INTEGRATED CIRCUITS

Product specification Supersedes data of July 1994 File under Integrated Circuits, IC02 1997 Nov 04

FEATURES

- Quasi alignment-free BTSC stereo decoder due to automatic adjustment of channel separation via I²C-bus
- High integration level with automatically tuned integrated filters
- Input level adjustment I²C-bus controlled
- Alignment-free SAP processing
- dbx noise reduction circuit
- I²C-bus transceiver.

Audio processor

- Selector for internal and external signals (line in)
- Automatic volume level control
- Subwoofer or surround output with separate volume control
- Volume control
- Special loudness characteristic automatically controlled in combination with volume setting
- Bass and treble control
- Audio signal zero-crossing detection between any volume step switching
- Mute control at audio signal zero-crossing.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE			
	NAME	NAME DESCRIPTION		
TDA9855	SDIP52	plastic shrink dual in-line package; 52 leads (600 mil)	SOT247-1	
TDA9855WP	PLCC68	plastic leaded chip carrier; 68 leads	SOT188-2	

LICENSE INFORMATION

A license is required for the use of this product. For further information, please contact

COMPANY	BRANCH	ADDRESS
THAT Corporation	Licensing Operations	734 Forest St. Marlborough, MA 01752 USA
		Tel.: (508) 229-2500 Fax: (508) 229-2590
	Tokyo Office	405 Palm House, 1-20-2 Honmachi Shibuya-ku, Tokyo 151 Japan Tel.: (03) 3378-0915 Fax: (03) 3374-5191

	2	F
E	3L	JS

GENERAL DESCRIPTION

The TDA9855 is a bipolar-integrated BTSC stereo/SAP decoder with hi-fi audio processor (I²C-bus controlled) for application in TV sets.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		8.0	8.5	9.0	V
I _{CC}	supply current		50	75	95	mA
V _{COMP(rms)}	input signal voltage (RMS value)	100% modulation L + R; $f_i = 300 \text{ Hz}$	-	250	-	mV
V _{oR,L(rms)}	output signal voltage (RMS value)	100% modulation L + R; $f_i = 300 \text{ Hz}$	-	500	-	mV
G _{LA}	input level adjustment control	maximum gain	-	4	_	dB
		maximum attenuation	_	-3.5	_	dB
α_{cs}	stereo channel separation	f _L = 300 Hz; f _R = 3 kHz	25	35	_	dB
THD _{L,R}	total harmonic distortion L + R	f _i = 1 kHz	_	0.2	_	%
V _{I, O(rms)}	signal handling (RMS value)	THD < 0.5%	2	-	-	V
AVL	control range		-15	-	+6	dB
G _c	volume control range		-71	-	+16	dB
L _B	maximum loudness boost	f _i = 40 Hz	_	17	-	dB
G _{bass}	bass control range	f _i = 40 Hz	-12	-	+16.5	dB
G _{treble}	treble control range	f _i = 15 kHz	-12	-	+12	dB
Gs	subwoofer control range	f _i = 40 Hz	-14	-	+14	dB
S/N	signal-to-noise ratio	line out (mono); $V_o = 0.5 V$ (RMS)				
		CCIR noise weighting filter (peak value)	-	60	-	dB
		DIN noise weighting filter (RMS value)	-	73	-	dBA
		audio section; $V_o = 2 V (RMS)$; gain = 0 dB				
		CCIR noise weighting filter (peak value)	-	94	-	dB
		DIN noise weighting filter (RMS value)	-	107	-	dBA

BLOCK DIAGRAM

Component list

Electrolytic capacitors $\pm 20\%$; foil or ceramic capacitors $\pm 10\%$; resistors $\pm 5\%$; unless otherwise specified; see Fig.1.

COMPONENTS	VALUE	TYPE	REMARK
C1	10 μF	electrolytic	63 V
C2	470 nF	foil	-
C3	4.7 μF	electrolytic	63 V
C4	220 nF	foil	-
C5	10 μF	electrolytic	63 V; I _{leak} < 1.5 μA
C6	2.2 μF	electrolytic	16 V
C7	4.7 μF	electrolytic	16 V
C8	15 nF	foil	±5%
C9	15 nF	foil	±5%
C10	2.2 μF	electrolytic	63 V
C11	8.2 nF	foil or ceramic	±5% SMD 2220/1206
C12	150 nF	foil	±5%
C13	33 nF	foil	±5%
C14	5.6 nF	foil or ceramic	±5% SMD 2220/1206
C15	100 μF	electrolytic	16 V
C16	4.7 μF	electrolytic	63 V
C17	4.7 μF	electrolytic	63 V
C18	100 nF	foil	
C19	10 μF	electrolytic	63 V
C20	4.7 μF	electrolytic	63 V
C21	47 nF	foil	±5%
C22	1 μF	electrolytic	63 V
C23	1 μF	electrolytic	63 V
C24	10 μF	electrolytic	63 V ±10%
C25	10 μF	electrolytic	63 V ±10%
C26	2.2 μF	electrolytic	16 V
C27	2.2 μF	electrolytic	63 V
C28	4.7 μF	electrolytic	63 V ±10%
C29	2.2 μF	electrolytic	16 V
C30	8.2 nF	foil or ceramic	±5% SMD 2220/1206
C31	150 nF	foil	±5%
C32	33 nF	foil	±5%
C33	5.6 nF	foil or ceramic	±5% SMD 2220/1206
C34	100 μF	electrolytic	16 V
C35	150 nF	foil	±5%
C36	4.7 μF	electrolytic	16 V
C37	4.7 μF	electrolytic	16 V
C39	4.7 μF	electrolytic	16 V
C40	4.7 μF	electrolytic	16 V

Philips Semiconductors

TDA9855

COMPONENTS	VALUE	ТҮРЕ	REMARK
C45	2.2 μF	electrolytic	16 V
C47	220 μF	electrolytic	25 V
C49	100 nF	foil or ceramic	SMD 1206
D1	_	_	general purpose diode
R1	2.2 kΩ	-	-
R2	20 kΩ	-	-
R3	2.2 kΩ	-	-
R4	20 kΩ	-	-
R5	2.2 kΩ	-	-
R6	8.2 kΩ	-	±2%
R7	160 Ω	-	±2%
Q1		CSB503F58	radial leads
		CSB503JF958	alternative as SMD

PINNING

SYMDOL	PI	NS	DECODIDION
SYMBOL	PLCC68	SDIP52	DESCRIPTION
TL	1	1	treble control capacitor, left channel
n.c.	2	_	not connected
B1L	3	2	bass control capacitor, left channel
B2L	4	3	bass control capacitor, left channel
OUTS	5	4	output subwoofer or output surround sound
MAD	6	5	programmable address bit (module address)
OUTL	7	6	output, left channel
n.c.	8 to 10	_	not connected
LDL	11	7	input loudness, left channel
VIL	12	8	input volume control, left channel
EOL	13	9	output effects, left channel
C _{AV}	14	10	automatic volume control capacitor
V _{ref}	15	11	reference voltage 0.5V _{CC}
LIL	16	12	input line, left channel
n.c.	17	_	not connected
AVL	18	13	input automatic volume control, left channel
SOL	19	14	output selector, left channel
LOL	20	15	output line control, left channel
C _{TW}	21	16	capacitor timing wideband for dbx
C _{TS}	22	17	capacitor timing spectral for dbx
C _W	23	18	capacitor wideband for dbx
C _S	24	19	capacitor spectral for dbx
VEO	25	20	variable emphasis output for dbx

	PI	NS	DESCRIPTION	
SYMBOL	PLCC68	SDIP52	DESCRIPTION	
n.c.	26	_	not connected	
VEI	27	21	variable emphasis input for dbx	
n.c.	28	_	not connected	
C _{NR}	29	22	capacitor noise reduction for dbx	
C _M	30	23	capacitor mute for SAP	
C _{DEC}	31	24	capacitor DC-decoupling for SAP	
n.c.	32	-	not connected	
AGND	33	_	analog ground	
DGND	34	_	digital ground	
GND	_	25	ground	
SDA	35	26	serial data input/output (I ² C-bus)	
SCL	36	27	serial clock input (I ² C-bus)	
V _{CC}	37	28	supply voltage	
COMP	38	29	composite input signal	
V _{CAP}	39	30	capacitor for electronic filtering of supply	
C _{P1}	40	31	capacitor for pilot detector	
C _{P2}	41	32	capacitor for pilot detector	
n.c.	42	_	not connected	
C _{PH}	43	33	capacitor for phase detector	
n.c.	44, 45	-	not connected	
C _{ADJ}	46	34	capacitor for filter adjustment	
CER	47	35	ceramic resonator	
C _{MO}	48	36	capacitor DC-decoupling mono	
C _{SS}	49	37	capacitor DC-decoupling stereo/SAP	
LOR	50	38	output line control, right channel	
SOR	51	39	output selector, right channel	
AVR	52	40	input automatic volume control, right channel	
n.c.	53	-	not connected	
LIR	54	41	input line control, right channel	
C _{PS2}	55	42	capacitor 2 pseudo function	
C _{PS1}	56	43	capacitor 1 pseudo function	
EOR	57	44	output effects, right channel	
VIR	58	45	input volume control, right channel	
LDR	59	46	input loudness, right channel	
n.c.	60 to 62	_	not connected	
OUTR	63	47	output, right channel	
n.c.	64	48	not connected	
SW	65	49	filter capacitor for subwoofer	

TDA9855

I²C-bus controlled BTSC stereo/SAP decoder and audio processor

SYMBOL	PINS		DESCRIPTION	
STWBOL	PLCC68	SDIP52	DESCRIPTION	
B2R	66	50	bass control capacitor, right channel	
B1R	67	51	bass control capacitor, right channel	
TR	68	52	treble control capacitor	

TDA9855

FUNCTIONAL DESCRIPTION

Decoder

INPUT LEVEL ADJUSTMENT

The composite input signal is fed to the input level adjustment stage. In order to compensate tolerances of the FM demodulator which supplied the composite input signal, the TDA9855 provides an input level adjustment stage. The control range is from -3.5 to +4.0 dB in steps of 0.5 dB. The subaddress control 3 of Tables 5 and 6 and the level adjust setting of Table 22 allows an optimum signal adjustment during the set alignment in the production line. This value has to be stored in a non-volatile memory. The maximum input signal voltage is 2 V (RMS).

STEREO DECODER

The output signal of the level adjustment stage is coupled to a low-pass filter which suppresses the baseband noise above 125 kHz. The composite signal is then fed into a pilot detector/pilot cancellation circuit and into the MPX demodulator. The main L + R signal passes a 75 μ s fixed de-emphasis filter and is fed into the dematrix circuit. The decoded sub-signal L – R is sent to the stereo/SAP switch. To generate the pilot signal the stereo demodulator uses a PLL circuit including a ceramic resonator. The stereo channel separation can be adjusted by an automatic procedure or manually. For a detailed description see Section "Adjustment procedure". The stereo identification can be read by the l²C-bus (see Table 2). Two different pilot thresholds can be selected via the l²C-bus (see Table 24).

SAP DEMODULATOR

The composite signal is fed from the output of the input level adjustment stage to the SAP demodulator circuit through a 5f_H (f_H = horizontal frequency) band-pass filter. The demodulator level is automatically controlled. The SAP demodulator includes internal noise and field strength detectors that mute the SAP output in the event of insufficient signal conditions. The SAP identification signal can be read by the l²C-bus (see Table 2).

SWITCH

The stereo/SAP switch feeds either the L - R signal or the SAP demodulator output signal via the internal dbx noise reduction circuit to the dematrix/line out select circuit. Table 21 shows the different switch modes provided at the output pins LOR and LOL.

dbx decoder

The circuit includes all blocks required for the noise reduction system in accordance with the BTSC system specification. The output signal is fed through a 73 μ s fixed de-emphasis circuit to the dematrix block.

INTEGRATED FILTERS

The filter functions necessary for stereo and SAP demodulation and part of the dbx filter circuits are provided on-chip using transconductor circuits. The required filter accuracy is attained by an automatic filter alignment circuit.

Audio processor

SELECTOR

The selector allows selecting either the internal line out signals LOR or LOL (dematrix output) or the external line in signals LIR and LIL and combines the left and right signals in several modes (see Table 12). The input signal capability of the line inputs (LIR/LIL) is 2 V (RMS). The output of the selector is AC-coupled to the automatic volume level control circuit via pins SOR/SOL and AVR/AVL to avoid offset voltages.

AUTOMATIC VOLUME LEVEL CONTROL

The automatic volume level stage controls its output voltage to a constant level of typically 200 mV (RMS) from an input voltage range of 0.1 to 1.1 V (RMS). The circuit adjusts variations in modulation during broadcasting and due to changes in the programme material. The function can be switched **off**. To avoid audible 'plops' during the permanent operation of the AVL circuit a soft blending scheme has been applied between the different gain stages. A capacitor (4.7 μ F) at pin C_{AV} determines the attack and decay time constants. In addition the ratio of attack and decay time can be changed via the l²C-bus (see notes 7 and 8 of Chapter "Characteristics").

EFFECTS

The audio processor section offers the following mode selections: linear stereo, pseudo stereo, spatial stereo and forced mono. The spatial mode provides an antiphase crosstalk of 30% or 52% (switchable via the I²C-bus; see Table 18).

VOLUME/LOUDNESS

The volume control range is from +16 dB to -71 dB in steps of 1 dB and ends with a mute step (see Table 8). Balance control is achieved by the independent volume

TDA9855

control of each channel. The volume control blocks operate in combination with the loudness control. The filter is linear when maximum gain for volume control is selected. The filter characteristic changes automatically over a range of 28 dB down to a setting of -12 dB. At -12 dB volume control the maximum loudness boost is obtained. The filter characteristic is determined by external components. The proposed application provides a maximum boost of 17 dB for bass and 4.5 dB for treble. The loudness may be switched on or off via I²C-bus control (see Table 14). The left and right volume control stages include two independent zero-crossing detectors. In the zero-crossing mode a change in volume is automatically activated but not executed. The execution is enabled at the next zero-crossing of the signal. If a new volume step is activated before the previous one has been processed, the previous value will be executed first, and then the new value will be activated. If no zero-crossing occurs the next volume transmission will enforce the last activated volume setting.

The zero-crossing mode is realized between adjoining steps and between any steps, but not from any step to mute. In this case the GMU bit is required for use. In case only one channel has to be muted, two steps are necessary. The first step is a transmission of any step to -71 dB and the second step is the -71 dB step to mute mode. The step of -71 dB to mute mode has no zero-crossing but this is not relevant. This procedure has to be provided by software.

BASS CONTROL

A single external 33 nF capacitor for each channel in combination with a linear operational amplifier and internal resistors provides a bass control range of +16.5 to -12 dB in steps of 1.5 dB at low frequencies (40 Hz). Internally the basic step width is 3 dB, with intermediate steps obtained by a toggle function that provides an additional 1.5 dB boost or attenuation (see Table 9). It should be noted that both loudness and bass control together result in a maximum bass boost of 34.5 dB for low volume steps.

TREBLE CONTROL

The adjustable range of the treble control stage is from -12 to +12 dB in steps of 3 dB. The filter characteristic is determined by an external 5.6 nF capacitor for each channel. The logic circuitry is arranged in a way that the same data words (06H to 16H) can be used for both tone controls if a bass control range from -12 to +12 dB and a treble control range from -12 to +12 dB with 3 dB steps are used (see Tables 9 and 10).

SUBWOOFER; SURROUND SOUND CONTROL

The subwoofer or the surround mode can be activated with the control bit SUR (see Table 6). A low bit provides an output signal $\frac{1}{2}(L + R)$ in subwoofer mode, a high bit selects surround mode and provides an output signal $\frac{1}{2}(L - R)$. The signal is fed through a volume control stage with a range from +14 to -14 dB in 2 dB steps on top of the main channel control to the output pin OUTS. The last setting is the mute position (see Table 11). The capacitor C35 at pin SW provides a 230 Hz low-pass filter in subwoofer mode. In surround mode this capacitor should be disconnected. If balance is not in mid position the selected left and right output levels will be combined.

Mute

The mute function can be activated independently with the last step of volume or subwoofer/surround control at the left, right or centre output. By setting the general mute bit GMU via the l²C-bus all audio part outputs are muted. All channels include an independent zero-crossing detector. The zero-crossing mute feature can be selected via bit TZCM:

TZCM = 0: forced mute with direct execution

TZCM = 1: execution in time with signal zero-crossing.

In the zero-crossing mode a change of the GMU bit is activated but not executed. The execution is enabled at the next zero-crossing of the signal. To avoid a large delay of mute switching, when very low frequencies are processed, or the output signal amplitude is lower than the DC offset voltage, the following I²C-bus transmissions are needed:

A first transmission for mute execution

A second transmission approximately 100 ms later, which must switch the zero-crossing mode to forced mute (TZCM = 0)

A third transmission to reactivate the zero-crossing mode (TZCM = 1). This transmission can take place immediately, but must follow before the next mute execution.

Adjustment procedure

COMPOSITE INPUT LEVEL ADJUSTMENT

Apply the composite signal (from the FM demodulator) with 100% modulation (25 kHz deviation) L + R; $f_i = 300$ Hz. Set input level control via the l²C-bus monitoring line output (500 mV ±20 mV). Store the setting in a non-volatile memory. Adjustment of the spectral and

wideband expander is performed via the stereo channel separation adjust.

AUTOMATIC ADJUSTMENT PROCEDURE

- Capacitors of external inputs EIL and EIR must be grounded
- Composite input signal L = 300 Hz, R = 3.1 kHz, 14% modulation for each channel; volume gain +16 dB via the l²C-bus; to avoid annoying sound level set GMU bit to logic 1 during adjustment procedure
- Effects, AVL, loudness off
- Selector setting SC0, SC1 and SC2 = 0, 0, 0 (see Table 12)
- Line out setting bits: STEREO = 1, SAP = 0 (see Table 21)
- Start adjustment by transmission ADJ = 1 in register ALI3; the decoder will align itself
- After 1 second, stop alignment by transmitting ADJ = 0 in register ALI3 read the alignment data by an I²C-bus read operation from ALR1 and ALR2 (see Chapter "I²C-bus protocol") and store it in a non-volatile memory; the alignment procedure overwrites the previous data stored in ALI1 and ALI2
- Disconnect the capacitors of external inputs from ground.

MANUAL ADJUSTMENT

Manual adjustment is necessary when no dual tone generator is available (e.g. for service).

- Spectral and wideband data have to be set to 10000 (middle position for adjustment range)
- Composite input L = 300 Hz; 14% modulation
- Adjust channel separation by varying wideband data
- Composite input L = 3 kHz; 14% modulation
- Adjust channel separation by varying spectral data
- Iterative spectral/wideband operation for optimum adjustment
- Store data in non-volatile memory.

After every power-on, the alignment data and the input level adjustment data must be loaded from the non-volatile memory.

TIMING CURRENT FOR RELEASE RATE

Due to possible internal and external spreading, the timing current can be adjusted via the l^2 C-bus (see Table 25) as recommended by dbx.

TDA9855

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
COMP _{L+R(rms)}	composite input level for 100% modulation L + R; 25 kHz deviation; f _i = 300 Hz; RMS value	measured at pin COMP	162	250	363	mV
ΔCOMP	composite input level spreading under operating conditions	T _{amb} = -20 to +70 °C; aging; power supply influence	-0.5	-	+0.5	dB
Zo	output impedance	note 1	-	low-ohmic	5	kΩ
f _{lf}	low frequency roll-off	25 kHz deviation L + R; –2 dB	-	-	5	Hz
f _{hf}	high frequency roll-off	25 kHz deviation L + R; –2 dB	100	_	_	kHz
THD _{L,R}	total harmonic distortion L + R	$f_i = 1 \text{ kHz}$; 25 kHz deviation	-	-	0.5	%
		$f_i = 1 \text{ kHz}$; 125 kHz deviation; note 2	-	-	1.5	%
S/N	signal-to-noise ratio L + R/noise	CCIR 468-2 weighted quasi peak; L + R; 25 kHz deviation; $f_i = 1$ kHz; 75 μ s de-emphasis				
		critical picture modulation	44	_	_	dB
		with sync only	54	_	_	dB
α_{SB}	side band suppression mono into unmodulated SAP carrier; SAP carrier/side band	mono signal: 25 kHz deviation, $f_i = 1$ kHz; side band: SAP carrier frequency ± 1 kHz	46	-	_	dB
α _{SP}	spectral spurious attenuation L + R/spurious	50 Hz to 100 kHz; mainly n \times f _H ; no de-emphasis; L + R; 25 kHz deviation, f = 1 kHz as reference	40	-	_	dB

Requirements for the composite input signal to ensure correct system performance

Notes

- Low-ohmic preferred, otherwise the signal loss and spreading at COMP, caused by Z_o and the composite input impedance (see Chapter "Characteristics", Section INPUT LEVEL ADJUSTMENT CONTROL) must be taken into account.
- 2. In order to prevent clipping at over-modulation (maximum deviation in the BTSC system for 100% modulation is 73 kHz).

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		0	9.5	V
V _n	voltage of all other pins with respect to pin GND		0	V _{CC}	V
T _{amb}	operating ambient temperature		-20	+70	°C
T _{stg}	storage temperature		-65	+150	°C
V _{esd}	electrostatic handling	note 1	-2000	+2000	V
		note 2	-300	+300	V

Notes

- 1. Human body model: C = 100 pF; R = 1.5 k Ω .
- 2. Charge device model: C = 200 pF; $R = 0 \Omega$.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air		
	SOT247-1		43	K/W
	SOT188-2		38	K/W

CHARACTERISTICS

All voltages are measured relative to GND; $V_{CC} = 8.5 \text{ V}$; source resistance $R_s \le 600 \Omega$; output load $R_L \ge 10 \text{ k}\Omega$; $C_L \le 2.5 \text{ nF}$; AC-coupled; $f_i = 1 \text{ kHz}$; $T_{amb} = 25 \text{ °C}$; volume gain control $G_c = 0 \text{ dB}$; bass linear; treble linear; loudness **off**; AVL **off**; effects linear; composite input signal in accordance with BTSC standard; see Fig.1; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
General				•		
V _{CC}	supply voltage		8.0	8.5	9.0	V
I _{CC}	supply current		50	75	95	mA
V _{DC}	DC voltage at signal handling pins		-	¹ / ₂ V _{CC}	_	V
Decoder see	ction					
INPUT LEVEL	ADJUSTMENT CONTROL					
G _{LA}	input level adjustment control	maximum gain	-	4.0	-	dB
		maximum attenuation	_	-3.5	_	dB
G _{step}	step resolution		-	0.5	_	dB
V _{i(rms)}	maximum input voltage level (RMS value)		2	-	_	V
Zi	input impedance		29.5	35	40.5	kΩ
STEREO DECO	ODER					
MPX _{L+R(rms)}	input voltage level for 100% modulation L + R; 25 kHz deviation (RMS value)	input level adjusted via I^2C -bus (L + R; f _i = 300 Hz); monitoring line out	-	250	-	mV
MPX _{L-R}	input voltage level for 100% modulation L – R; 50 kHz deviation (peak value)		-	707	-	mV
MPX _(max)	maximum headroom for L + R, L, R	f _{mod} < 15 kHz; THD < 15% for 75 μs equivalent input modulation	9	-	-	dB
MPX _{pilot(rms)}	nominal stereo pilot voltage level (RMS value)		-	50	_	mV
ST _{on(rms)}	pilot threshold voltage stereo	data STS = 1	_	-	35	mV
	on (RMS value)	data STS = 0	-	-	30	mV
ST _{off(rms)}	pilot threshold voltage stereo	data STS = 1	15	_	_	mV
	off (RMS value)	data STS = 0	10	-		mV
hys	hysteresis		-	2.5	_	dB
OUT _{L+R}	output voltage level for 100% modulation L + R at LINE OUT	input level adjusted via l^2 C-bus (L + R; f _i = 300 Hz); monitoring LINE OUT	480	500	520	mV

TDA9855

Product specification

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
α _{cs}	stereo channel separation L/R at LINE OUT	aligned with dual tone 14% modulation; see Section "Adjustment procedure" in Chapter "Functional description"				
		f _L = 300 Hz; f _R = 3 kHz	25	35	_	dB
		f _L = 300 Hz; f _R = 8 kHz	20	30	-	dB
		f _L = 300 Hz; f _R = 10 kHz	15	25	-	dB
f _{L, R}	L, R frequency response	14% modulation; f _{ref} = 300 Hz L or R				
		f _i = 50 Hz to 11 kHz	-3	_	_	dB
		f _i = 12 kHz	_	-3	_	dB
THD _{L,R}	total harmonic distortion L, R at LINE OUT	modulation L or R 1% to 100%; f _i = 1 kHz	-	0.2	1.0	%
S/N	signal-to-noise ratio	mono mode; CCIR 468-2 weighted; quasi peak; 500 mV output signal	50	60	-	dB
STEREO DEC	ODER, OSCILLATOR (VCXO); note	1	•	•		
f _o	nominal VCXO output frequency (32f _H)	with nominal ceramic resonator	-	503.5	-	kHz
f _{of}	spread of free-running frequency	with nominal ceramic resonator	500.0	-	507.0	kHz
Δf_{H}	capture range frequency (nominal pilot)		±190	±265	_	Hz
SAP DEMOD	JLATOR; note 2					
SAP _{i(rms)}	nominal SAP carrier input voltage level (RMS value)	15 kHz frequency deviation of intercarrier	-	150	-	mV
SAP _{on(rms)}	pilot threshold voltage SAP on (RMS value)		-	-	85	mV
SAP _{off(rms)}	pilot threshold voltage SAP off (RMS value)		35	-	-	mV
SAP _{hys}	hysteresis		-	2	_	dB
SAP _{LEV}	SAP output voltage level at LINE OUT	LINE OUT (LOL, LOR) in position SAP/SAP; f _{mod} = 300 Hz; 100% modulation	_	500	_	mV
f _{res}	frequency response	14% modulation; 50 Hz to 8 kHz; f _{ref} = 300 Hz	-3	-	-	dB
THD	total harmonic distortion	f _i = 1 kHz	-	0.5	2.0	%

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LINE OUT AT	PINS LOL AND LOR	1	-1	ļ		1
V _{o(rms)}	nominal output voltage (RMS value)	100% modulation	-	500	_	mV
HEADo	output headroom		9	-	-	dB
Zo	output impedance		-	80	120	Ω
Vo	DC output voltage		0.45V _{CC}	0.5V _{CC}	0.55V _{CC}	V
RL	output load resistance		5	-	-	kΩ
CL	output load capacitance		-	-	2.5	nF
α _{ct}	idle crosstalk L, R into SAP	100% modulation; f _i = 1 kHz; L or R; line out switched to SAP/SAP	50	-	-	dB
	idle crosstalk SAP into L, R	100% modulation; f _i = 1 kHz; SAP; line out switched to stereo	50	-	-	dB
ΔV_{ST-SAP}	output voltage difference if switched from L, R to SAP	250 Hz to 6.3 kHz	-	-	3	dB
dbx NOISE R	EDUCTION CIRCUIT		-			
t _{adj}	stereo adjustment time	see Section "Adjustment procedure" in Chapter "Functional description"	-	-	1	S
l _s	nominal timing current for nominal release rate of spectral RMS detector	I_s can be measured at pin 17 (pin 22) via current meter connected to $\frac{1}{2}V_{CC} + 1$ V	-	24	-	μA
ΔI_s	spread of timing current		-	-	15	%
I _{s(range)}	timing current adjustment range	7 steps via I ² C-bus	-	±30	-	%
lt	timing current for release rate of wideband RMS detector		-	¹ ⁄3ls	-	μA
Rel _{rate}	nominal RMS detector release rate	nominal timing current and external capacitor values				
		wideband	-	125	-	dB/s
		spectral	-	381	-	dB/s

Product specification

I²C-bus controlled BTSC stereo/SAP decoder and audio processor

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Audio part		I		-1		
CIRCUIT SEC	TION FROM PINS LIL AND LIR TO PI	NS OUTL, OUTR AND OUTS; NO	te 3			
В	roll-off frequencies	$\begin{array}{l} C_{6},C_{7},C_{10},C_{26},C_{27} \text{ and} \\ C_{29}=2.2\mu\text{F};Z_{i}=Z_{i(\text{min})} \\ \text{low frequency (-3 dB)} \end{array}$	_	_	20	Hz
		high frequency (–0.5 dB)	20	-	-	kHz
THD	total harmonic distortion	V _i = 1 V (RMS); G _c = 0 dB; AVL on	-	0.2	0.5	%
		$V_i = 2 V (RMS); G_c = 0 dB;$ AVL on	_	0.2	0.5	%
		$V_i = 1 V (RMS); G_c = 0 dB;$ AVL off	-	0.05	-	%
		$V_i = 2 V (RMS); G_c = 0 dB;$ AVL off	-	0.02	-	%
PSRR	power supply ripple rejection	$V_{r(rms)}$ < 200 mV; f _i = 100 Hz	47	50	-	dB
α_B	crosstalk between bus inputs and signal outputs	notes 4 and 5	-	110	-	dB
V _{no}	noise output voltage	CCIR 468-2 weighted; quasi peak	-	40	80	μV
		measured in dBA	-	8	-	μV
α_{cs}	channel separation	$V_i = 1 V; f_i = 1 kHz$	75	-	-	dB
		V _i = 1 V; f _i = 12.5 kHz	75	_	-	dB
SELECTOR (F	FROM PINS LOL, LOR, LIL AND LIR	TO PINS SOL AND SOR)	•	•		•
Zi	input impedance		16	20	24	kΩ
α _s	input isolation of one selected	f = 1 kHz; V _i = 1 V	86	96	-	dB
	source to any other input	f = 12.5 kHz; V _i = 1 V	80	96	-	dB
V _{i(rms)}	maximum input voltage (RMS value)	THD < 0.5%	2	2.3	-	V
V _{offset}	DC offset voltage at selector output by selection of any inputs		-	-	25	mV
Zo	output impedance		-	80	120	Ω
RL	output load resistance (AC)		5	_	_	kΩ
CL	output load capacitance		-	-	2.5	nF
G _c	voltage gain, selector		_	0	-	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
AUTOMATIC \	VOLUME LEVEL CONTROL (AVL)	1	!	-1		
Zi	input impedance		8.8	11.0	13.2	kΩ
V _{i(rms)}	maximum input voltage (RMS value)	THD < 0.2%	2	-	-	V
G _v	gain, maximum boost		5	6	7	dB
	maximum attenuation		14	15	16	dB
G _{step}	equivalent step width between the input stages (soft switching system)		-	1.5	-	dB
V _{i(rms)}	input level at maximum boost (RMS value)	see Fig.4	-	0.1	-	V
	input level at maximum attenuation (RMS value)	see Fig.4	_	1.125	-	V
V _{o(rms)}	output level in AVL operation (RMS value)	see Fig.4	160	200	250	mV
$V_{DC(OFF)}$	DC offset between different gain steps	voltage at pin C _{AV} 6.50 to 6.33 V or 6.33 to 6.11 V or 6.11 to 5.33 V or 5.33 to 2.60 V; note 6	-	_	6	mV
R _{att}	discharge resistors for attack	AT1 = 0; AT2 = 0; note 7	340	420	520	Ω
	time constant	AT1 = 1; AT2 = 0; note 7	590	730	910	Ω
		AT1 = 0; AT2 = 1; note 7	0.96	1.2	1.5	kΩ
		AT1 = 1; AT2 = 1; note 7	1.7	2.1	2.6	kΩ
I _{dec}	charge current for decay time	normal mode; CCD = 0; note 8	1.6	2.0	2.4	μA
EFFECT CON	TROLS					
α_{spat1}	anti-phase crosstalk by spatial		_	52	-	%
α _{spat2}	effect		-	30	-	%
φ	phase shift by pseudo-stereo	see Fig.5	-	_	_	-
VOLUME TON	E CONTROL PART (INPUT PINS VIL)	AND VIR TO PINS OUTX AND OUT	S)	·	•	
Zi	volume input impedance		8.0	10.0	12.0	kΩ
Zo	output impedance		_	80	120	Ω
RL	output load resistance (AC)		5	_	_	kΩ
CL	output load capacitance		-	_	2.5	nF
V _{i(rms)}	maximum input voltage (RMS value)	THD < 0.5%	2.0	2.15	-	V
V _{no}	noise output voltage	CCIR 468-2 weighted; quasi peak				
		$G_c = 16 dB$	-	110	220	μV
		$G_c = 0 dB$	-	33	50	μV
		mute position	-	10	-	μV

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
G _c	total continuous control range	maximum boost	_	16	-	dB
		maximum attenuation	_	71	-	dB
G _{step}	step resolution		_	1	-	dB
	step error between any adjoining step		-	_	0.5	dB
ΔG_a	attenuator set error	$G_{c} = +16 \text{ to } -50 \text{ dB}$	_	-	2	dB
		$G_c = -51$ to -71 dB	_	-	3	dB
ΔG_t	gain tracking error	$G_c = +16 \text{ to } -50 \text{ dB}$	_	-	2	dB
α _m	mute attenuation		80	_	_	dB
V _{DC(OFF)}	DC step offset between any	$G_{c} = +16 \text{ to } 0 \text{ dB}$	_	0.2	10.0	mV
. ,	adjacent step	$G_{c} = 0$ to -71 dB	_	-	5	mV
	DC step offset between any	G _c = +16 to +1 dB	_	2	15	mV
	step to mute	$G_{c} = 0$ to -71 dB	_	1	10	mV
LOUDNESS C	ONTROL PART		I			
L _B	maximum loudness boost	loudness on ; referred to loudness off ; boost is determined by external components; see Fig.6				
		f _i = 40 Hz	_	17	-	dB
		f _i = 10 kHz	-	4.5	_	dB
BASS CONTR	OL (see Fig.7)		•	•	·	
G _{bass}	bass control maximum boost	f _i = 40 Hz	15.5	16.5	17.5	dB
	maximum attenuation	f _i = 40 Hz	11	12	13	dB
G _{step}	step resolution	f _i = 40 Hz	_	1.5	-	dB
	step error between any adjoining step		_	_	0.5	dB
V _{DC(OFF)}	DC step offset between any adjacent step		_	_	15	mV
TREBLE CON	TROL (see Fig.8)		·		·	_
G _{treble}	treble control maximum boost	f _i = 15 kHz	11	12	13	dB
	maximum attenuation	f _i = 15 kHz	11	12	13	dB
	maximum boost	f _i > 15 kHz	_	-	15	dB
G _{step}	step resolution	f _i = 15 kHz	_	3	_	dB
	step error between any adjoining step		-	-	0.5	dB
V _{DC(OFF)}	DC step offset between any adjacent step		-	_	10	mV

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
SUBWOOFER	OR SURROUND CONTROL	1		-1	1	
Gs	subwoofer control	maximum boost; f _i = 40 Hz	12	14	16	dB
		maximum attenuation; f _i = 40 Hz	12	14	16	dB
G _{step}	step resolution		-	2	_	dB
α _m	mute attenuation		60	-	-	dB
V _{DC(OFF)}	DC step offset between any	$G_s = 0$ to +14 dB	-	_	10	mV
	adjacent step	$G_s = 0$ to -14 dB	-	_	5	mV
	DC step offset between any step to mute	$G_s = +2$ to +14 dB without input offset (pin SW connected to V _{ref})	-	-	15	mV
		G _s = +2 to +14 dB inclusive offset from OUTR, OUTL	-	-	50	mV
		$G_s = 0$ to -14 dB	-	_	10	mV
R _F	internal resistor for low-pass filter with external capacitor at pin SW		4	5	6	kΩ
L + R _{REJ}	common mode rejection in surround sound at pin OUTS	mono signal at VIL/VIR; f = 1 kHz; V _i = 1 V; balance = 0 dB	26	36	-	dB
MUTING AT P	WER SUPPLY DROP FOR OUTL, C	UTR AND OUTS		1	1	
V _{CC-DROP}	supply drop for mute active		_	V _{CAP} - 0.7	_	V
POWER-ON R	ESET; note 9		•			
V _{RESET(STA)}	start of reset voltage	increasing supply voltage	_	_	2.5	V
- (- /		decreasing supply voltage	4.2	5	5.8	V
V _{RESET(END)}	end of reset voltage	increasing supply voltage	5.2	6	6.8	V
Digital part	(I ² C-bus pins); note 10		•			•
V _{IH}	HIGH-level input voltage		3	_	V _{CC}	V
V _{IL}	LOW-level input voltage		-0.3	_	+1.5	V
I _{IH}	HIGH-level input current		-10	_	+10	μA
Ι _L	LOW-level input current		-10	_	+10	μA
V _{OL}	LOW-level output voltage	I _{IL} = 3 mA	_	_	0.4	V

Notes to the characteristics

- 1. The oscillator is designed to operate together with a MURATA resonator CSB503F58 for TDA9855. Change of the resonator supplier is possible, but the resonator specification must be close to CSB503F58 for TDA9855.
- 2. The internal SAP carrier level is determined by the composite input level and the level adjustment gain.
- 3. Select in to input line control.

4. Crosstalk: 20 log $\frac{V_{bus(p-p)}}{V_{o(rms)}}$

- 5. The transmission contains:
 - a) Total initialization with MAD and SAD for volume and 11 DATA words, see also definition of characteristics
 - b) Clock frequency = 50 kHz
 - c) Repetition burst rate = 400 Hz
 - d) Maximum bus signal amplitude = 5 V (p-p).
- 6. The listed pin voltage corresponds with typical gain steps of +6 dB, +3 dB, 0 dB, -6 dB and -15 dB.
- 7. Attack time constant = $C_{AV} \times R_{att}$.

$$= \frac{C_{AV} \times 0.76 V \left(10^{\frac{-G_{v1}}{20}} - 10^{\frac{-G_{v2}}{20}}\right)}{I_{dec}}$$

8. Decay time =

Example: C_{AV} = 4.7 μ F; I_{dec} = 2 μ A; G_{v1} = -9 dB; G_{v2} = +6 dB \rightarrow decay time results in 4.14 s.

- When reset is active the GMU-bit (general mute) and the LMU-bit (LINE OUT mute) is set and the I²C-bus receiver is in the reset position.
- The AC characteristics are in accordance with the l²C-bus specification. The maximum clock frequency is 100 kHz. Information about the l²C-bus can be found in the brochure *"The l²C-bus and how to use it"* (order number 9398 393 40011).

21

I²C-BUS PROTOCOL

I²C-bus format to read (slave transmits data)

S	SLAVE ADDRESS	R/W	A	DATA	MA	DATA	Р
---	---------------	-----	---	------	----	------	---

 Table 1
 Explanation of I²C-bus format to read (slave transmits data)

NAME	DESCRIPTION
S	START condition; generated by the master
Standard SLAVE ADDRESS	101 101 1 pin MAD not connected
Pin programmable SLAVE ADDRESS	101 101 0 pin MAD connected to ground
R/W	logic 1 (read); generated by the master
A	acknowledge; generated by the slave
DATA	slave transmits an 8-bit data word
MA	acknowledge; generated by the master
Р	STOP condition; generated by the master

Table 2 Definition of the transmitted bytes after read condition

FUNCTION	ВҮТЕ	MSB							LSB
FUNCTION	DIIC	D7	D6	D5	D4	D3	D2	D1	D0
Alignment read 1	ALR1	Y	SAPP	STP	A14	A13	A12	A11	A10
Alignment read 2	ALR2	Y	SAPP	STP	A24	A23	A22	A21	A20

Table 3 Function of the bits in Table 2

BITS	FUNCTION
STP	stereo pilot identification (stereo received = 1)
SAPP	SAP pilot identification (SAP received = 1)
A1X to A2X	stereo alignment read data
A1X	for wideband expander
A2X	for spectral expander
Y	indefinite

The master generates an acknowledge when it has received the first data word ALR1, then the slave transmits the next data word ALR2. Afterwards the master generates an acknowledge, then the slave begins transmitting the first data word ALR1 etc. until the master generates no acknowledge and transmits a STOP condition.

I²C-bus format to write (slave receives data)

S	SLAVE ADDRESS	R/W	А	SUBADDRESS	А	DATA	А	Р
---	---------------	-----	---	------------	---	------	---	---

 Table 4
 Explanation of I²C-bus format to write (slave receives data)

NAME	DESCRIPTION
S	START condition
Standard SLAVE ADDRESS	101 101 1 pin MAD not connected
Pin programmable SLAVE ADDRESS	101 101 0 pin MAD connected to ground
R/W	logic 0 (write)
А	acknowledge; generated by the slave
SUBADDRESS (SAD)	see Table 5
DATA	see Table 6
Р	STOP condition

If more than 1 byte of DATA is transmitted, then auto-increment is performed, starting from the transmitted subaddress and auto-increment of subaddress in accordance with the order of Table 5 is performed.

FUNCTION	DECISTED	MSB							LSB	
FUNCTION	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Volume right	VR	0	0	0	0	0	0	0	0	00
Volume left	VL	0	0	0	0	0	0	0	1	01
Bass	BA	0	0	0	0	0	0	1	0	02
Treble	TR	0	0	0	0	0	0	1	1	03
Subwoofer	SW	0	0	0	0	0	1	0	0	04
Control 1	CON1	0	0	0	0	0	1	0	1	05
Control 2	CON2	0	0	0	0	0	1	1	0	06
Control 3	CON3	0	0	0	0	0	1	1	1	07
Alignment 1	ALI1	0	0	0	0	1	0	0	0	08
Alignment 2	ALI2	0	0	0	0	1	0	0	1	09
Alignment 3	ALI3	0	0	0	0	1	0	1	0	0A

 Table 5
 Subaddress second byte after slave address

FUNCTION	REGISTER	MSB							LSB
FUNCTION	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
Volume right	VR	0	VR6	VR5	VR4	VR3	VR2	VR1	VR0
Volume left	VL	0	VL6	VL5	VL4	VL3	VL2	VL1	VL0
Bass	BA	0	0	0	BA4	BA3	BA2	BA1	BA0
Treble	TR	0	0	0	TR4	TR3	TR2	TR1	0
Subwoofer	SW	0	0	SW5	SW4	SW3	SW2	0	0
Control 1	CON1	GMU	AVLON	LOFF	Х	SUR	SC2	SC1	SC0
Control 2	CON2	SAP	STEREO	TZCM	VZCM	LMU	EF2	EF1	EF0
Control 3	CON3	0	0	0	0	L3	L2	L1	L0
Alignment 1	ALI1	0	0	0	A14	A13	A12	A11	A10
Alignment 2	ALI2	STS	0	0	A24	A23	A22	A21	A20
Alignment 3	ALI3	ADJ	AT1	AT2	0	1	TC2	TC1	TC0

Table 6 Definition of third byte after slave address

Table 7 Function of the bits in Table 6

BITS	FUNCTION
VR0 to VR6	volume control right
VL0 to VL6	volume control left
BA0 to BA4	bass control
TR1 to TR3	treble control
SW2 to SW5	subwoofer, surround control
GMU	mute control for outputs OUTL, OUTR and OUTS (generate mute)
AVLON	AVL on/off
LOFF	switch loudness on/off
X	don't care bit
SUR	surround/subwoofer SUR = 1 \rightarrow ¹ / ₂ (L – R); SUR = 0 \rightarrow ¹ / ₂ (L + R)
SC0 to SC2	selection between line in and line out
STEREO, SAP	mode selection for line out
TZCM	zero-crossing mode in mute operation (treble and subwoofer/surround output stage)
VZCM	zero-crossing mode in volume operation
LMU	mute control for dematrix + line out select
EF0 to EF2	selection between mono, stereo linear, spatial stereo and pseudo mode
L0 to L3	input level adjustment
ADJ	stereo adjustment on/off
A1X	stereo alignment data for wideband expander
A2X	stereo alignment data for spectral expander
AT1 and AT2	attack time at AVL
TC0 to TC2	timing current alignment data
STS	stereo level switch

TDA9855

I²C-bus controlled BTSC stereo/SAP decoder and audio processor

	Volume setting in registers VR and VL							
6				DA	ATA			
G _c (dB)	D6 V6	D5 V5	D4 V4	D3 V3	D2 V2	D1 V1	D0 V0	HEX
16	1	1	1	1	1	1	1	7F
15	1	1	1	1	1	1	0	7E
14	1	1	1	1	1	0	1	7D
13	1	1	1	1	1	0	0	7C
12	1	1	1	1	0	1	1	7B
11	1	1	1	1	0	1	0	7A
10	1	1	1	1	0	0	1	79
9	1	1	1	1	0	0	0	78
8	1	1	1	0	1	1	1	77
7	1	1	1	0	1	1	0	76
6	1	1	1	0	1	0	1	75
5	1	1	1	0	1	0	0	74
4	1	1	1	0	0	1	1	73
3	1	1	1	0	0	1	0	72
2	1	1	1	0	0	0	1	71
1	1	1	1	0	0	0	0	70
0	1	1	0	1	1	1	1	6F
-1	1	1	0	1	1	1	0	6E
-2	1	1	0	1	1	0	1	6D
-3	1	1	0	1	1	0	0	6C
-4	1	1	0	1	0	1	1	6B
-5	1	1	0	1	0	1	0	6A
-6	1	1	0	1	0	0	1	69
-7	1	1	0	1	0	0	0	68
-8	1	1	0	0	1	1	1	67
-9	1	1	0	0	1	1	0	66
-10	1	1	0	0	1	0	1	65
-11	1	1	0	0	1	0	0	64
-12	1	1	0	0	0	1	1	63
-13	1	1	0	0	0	1	0	62
-14	1	1	0	0	0	0	1	61
-15	1	1	0	0	0	0	0	60
-16	1	0	1	1	1	1	1	5F
-17	1	0	1	1	1	1	0	5E
-18	1	0	1	1	1	0	1	5D
-19	1	0	1	1	1	0	0	5C
-20	1	0	1	1	0	1	1	5B
-21	1	0	1	1	0	1	0	5A

 Table 8
 Volume setting in registers VR and VL

0				DA	TA			
G _c (dB)	D6 V6	D5 V5	D4 V4	D3 V3	D2 V2	D1 V1	D0 V0	HEX
-22	1	0	1	1	0	0	1	59
-23	1	0	1	1	0	0	0	58
-24	1	0	1	0	1	1	1	57
-25	1	0	1	0	1	1	0	56
-26	1	0	1	0	1	0	1	55
-27	1	0	1	0	1	0	0	54
-28	1	0	1	0	0	1	1	53
-29	1	0	1	0	0	1	0	52
-30	1	0	1	0	0	0	1	51
-31	1	0	1	0	0	0	0	50
-32	1	0	0	1	1	1	1	4F
-33	1	0	0	1	1	1	0	4E
-34	1	0	0	1	1	0	1	4D
-35	1	0	0	1	1	0	0	4C
-36	1	0	0	1	0	1	1	4B
-37	1	0	0	1	0	1	0	4A
-38	1	0	0	1	0	0	1	49
-39	1	0	0	1	0	0	0	48
-40	1	0	0	0	1	1	1	47
-41	1	0	0	0	1	1	0	46
-42	1	0	0	0	1	0	1	45
-43	1	0	0	0	1	0	0	44
-44	1	0	0	0	0	1	1	43
-45	1	0	0	0	0	1	0	42
-46	1	0	0	0	0	0	1	41
-47	1	0	0	0	0	0	0	40
-48	0	1	1	1	1	1	1	3F
-49	0	1	1	1	1	1	0	3E
-50	0	1	1	1	1	0	1	3D
-51	0	1	1	1	1	0	0	3C
-52	0	1	1	1	0	1	1	3B
-53	0	1	1	1	0	1	0	3A
-54	0	1	1	1	0	0	1	39
-55	0	1	1	1	0	0	0	38
-56	0	1	1	0	1	1	1	37
-57	0	1	1	0	1	1	0	36
-58	0	1	1	0	1	0	1	35
-59	0	1	1	0	1	0	0	34
-60	0	1	1	0	0	1	1	33

Product specification

TDA9855

1997 Nov 04

•		DATA								
G _c (dB)	D6 V6	D5 V5	D4 V4	D3 V3	D2 V2	D1 V1	D0 V0	HEX		
-61	0	1	1	0	0	1	0	32		
-62	0	1	1	0	0	0	1	31		
-63	0	1	1	0	0	0	0	30		
-64	0	1	0	1	1	1	1	2F		
-65	0	1	0	1	1	1	0	2E		
-66	0	1	0	1	1	0	1	2D		
-67	0	1	0	1	1	0	0	2C		
-68	0	1	0	1	0	1	1	2B		
-69	0	1	0	1	0	1	0	2A		
-70	0	1	0	1	0	0	1	29		
-71	0	1	0	1	0	0	0	28		
Mute	0	1	0	0	1	1	1	27		

Table 9 Bass setting in register BA

•			DA	ATA		
G _{bass} (dB)	D4 BA4	D3 BA3	D2 BA2	D1 BA1	D0 BA0	HEX
16.5	1	1	0	0	1	19
15.0	1	1	0	0	0	18
13.5	1	0	1	1	1	17
12.0	1	0	1	1	0	16
10.5	1	0	1	0	1	15
9.0	1	0	1	0	0	14
7.5	1	0	0	1	1	13
6.0	1	0	0	1	0	12
4.5	1	0	0	0	1	11
3.0	1	0	0	0	0	10
1.5	0	1	1	1	1	0F
0	0	1	1	1	0	0E
-1.5	0	1	1	0	1	0D
-3.0	0	1	1	0	0	0C
-4.5	0	1	0	1	1	0B
-6.0	0	1	0	1	0	0A
-7.5	0	1	0	0	1	09
-9.0	0	1	0	0	0	08
-10.5	0	0	1	1	1	07
-12.0	0	0	1	1	0	06

1997 Nov 04

TDA9855

6					
G _{treble} (dB)	D4 TR4	D3 TR3	D2 TR2	D1 TR1	HEX
12	1	0	1	1	16
9	1	0	1	0	14
6	1	0	0	1	12
3	1	0	0	0	10
0	0	1	1	1	0E
-3	0	1	1	0	0C
-6	0	1	0	1	0A
-9	0	1	0	0	08
-12	0	0	1	1	06

Table 10 Treble setting in register TR

Table 11 Subwoofer/surround setting in register SW

•			DATA		
G _s (dB)	D5 SW5	D4 SW4	D3 SW3	D2 SW2	HEX
14	1	1	1	1	3C
12	1	1	1	0	38
10	1	1	0	1	34
8	1	1	0	0	30
6	1	0	1	1	2C
4	1	0	1	0	28
2	1	0	0	1	24
0	1	0	0	0	20
-2	0	1	1	1	1C
-4	0	1	1	0	18
-6	0	1	0	1	14
-8	0	1	0	0	10
-10	0	0	1	1	0C
-12	0	0	1	0	08
-14	0	0	0	1	04
Mute	0	0	0	0	00

Table 12 Selector setting in register CON1

		DATA	
FUNCTION ⁽¹⁾	D2 SC2	D1 SC1	D0 SC0
Inputs LOR and LOL	0	0	0
Inputs LOR and LOR	0	0	1
Inputs LOL and LOL	0	1	0
Inputs LOL and LOR	0	1	1
Inputs LIR and LIL	1	0	0
Inputs LIR and LIR	1	0	1
Inputs LIL and LIL	1	1	0
Inputs LIL and LIR	1	1	1

Note

1. Input connected to outputs SOR and SOL.

Table 13 SUR bit setting in register CON1

FUNCTION	DATA D3
Surround sound	1
Subwoofer	0

Table 14 LOFF bit setting in register CON1

CHARACTERISTIC	DATA D5
With loudness	0
Linear	1

Table 15 AVLON bit setting in register CON1

FUNCTION	DATA D6
Automatic volume control off	0
Automatic volume control on	1

Product specification

I²C-bus controlled BTSC stereo/SAP decoder and audio processor

Table 16 Mute setting in register CON1

FUNCTION	DATA D7 GMU
Forced mute at OUTR, OUTL and OUTS	1
Audio processor controlled outputs	0

Table 17 Mute setting in register CON2

FUNCTION	DATA D3 LMU	
Forced mute at LOR and LOL	1	
Stereo processor controlled outputs	0	

Table 18 Effects setting in register CON2

	DATA			
FUNCTION	D2 EF2	D1 EF1	D0 EF0	
Stereo linear on	0	0	0	
Pseudo on	0	0	1	
Spatial stereo; 30% anti-phase crosstalk	0	1	0	
Spatial stereo; 50% anti-phase crosstalk	0	1	1	
Forced mono	1	1	1	

Table 19 Zero-crossing detection setting in register CON2

FUNCTION	DATA D5 TZCM
Direct mute control	0
Mute control delayed until the next zero-crossing	1

Table 20 Zero-crossing detection setting in register CON2

FUNCTION	DATA D4 VZCM	
Direct volume control	0	
Volume control delayed until the next zero-crossing	1	

Product specification

I²C-bus controlled BTSC stereo/SAP decoder and audio processor

Table 21 Switch setting at line out

LINE OUT SIGNALS AT		DATA TRANSMISSION STATUS	SETTING BITS IN REGISTER CON2	
LOL	LOR	INTERNAL SWITCH, READABLE BITS IN REGISTER ALR1, ALR2: D6 (SAPP), D5 (STP)	D7 SAP	D6 STEREO
SAP	SAP	SAP received	1	1
Mute	mute	no SAP received	1	1
Left	right	STEREO received	0	1
Mono	mono	no STEREO received	0	1
Mono	SAP	SAP received	1	0
Mono	mute	no SAP received	1	0
Mono	mono	independent	0	0

Table 22 Input level adjust setting in register CON3

			DATA		
G _l (dB)	D3 L3	D2 L2	D1 L1	D0 L0	HEX
4.0	1	1	1	1	0F
3.5	1	1	1	0	0E
3.0	1	1	0	1	0D
2.5	1	1	0	0	0C
2.0	1	0	1	1	0B
1.5	1	0	1	0	0A
1.0	1	0	0	1	09
0.5	1	0	0	0	08
0	0	1	1	1	07
-0.5	0	1	1	0	06
-1.0	0	1	0	1	05
-1.5	0	1	0	0	04
-2.0	0	0	1	1	03
-2.5	0	0	1	0	02
-3.0	0	0	0	1	01
-3.5	0	0	0	0	00

Table 23 Alignment data for expander in read register	ALR1 and ALR2 and in write register ALI1 and ALI2
---	---

	DATA				
FUNCTION	D4 AX4	D3 AX3	D2 AX2	D1 AX1	D0 AX0
Gain increase	1	1	1	1	1
	1	1	1	1	0
	1	1	1	0	1
	1	1	1	0	0
	1	1	0	1	1
	1	1	0	1	0
	1	1	0	0	1
	1	1	0	0	0
	1	0	1	1	1
	1	0	1	1	0
	1	0	1	0	1
	1	0	1	0	0
	1	0	0	1	1
	1	0	0	1	0
	1	0	0	0	1
Nominal gain	1	0	0	0	0
	0	1	1	1	1
Gain decrease	0	1	1	1	0
	0	1	1	0	1
	0	1	1	0	0
	0	1	0	1	1
	0	1	0	1	0
	0	1	0	0	1
	0	1	0	0	0
	0	0	1	1	1
	0	0	1	1	0
	0	0	1	0	1
	0	0	1	0	0
	0	0	0	1	1
	0	0	0	1	0
	0	0	0	0	1
	0	0	0	0	0

Table 24 STS bit setting in register ALI2	2 (pilot threshold stereo on)
---	---------------------------------------

FUNCTION	DATA D7
$ST_{on(rms)} \le 35 \text{ mV}$	1
$ST_{on(rms)} \le 30 \text{ mV}$	0

TDA9855

	DATA		
I _S RANGE	D2 TC2	D1 TC1	D0 TC0
+30%	1	0	0
+20%	1	0	1
+10%	1	1	0
Nominal	0	1	1
-10%	0	1	0
-20%	0	0	1
-30%	0	0	0

 Table 25
 Timing current setting in register ALI3

Table 26 AVL attack time setting in register ALI3

R _{att} (Ω)	DATA	
	D6 AT1	D5 AT2
420	0	0
730	1	0
1200	0	1
2100	1	1

FUNCTION	DATA D7
Stereo decoder operation mode	0
Auto adjustment of channel separation	1

Table 28 Explanation of curves in Fig.5

CURVE	CAPACITANCE AT PIN C _{PS1} (nF)	CAPACITANCE AT PIN C _{PS2} (nF)	EFFECT
1	15	15	normal
2	5.6	47	intensified
3	5.6	68	more intensified

TDA9855

I²C-bus controlled BTSC stereo/SAP decoder and audio processor

1997 Nov 04
TDA9855

APPLICATION HINTS

Selection of input signals by using the zero-crossing mute mode (see Fig.11)

A selection between the internal signal path and the external input LIL/LIR produces a modulation click depending on the difference of the signal values at the time of switching.

At t₁ the maximum possible difference between signals is 7 V (p-p) and gives a large click. Using the zero-crossing detector no modulation click is audible.

For example: The selection is enabled at t_1 , the microcontroller sets the zero-crossing bit (TZCM = 1) and then the mute bit (GMU = 1) via the I²C-bus. The output signal follows the input A signal, until the next zero-crossing occurs and then activates mute.

After a fixed delay time before t_2 , the microcontroller has to send the forced mute mode (TZCM = 0) and the return to the zero-crossing mode (TZCM = 1) to be sure that mute is enabled.

The output signal remains muted until the next signal zero-crossing of input B occurs, and then follows that signal.

The delay time $t_2 - t_1$ is e.g. 40 ms. The zero-crossing function is working at the lowest frequency of 40 Hz.

Loudness filter calculation example

Figure 12 shows the basic loudness circuit with an external low-pass filter application. R1 allows an attenuation range of 21 dB while the boost is determined by the gain stage V_1 . Both result in a loudness control range of +16 to -12 dB.

Defining f_{ref} as the frequency where the level does not change while switching loudness on/off. The external resistor R3 for $f_{ref} \rightarrow \infty$ can be calculated as:

R3 = R1
$$\frac{10^{\frac{G_v}{20}}}{1-10^{\frac{G_v}{20}}}$$
. With G_v = -21 dB and R1 = 33 kΩ,

 $R3 = 3.2 \text{ k}\Omega$ is generated.

For the low-pass filter characteristic the value of the external capacitor C1 can be determined by setting a specific boost for a defined frequency and referring the gain to G_v at f_{ref} as indicated above.

$$\left|\frac{1}{j(\omega C1)}\right| = \frac{(R1 + R3) \times 10^{\frac{G_{v}}{20}} - R3}{1 - 10^{\frac{G_{v}}{20}}}$$

For example: 3 dB boost at f = 1 kHz $G_v = G_{v(ref)} + 3 dB = -18 dB$; f = 1 kHz and C1 = 100 nF.

If a loudness characteristic with additional high frequency boost is desired, an additional high-pass section has to be included in the external filter circuit as indicated in the block diagram. A filter configuration that provides AC coupling avoids offset voltage problems.

Figure 13 shows an example of the loudness circuit with bass and treble boost.

Fig.12 Basic loudness circuit.

TDA9855

Product specification

TDA9855

I²C-bus controlled BTSC stereo/SAP decoder and audio processor

INTERNAL PIN CONFIGURATIONS

The pin numbers refer to the SDIP-version.

TDA9855

Fig.21 Pin 7: input loudness, left; pin 46: input loudness, right.

PACKAGE OUTLINES

SDIP52: plastic shrink dual in-line package; 52 leads (600 mil)

TDA9855

SOT247-1

TDA9855

PLCC68: plastic leaded chip carrier; 68 leads ¢ F 🛛 у Х 60 44 Z_E 43 61 С ⊕ w M Η_E θ Е .▲ > 2000000000 pin 1 index е A۸ (A_3) Lp k٠ 27 detail X 10 26 = v (M) A → z_D е В = v 🕅 B Η_D 5 10 mm scale DIMENSIONS (millimetre dimensions are derived from the original inch dimensions) k₁ $Z_{D}^{(1)} Z_{E}^{(1)}$ A4 A₁ D⁽¹⁾ E⁽¹⁾ UNIT β Α A_3 b₁ е eD е_Е H_D Η_E k Lp ٧ w У bp min. max max. max. max. 24.33 24.13 23.62 22.61 25.27 25.27 25.02 25.02 4.57 0.53 0.81 24.33 23.62 1.22 1.44 0.51 0.51 mm 0.25 3.30 1.27 0.18 0.18 0.10 2.16 2.16 4.19 0.66 24.13 22.61 1.07 1.02 0.33 45⁰ 0.180 0.165 0.021 0.032 0.958 0.958 0.930 0.930 0.995 0.995 0.048 0.057 0.020 0.01 0.13 0.05 0.020 0.007 0.007 0.004 0.085 0.085 inches 0.013 0.026 0.950 0.950 0.890 0.890 0.985 0.985 0.042 0.040 Note 1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE	
	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT188-2	112E10	MO-047AC				-92-11-17- 95-03-11

1997 Nov 04

SOT188-2

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

SDIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\,max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300 \,^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

PLCC

REFLOW SOLDERING

Reflow soldering techniques are suitable for all PLCC packages.

The choice of heating method may be influenced by larger PLCC packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our *"Quality Reference Handbook"* (order code 9398 510 63011).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 $^{\circ}$ C.

WAVE SOLDERING

Wave soldering techniques can be used for all PLCC packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.			
Application information				
Where application informat	on is given, it is advisory and does not form part of the specification.			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

TDA9855

NOTES

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Tel. +31 40 27 82785, Fax. +31 40 27 88399 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Tel. +64 9 849 4160, Fax. +64 9 849 7811 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Norway: Box 1, Manglerud 0612, OSLO, Fax. +43 160 101 1210 Tel. +47 22 74 8000, Fax. +47 22 74 8341 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Belgium: see The Netherlands Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Brazil: see South America Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, Tel. +48 22 612 2831, Fax. +48 22 612 2327 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Portugal: see Spain Romania: see Italy Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +852 2319 7888, Fax. +852 2319 7700 Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Colombia: see South America Czech Republic: see Austria Slovenia: see Italy Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, Tel. +45 32 88 2636, Fax. +45 31 57 0044 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, France: 4 Rue du Port-aux-Vins. BP317. 92156 SURESNES Cedex. Tel. +55 11 821 2333, Fax. +55 11 829 1849 Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Spain: Balmes 22 08007 BARCELONA Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Hungary: see Austria Tel. +41 1 488 2686, Fax. +41 1 481 7730 India: Philips INDIA Ltd, Band Box Building, 2nd floor, Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Tel. +91 22 493 8541, Fax. +91 22 493 0966 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. Indonesia: see Singapore 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Tel. +353 1 7640 000, Fax. +353 1 7640 200 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, Tel. +90 212 279 2770, Fax. +90 212 282 6707 TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Haves. Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +1 800 234 7381 Tel. +82 2 709 1412, Fax. +82 2 709 1415 Uruguay: see South America Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Vietnam: see Singapore Tel. +60 3 750 5214, Fax. +60 3 757 4880 Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +381 11 625 344, Fax.+381 11 635 777 Tel. +9-5 800 234 7381

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,

Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1997

Middle East: see Italy

SCA55

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

547047/1200/03/pp52

Date of release: 1997 Nov 04

Document order number: 9397 750 02446

Let's make things better.

