			$I_{OUT} = -7.8 \text{mA}$	6.0	-	5.48	5.34	V
Minimum LOW Level Output	V _{OL}	$V_{IN} = V_{IH}$	I _{OUT} = 20μA	-	-	0.1	0.1	V
Voltage		or V_{IL}	I _{OUT} = 6mA	4.5	0.2	0.26	0.33	V
			I _{OUT} = 7.8mA	6.0	0.2	0.26	0.33	V
Maximum Input Current	I _{IN}	V _{IN} = V _{CC} or GND		6.0	-	±0.1	±1.0	μA
Maximum Quiescent Supply Current	I _{CC}	$V_{IN} = V_{CC}$	6.0	-	8.0	80	μA	
Three-State Leakage Current	I _{OZ}	$V_{IN} = V_{IH} o$	r V _{IL}	6.0	-	±0.5	±5.0	μA

Prerequisite for Switching Specifications:

				T _A = +25°C		$T_A = -40^\circ$ to +85°C	
Parameter	Symbol	Test Conditions	v_{cc}	Тур	Gua	ranteed Limits	Unit
Maximum Clock Frequency	f _{MAX}		2.0	-	6	5	MHz
			4.5	-	30	25	MHz
			6.0	-	35	29	MHz
MR Pulse Width	t _W		2.0	-	50	65	ns
			4.5	-	10	13	ns
			6.0	-	9	11	ns
Clock Pulse Width	t _W		2.0	-	80	100	ns
			4.5	-	16	20	ns
			6.0	-	14	17	ns
Setup Time (DS0, DS7, I/On to Clock)	t _{SU}		2.0	-	100	125	ns
			4.5	-	20	25	ns
			6.0	-	17	21	ns
Hold Time (DS0, DS7, I/On, S0, S1 to Clock)	t _H		All	-	0	0	ns
Recovery Time (MR to Clock)	t _{REC}		All	-	5	5	ns
Setup Time (S1, S0 to Clock)	t _{SU}		2.0	-	120	150	ns
			4.5	-	24	30	ns
			6.0	-	20	26	ns

<u>Switching Specifications:</u> ($t_r = t_f = 6ns$ unless otherwise specified)

				T _A =	= +25°C	$T_A = -40^\circ$ to +85°C	
Parameter	Symbol	Test Conditions	v_{cc}	Тур	Guaranteed Limits		Unit
Propagation Delay Time	t _{PLH} , t _{PHL}	$C_L = 50 pF$	2.0	-	200	250	ns
Clock to I/O Output Clock to Q0 and Q7			4.5	-	40	50	ns
MR to Output		C _L = 15pF	5.0	17	-	-	ns
		$C_L = 50 pF$	6.0	-	34	43	ns
Output Enable and Disable Time	t _{PZL}	C _L = 15pF	5.0	10	-	-	ns
	t _{PZH} , t _{PZL}			13	-	-	ns
	t _{PZH}			15	_	-	ns
Output High–Z to High Level	t _{PZH}	$C_L = 50 pF$	2.0	-	155	195	ns
			4.5	-	31	39	ns
			6.0	-	26	33	ns
Output High Level to High-Z	t _{PHZ}	C _L = 50pF	2.0	-	185	230	ns
			4.5	-	37	46	ns
			6.0	-	31	39	ns
Output Low Level to High-Z	t _{PLZ}	C _L = 50pF	2.0	-	155	195	ns
			4.5	-	31	39	ns
			6.0	-	26	33	ns
Output High-Z to Low Level	t _{PZL}	$C_L = 50 pF$	2.0	-	130	165	ns
			4.5	-	26	33	ns
			6.0	-	22	28	ns
Output Transition Time, Q0, Q7	t _{TLH} , t _{THL}	$C_L = 50 pF$	2.0	-	75	95	ns
			4.5	-	15	19	ns
			6.0	-	13	16	ns

				T _A = +25°C		$T_A = -40^\circ$ to +85°C	
Parameter	Symbol	Test Conditions	V _{CC}	Тур	Gua	Guaranteed Limits	
Output Transition Time, I/O ₀ to I/O ₇	t _{TLH} , t _{THL}	$C_L = 50 pF$	2.0	-	60	75	ns
			4.5	-	12	15	ns
			6.0	-	10	13	ns
Maximum Input Capacitance	C _{IN}	$C_L = 50 pF$	-	-	10	10	pF
Maximum Three-State Output Capacitance	C _{OUT}	$C_L = 50 pF$	-	-	20	20	MHz
Power Dissipation Capacitance	C _{PD}	Note 3	5.0	150	-	-	pF

Note 3. C_{PD} is used to determine the dynamic power consumption, per channel. $P_D = C_{PD} V_{CC}^2 f_i \Sigma (C_L V_{CC}^2 + f_O)$ where f_i = Input Frequency, f_O = Output Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Mode Select Function Table Three-State I/O Port Operating Mode:

			In		Inputs/Outputs	
Function	OE1	OE2	S0	S1	Qn (Register)	I/O0 – I/O7
Read Register	L	L	L	Х	L	L
	L	L	L	Х	Н	Н
	L	L	Х	L	L	L
	L	L	Х	L	Н	Н
Load Register	Х	Х	Н	Н	Qn = I/On	I/On = Inputs
Disable I/O	Н	Х	Х	Х	Х	Z
	Х	Н	Х	Х	Х	Z

Truth Table:

		Inputs						Register Outputs				
Function	MR	СР	S0	S1	DS0	DS7	l/On	Q0	Q1		Q6	Q7
Reset (Clear)	L	Х	X	Х	X	Х	Х	L	L		L	L
Shift Right	Н	1	h	I		Х	Х	L	q1		q1	q6
	Н	1	h	I	h	Х	Х	Н	q1		q1	Q ₆
Shift Left	Н	1	I	h	Х	I	Х	q1	q1		q1	L
	Н	1	I	h	Х	h	Х	q1	q1		q1	Н
Hold (Do Nothing)	Н	1	I	I	Х	Х	Х	q0	q1		q1	q7
Parallel Load	Н	1	h	h	Х	Х		L	L		L	L
	Н	1	h	h	Х	Х	h	Н	Н		Н	Н

H = Input Voltage HIGH Level

h = Input Voltage HIGH one set-up timer prior to clock transition

- L = Input Voltage LOW Level
- I = Input Voltage LOW one set-up timer prior to clock transition

qn = Lower case letter indicates the state of reference output one set-up time prior to clock transition

X = Don't Care

- Z = Output in high impedance state
- \uparrow = Transition from LOW to HIGH Level

