

8 Mbit (1Mb x8) low voltage UV EPROM and OTP EPROM

Feature summary

- 2.7V to 3.6V supply voltage in READ operation
- Access time:
 - 80ns at $V_{CC} = 3.0V$ to 3.6V
 - 100ns at $V_{CC} = 2.7V$ to 3.6V
- Pin compatible with M27C801
- Low power consumption:
 - 30µA max Standby Current
 - 15mA max Active Current at 5MHz
- Programming time 50µs/Byte
- High reliability CMOS technology
 - 2,000V ESD Protection
 - 200mA Latchup Protection Immunity
- Electronic signature
 - Manufacturer Code: 20h
 - Device Code: 42h
- Device Code: 42h
 ECOPACK® packages available

Contents M27W801

Contents

1	Summary description						
2	Device operation 8						
	2.1 Read mode						
	2.2 Standby mode						
	2.3 Two Line Output Control						
	2.4 System considerations						
	2.5 Programming 9						
	2.6 PRESTO IIB programming algorithm						
	2.7 Program Inhibit						
	2.8 Program Verify 10						
	2.9 Electronic signature						
	2.10 Erasure operation (applies to UV FFROM)						
3	Maximum rating						
4	DC and AC parameters						
5	Package mechanical						
6	Part numbering						
7050	Revision history						
0/050	lete.						
Obsu							

M27W801 List of tables

List of tables

Table 1.	Signal names	5
Table 2.	Operating modes	. 11
Table 3.	Electronic signature	. 12
Table 4.	Absolute maximum ratings	
Table 5.	AC measurement conditions	
Table 6.	Capacitance	
Table 7.	Read mode DC characteristics	
Table 8.	Programming mode DC characteristics	
Table 9.	Read mode AC characteristics	
Table 10.	Margin mode AC characteristics	. 16
Table 11.	Programming mode AC characteristics	. 17
Table 12.	FDIP32WC - 32 pin Ceramic Frit-seal DIP, with window (0.260" x 0.420"),	
	FDIP32WC - 32 pin Ceramic Frit-seal DIP, with window (0.260" x 0.420"), package mechanical data	. 18
Table 13.	PDIP32 – 32 pin Plastic DIP, 600 mils width, package mechanical date:	. 19
Table 14.	PLCC32 - 32 lead Plastic Leaded Chip Carrier, package mechanical cata	
Table 15.	TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, package mechanical data	
Table 16.	Ordering information scheme	. 22
Table 17.	Document revision history	. 23
Obsoli Obsoli	Document revision history ODSOLETE PRODUCTION ODSOLETE PRODUCTION ODSOLETE PRODUCTION ODSOLETE PRODUCTION ODSOLETE ODSOLETE PRODUCTION ODSOLETE ODSOLETE	

List of figures M27W801

List of figures

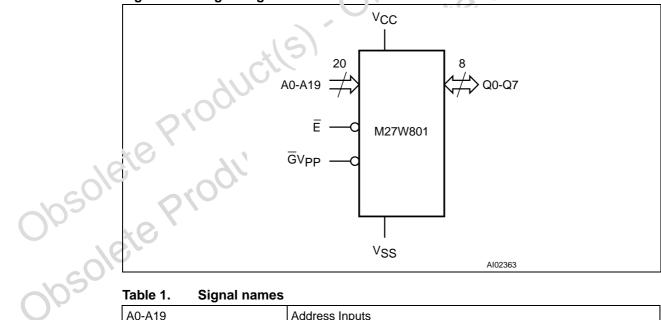
Figure 1. Figure 2.	Logic diagram
Figure 3.	PLCC connections
Figure 4. Figure 5.	TSOP connections
Figure 6.	AC testing input output waveform
Figure 7.	AC testing load circuit
Figure 8.	Read mode AC waveforms15
Figure 9.	Margin mode AC waveforms
Figure 10.	Programming and Verify modes AC waveforms
Figure 11.	FDIP32W - 32 pin Ceramic Frit-seal DIP with window, package outline
Figure 12. Figure 13.	PDIP32 - 32 pin Plastic DIP, 600 mils width, package outline
Figure 14.	TSOP32 - 32 lead Plastic Leaded Clip Garrier, package outline
Obsole Obsole	PDIP32 - 32 pin Plastic DIP, 600 mils width, package outline

Summary description 1

The M27W801 is a low voltage 8 Mbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage and is organized as 1,048,576 by 8 bits.

The M27W801 operates in the read mode with a supply voltage as low as 2.7V at -40 to 85°C temperature range. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery recharges.

The FDIP32W (window ceramic frit-seal package) has a transparent lids which allow the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure.


For applications where the content is programmed only one time and erasure is not required, the M27W801 is offered in PDIP32, PLCC32 and TSOP32 (8 x 20 nm) packages.

In order to meet environmental requirements, ST offers the M27W801 in ECOPACK® packages.

ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specific alions are available at: www.st.com.

Signal names

A0-A19	Address Inputs
Q0-Q7	Data Outputs
Ē	Chip Enable
<u>G</u> V _{PP}	Output Enable / Program Supply
V _{CC}	Supply Voltage
V _{SS}	Ground

Figure 2. DIP connections

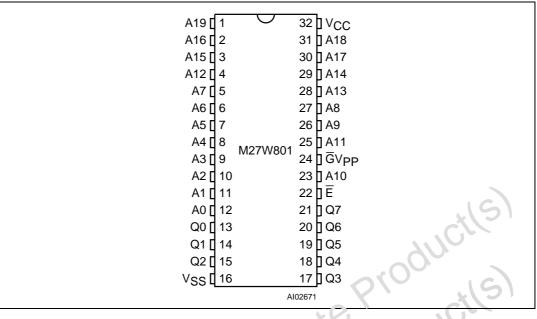
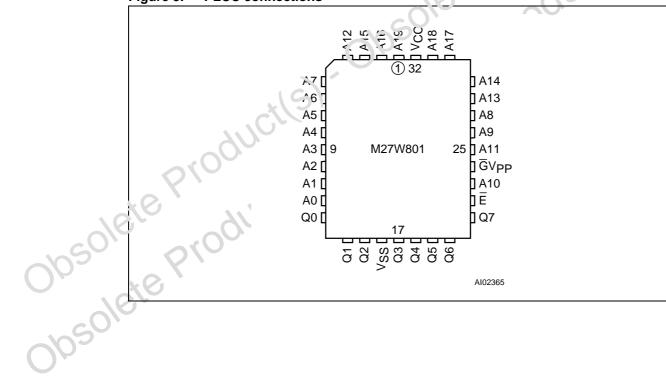
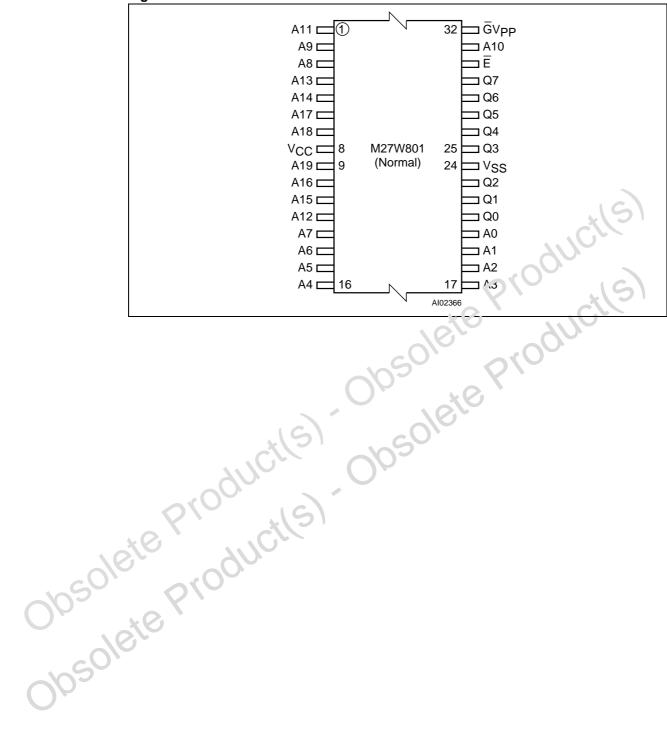




Figure 3. PLCC connections

577

Device operation M27W801

2 Device operation

The operating modes of the M27W801 are listed in the Operating Modes table. A single power supply is required in the read mode. All inputs are TTL levels except for \overline{GV}_{PP} and 12V on A9 for Electronic Signature and Margin Mode Set or Reset.

2.1 Read mode

The M27W801 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{E}) is the power control and should be used for device selection. Output Enable (\overline{G}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time (t_{AVQV}) is equal to the delay from \overline{E} to output (t_{ELQV}) . Data is available at the output after a delay of t_{GLQV} from the falling edge of \overline{G} , assuming that \overline{E} has been low and the addresses have been stable for at least t_{AVQV} - t_{GLQV} .

2.2 Standby mode

The M27W801 has a standby mode which reduces the supply current from 15mA to $20\mu A$ with low voltage operation $V_{CC} \le 3.6V$, see Read Mode DC Characteristics table for details. The M27W801 is placed in the standby mode 5 rapplying a CMOS high signal to the \overline{E} input. When in the standby mode, the outputs are in a high impedance state, independent of the $\overline{G}V_{PP}$ input.

2.3 Two Line Output Control

Because EPROM's are usually used in larger memory arrays, the product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

- the lowest possible memory power dissipation
- complete assurance that output bus contention will not occur

For the most efficient use of these two control lines, \overline{E} should be decoded and used as the primary device selecting function, while \overline{G} should be made a common connection to all devices in the array and connected to the \overline{READ} line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

المراد

M27W801 Device operation

2.4 System considerations

The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, I_{CC} , has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of \overline{E} . The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a $0.1\mu F$ ceramic capacitor be used on every device between V_{CC} and V_{SS} . This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a $4.7\mu F$ bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

2.5 Programming

المراما

The M27W801 has been designed to be fully compatible with the M27C801 and has the same electronic signature. As a result the M27W801 can poprogrammed as the M27C801 on the same programming equipment applying 12.75% on v_{PP} and 6.25V on V_{CC} by the use of the same PRESTO IIB algorithm. When delivered after each this erasure for UV EPROM), all bits of the M27W801 are in the "i" ctate. Data is introduced by selectively programming "0"s into the desired bit locations. Although only '0' will be programmed, both "1" and "0" can be present in the data wold. The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27W801 is in the programming mode when V_{PP} input is at 12.75V and \overline{E} is pulsed to V_{IL} . The data to be programmed is applied to 8 bits in parallel to the data output puls. The levels required for the address and data inputs are TTL. V_{CC} is specified to v_{PP} 0.25V.

2.6 PRESTO!!B programming algorithm

PF.F STO IIB Programming Algorithm allows the whole array to be programmed with a graduated margin, in a typical time of 52.5 seconds. This can be achieved with STMicroelectronics M27W801 due to several design innovations to improve programming efficiency and to provide adequate margin for reliability. Before starting the programming the internal MARGIN MODE circuit must be set in order to guarantee that each cell is programmed with enough margin. Then a sequence of 50µs program pulses are applied to each byte until a correct verify occurs (see *Figure 5*). No overprogram pulses are applied since the verify in MARGIN MODE at V_{CC} much higher than 3.6V, provides the necessary margin.

Device operation M27W801

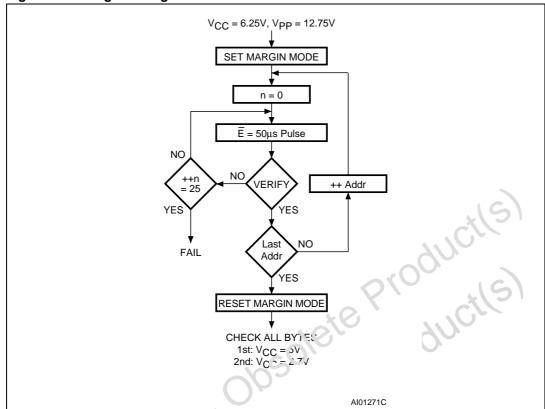


Figure 5. Programming flowchart

2.7 Program Inhibit

Programming of nultiple M27W801s in parallel with different data is also easily accomplished. Except for \overline{E} , all like inputs including $\overline{G}V_{PP}$ of the parallel M27W801 may be common. A TTL low level pulse applied to a M27W801's \overline{E} input, with V_{PP} at 12.75V, will program that M27W801. A high level \overline{E} input inhibits the other M27W801s from being programmed.

2.5 Program Verify

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with \overline{G} at V_{IL} . Data should be verified with t_{ELQV} after the falling edge of \overline{E} .

M27W801 **Device operation**

2.9 Electronic signature

The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the M27W801. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27W801. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during Electronic Signature mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code and byte 1 (A0 = V_{IH}) the device identifier code. For the STMicroelectronics M27W801, these two identifier bytes are given in Table 3 and can be read-out on outputs Q7 to Q0.

Note that the M27W801 and M27C801 have the same identifier byte.

Erasure operation (applies to UV EPROM) 2.10

The erasure characteristics of the M27W801 is such that e asure begins when the cells are exposed to light with wavelengths shorter than approxinately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å

Research shows that constant exposure to room level fluorescent lighting could erase a typical M27W801 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27W801 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27W801 wing to prevent unintentional erasure. The recommended erasure procedure for the M27 W801 is exposure to short wave ultraviolet light which has wavelength 2537 Å. The intograted dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 30 W-sec/cm². The erasure time with this dosage is approximately 30 to 40 minutes using an ultraviolet lamp with 12000 µW/cm² power rating. The M27W801 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a That on their tubes which should be removed before erasure.

		/4\
Table 2.	Operating	madaa(1)
Table Z.	Oberating	modes

	Table 2. Operating r	modes ⁽¹⁾			
0/05	Mode	Ē	ĞV _{PP}	A9	Q7-Q0
0.	Read	V _{IL}	V _{IL}	Х	Data Out
Obsole	Output Disable	V _{IL}	V _{IH}	Х	Hi-Z
	Program	V _{IL} Pulse	V _{PP}	Х	Data In
	Program Inhibit	V _{IH}	V _{PP}	Х	Hi-Z
	Standby	V _{IH}	X	Х	Hi-Z
	Electronic Signature	V _{IL}	V _{IL}	V _{ID}	Codes

^{1.} $X = V_{IH}$ or V_{IL} , $V_{ID} = 12V \pm 0.5V$.

Maximum rating M27W801

Table 3. **Electronic signature**

Identifier	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Hex Data
Manufacturer's Code	V_{IL}	0	0	1	0	0	0	0	0	20h
Device Code	V _{IH}	0	1	0	0	0	0	1	0	42h

3 **Maximum rating**

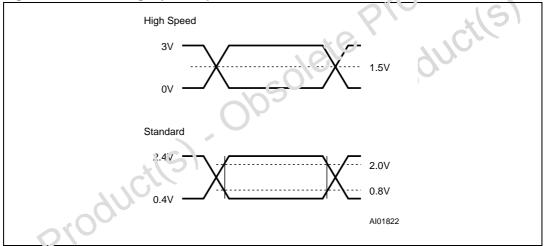
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicropic ronics SURE Program and other relevant quality documents.

Table 4. **Absolute maximum ratings**

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature ⁽¹⁾	-40 to 125	°C
T _{BIAS}	Temperature Under Bias	-50 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
V _{IO} ⁽²⁾	Input or Output Voltage (except A9)	–2 to 7	V
V _{CC}	Supply Voltag ?	–2 to 7	V
V _{A9} ⁽²⁾	A9 Voltage	–2 to 13.5	V
V _{PP}	Pr ygram Supply Voltage	–2 to 14	V

^{1.} Deponds on range.

Minir. um DC v Minir. um DC v Zens. Maximun than 20ns. 2. Minin um DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than z 2ns. Maximum DC voltage on Output is V_{CC} +0.5V with possible overshoot to V_{CC} +2V for a period less than 20ns.


DC and AC parameters 4

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.

Table 5. **AC** measurement conditions

	High Speed	Standard
Input Rise and Fall Times	≤10ns	⊈0ns (10% to 9℃%)
Input Pulse Voltages	0 to 3V	0.4V to 2'.4v
Input and Output Timing Ref. Voltages	1.5V	0.3\' a na 2V

Figure 6. AC testing input output waveform

AC testing load circuit

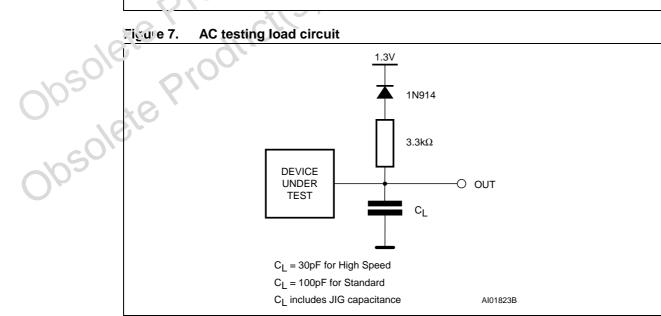


Table 6. Capacitance⁽¹⁾ (2)

Symbol	pol Parameter Test Condition Mi		Min	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$		6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V		12	pF

^{1.} $T_A = 25$ °C, f = 1 MHz

Table 7. Read mode DC characteristics⁽¹⁾ (2)

Symbol	Parameter	Test Condition	Min	Max	Unit
I _{LI}	Input Leakage Current	0V ≤V _{IN} ≤V _{CC}		±10	μA
I _{LO}	Output Leakage Current	0V ≤V _{OUT} ≤V _{CC}		±10	AL
I _{CC}	Supply Current	$\overline{E} = V_{IL}, \overline{G}V_{PP} = V_{IL},$ $I_{OUT} = 0mA,$ $f = 5MHz, V_{CC} \leq 3.6V$	9	15	mA
I _{CC1}	Supply Current (Standby) TTL	E = V _{IH}		1, 6	mA
I _{CC2}	Supply Current (Standby) CMOS	$\overline{E} > V_{CC} - 0.2V,$ $V_{CC} \le 6'$		30	μΑ
I _{PP}	Program Current	V _{D1} ? = V _{CC}	0,	10	μΑ
V _{IL}	Input Low Voltage	5° 0'	-0.6	0.2 V _{CC}	V
V _{IH} ⁽³⁾	Input High Voltage	LO. 1	0.7 V _{CC}	V _{CC} + 0.5	٧
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
V _{OH}	Output High Voltage CTL	$I_{OH} = -1 \text{mA}$	2.4		V

^{1.} $T_A = -40 \text{ to } 85 \text{ °C}$; $V_{CC} = 2.7 \text{ V}$ to 3.6V; $V_{PP} = V_{CC}$

Table 3 Programming mode DC characteristics⁽¹⁾ (2)

	Eyirbol	Parameter	Test Condition	Min	Max	Unit
7/6	I _{LI}	Input Leakage Current	$V_{IL} \leq V_{IN} \leq V_{IH}$		±10	μΑ
- WSO.	I _{CC}	Supply Current			50	mA
Oh	I _{PP}	Program Current	$\overline{E} = V_{IL}$		50	mA
10	V_{IL}	Input Low Voltage		-0.3	0.8	V
c0/9	V_{IH}	Input High Voltage		2	V _{CC} + 0.5	V
0050	V_{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
O	V _{OH}	Output High Voltage TTL	$I_{OH} = -1 \text{mA}$	3.6		V
	V_{ID}	A9 Voltage		11.5	12.5	V

^{1.} $T_A = 25$ °C; $V_{CC} = 6.25V \pm 0.25V$; $V_{PP} = 12.75V \pm 0.25V$

^{2.} Sampled only, not 100% tested.

^{2.} V_{CC} must be applied s multaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

^{3.} Maximum DC voltage on Output is V_{CC} +0.5V.

^{2.} V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

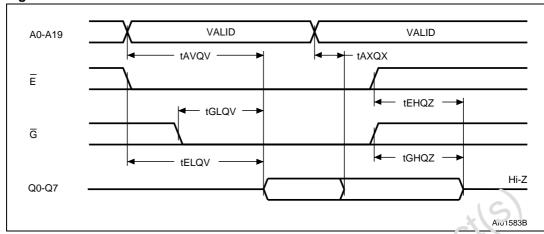


Figure 8. Read mode AC waveforms

Read mode AC characteristics^{(1) (2)} Table 9.

							M.	P7\V&0	1	7,	
				Test		-10	n (3)	<i></i>	-120 (-1	50/-200)))
	Symbol	Alt	Parameter	Condition		: (1 O V 3.5 v		2.7V 3.6V	V _{CC} = 3.0		Unit
				00	∜∕in	Max	Min	Max	Min	Max	
	t _{AVQV}	t _{ACC}	Address Valid to Output Valid	$\overline{\overline{E}} - V_{IL},$ $\overline{G} = V_{IL}$		80	0	100		120	ns
	t _{ELQV}	t _{CE}	Chip Enable Low to Output 'valid	$\overline{G} = V_{IL}$	50	80		100		120	ns
	t _{GLQV}	t _{OE}	O thut Enable Low เว Output Valid	$\overline{E} = V_{IL}$		50		60		70	ns
	t _{EHQZ} (1)	t _{DF}	Chip Enable High to Output Hi-Z	$\overline{G} = V_{IL}$	0	50	0	60	0	70	ns
76	t _{GHQZ}	t _{DF}	Output Enable High to Output Hi-Z	$\overline{E} = V_{IL}$	0	50	0	60	0	70	ns
5	t _{AXQX}	t _{OH}	Address Transition to Output Transition	$\overline{E} = V_{IL},$ $\overline{G} = V_{IL}$	0		0		0		ns
	1. $T_A = -4$	10 to 85	5 °C; V _{CC} = 2.7V to 3.6V	; V _{PP} = V _{CC}							
7/6	2. V _{CC} mi	ust be a	applied simultaneously w	vith or before \	∕ _{PP} and	remove	ed simu	ltaneou	sly or after	V_{PP} .	
^{2}O .	3. Speed	obtaine	ed with High Speed AC r	neasurement o	conditio	ns.					
	4. Sample	ed only,	not 100% tested.								

- V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .
- 3. Speed obtained with High Speed AC measurement conditions.

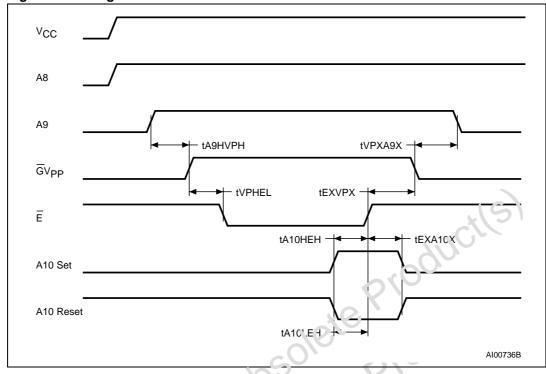


Figure 9. Margin mode AC waveforms

1. A8 High level = 5V; A9 High level = 12V.

Margin mode AC characteristics^{(1) (2)} Table 10.

	Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
	t _{A9HVPH}	t _{AS9}	V _{As rii} gh to V _{PP} High		2		μs
	t _{VPHEL}	[†] VP3	V _{PP} High to Chip Enable Low		2		μs
	t _{A10H⊾} ∵,	-AS10	V _{A10} High to Chip Enable High (Set)		1		μs
0	t _{A:0LEH}	t _{AS10}	V _{A10} Low to Chip Enable High (Reset)		1		μs
	t _{EXA10X}	t _{AH10}	Chip Enable Transition to V _{A10} Transition		1		μs
	t _{EXVPX}	t _{VPH}	Chip Enable Transition to V _{PP} Transition		2		μs
	t _{VPXA9X}	t _{AH9}	V _{PP} Transition to V _{A9} Transition		2		μs
			$6.25V \pm 0.25V$; $V_{PP} = 12.75V \pm 0.25V$ led simultaneously with or before V_{PP} and re	emoved simultane	eously or af	ter V _{PP} .	

^{1.} $T_A = 25$ °C; $V_{CC} = 6.25V \pm 0.25V$; $V_{PP} = 12.75V \pm 0.25V$

^{2.} V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

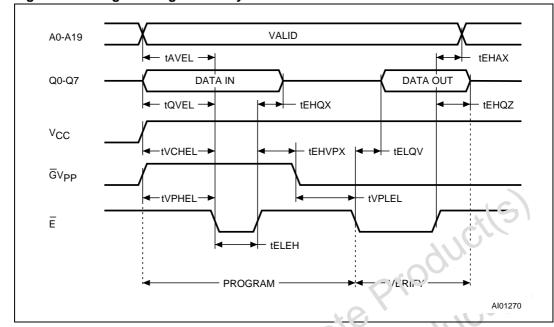
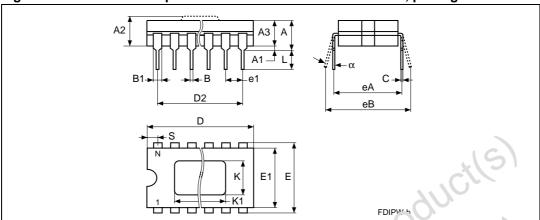


Figure 10. Programming and Verify modes AC waveforms

Programming mode AC characteria ica (1) (2) Table 11.

	Symbol	Alt	Paramete.	Test Condition	Min	Max	Unit
	t _{AVEL}	t _{AS}	Address Valid to Chip Enable Low	,	2		μs
	t _{QVEL}	t _{DS}	Input Valic' to Chip Enable Low		2		μs
	t _{VCHEL}	t _{VCS}	V _{CC} , rligh to Chip Enable Low		2		μs
	t _{VPHEL}	toes	High to Chip Enable Low		2		μs
	t _{VPLVP}	ראַר,ו	V _{PP} Rise Time		50		ns
	t _{ELEH}	t _{PW}	Chip Enable Program Pulse Width (Initial)		45	55	μs
	- EHQX	t _{DH}	Chip Enable High to Input Transition		2		μs
	t _{EHVPX}	t _{OEH}	Chip Enable High to V _{PP} Transition		2		μs
~SO!	t _{VPLEL}	t _{VR}	V _{PP} Low to Chip Enable Low		2		μs
, O	t _{ELQV}	t _{DV}	Chip Enable Low to Output Valid			1	μs
\(t _{EHQZ} (3)	t _{DFP}	Chip Enable High to Output Hi-Z		0	130	ns
c0/	t _{EHAX}	t _{AH}	Chip Enable High to Address Transition		0		ns
102			6.25V ± 0.25V; V _{PP} = 12.75V ± 0.25V ed simultaneously with or before V _{PP} and remove	ed simultaneous	lv or after	V _{DD} .	
	•	• • •	100% tested.	5	., c. a.to.		

^{1.} $T_A = 25$ °C; $V_{CC} = 6.25V \pm 0.25V$; $V_{PP} = 12.75V \pm 0.25V$


^{2.} V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

^{3.} Sampled only, not 100% tested.

Package mechanical M27W801

5 Package mechanical

Figure 11. FDIP32W - 32 pin Ceramic Frit-seal DIP with window, package outline

^{1.} Drawing is not to scale.

Table 12. FDIP32WC - 32 pin Ceramic Frit-seal D!P, with window (0.260" x 0.420"), package mechanical data

	paramage		-			
Symbol		millimeters	₆ 0'		inches	
Syllibol	Тур	Min	Nlax	Тур	Min	Max
А			5.72			0.225
A1		0.51	1.40		0.020	0.055
A2		3.91	4.57		0.154	0.180
А3	7170	3.89	4.50		0.153	0.177
В	70,	0.41	0.56		0.016	0.022
E1	1.45	15	_	0.057	_	_
С	()	0.23	0.30		0.009	0.012
D	70	41.73	42.04		1.643	1.655
D2	38.10	_	_	1.500	_	_
е	2.54	_	_	0.100	_	_
eA	14.99	_	_	0.590	_	_
eB		16.18	18.03		0.637	0.710
Е	15.24	_	_	0.600	_	_
E1		13.06	13.36		0.514	0.526
K	6.60	_	_	0.260	-	_
K1	10.67	_	_	0.420	_	_
L		3.18	4.10		0.125	0.161
S		1.52	2.49		0.060	0.098
α		4°	11°		4°	11°
N		32			32	
	Symbol A A1 A2 A3 B E1 C D D2 e eA eB E1 K K1 L S α	Symbol Typ A A1 A2 A3 B E1 1.45 C D D2 38.10 e 2.54 eA 14.99 eB E E 15.24 E1 K K 6.60 K1 10.67 L S α	millimeters Typ Min A	Typ Min Nax A 5.72 A1 0.51 1.40 A2 3.91 4.57 A3 3.89 4.50 B 0.41 0.56 E1 1.45 - - C 0.23 0.30 D 41.73 42.04 D2 38.10 - - e 2.54 - - eA 14.99 - - eB 16.18 18.03 E 15.24 - - E1 13.06 13.36 K 6.60 - - K1 10.67 - - L 3.18 4.10 S 1.52 2.49 α 4° 11°	millimeters Typ Min Nax Typ A 5.72 — A1 0.51 1.40 A2 3.91 4.57 A3 3.89 4.50 B 0.41 0.56 E1 1.45 — — 0.057 C 0.23 0.30 — — 1.500 D 41.73 42.04 — — 0.100 — E 2.54 — — 0.100 — — 0.590 — — 0.590 — — 0.600 — — 0.600 — — 0.600 — — 0.260 — — 0.420 — — 0.420 — — 0.420 — — 0.420 — — 0.420 — — 0.420 — — 0.420 — — 0.420 — — 0.420 — </td <td>millimeters inches Typ Min Nlax Typ Min A1 0.51 1.40 0.020 A2 3.91 4.57 0.154 A3 3.89 4.50 0.153 B 0.41 0.56 0.016 E1 1.45 - - 0.057 - C 0.23 0.30 0.009 D 41.73 42.04 1.643 D2 38.10 - - 1.500 - e 2.54 - - 0.100 - eA 14.99 - - 0.590 - eB 16.18 18.03 0.637 E 15.24 - - 0.600 - E1 13.06 13.36 0.514 K 6.60 - - 0.420 - K1 10.67 - - 0.420 - <</td>	millimeters inches Typ Min Nlax Typ Min A1 0.51 1.40 0.020 A2 3.91 4.57 0.154 A3 3.89 4.50 0.153 B 0.41 0.56 0.016 E1 1.45 - - 0.057 - C 0.23 0.30 0.009 D 41.73 42.04 1.643 D2 38.10 - - 1.500 - e 2.54 - - 0.100 - eA 14.99 - - 0.590 - eB 16.18 18.03 0.637 E 15.24 - - 0.600 - E1 13.06 13.36 0.514 K 6.60 - - 0.420 - K1 10.67 - - 0.420 - <

M27W801 Package mechanical

b1 — b — e — eA — D2 — PDIP-C

Figure 12. PDIP32 - 32 pin Plastic DIP, 600 mils width, package outline

1. Drawing is not to scale.

Table 13. PDIP32 – 32 pin Plastic DIP, 600 mils width, package nechanical data

	tumbal		millimeters		C. Y	inches	
3	Symbol	Тур	Min	Max	Тур	Min	Max
	Α			4.03		(0)	0.190
	A1		0.38	10		0.015	
	A2	3.81			0.150		
	b		0.41	0.53		0.016	0.021
	b1	C.	1.14	1.65		0.045	0.065
	С	71/0	0.23	0.38		0.009	0.015
	D	20,	41.78	42.29		1.645	1.665
	L3	38.10	(5)	_	1.500	-	_
× 6	Ae	15.24	_	_	0.600	-	_
182	е	2.54	-	_	0.100	-	_
),	E	0	15.24	15.88		0.600	0.625
	E1		13.46	13.97		0.530	0.550
V.	S		1.65	2.21		0.065	0.087
	L		3.05	3.56		0.120	0.140
	α		0°	15°		0°	15°
	N		32			32	

Package mechanical M27W801

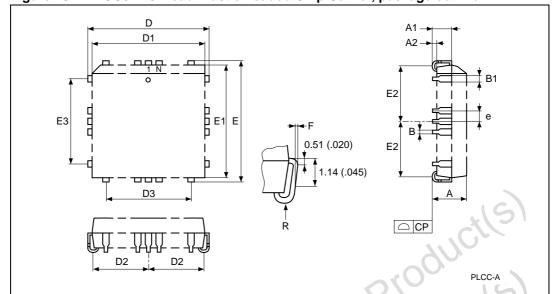


Figure 13. PLCC32 - 32 lead Plastic Leaded Chip Carrier, package outline

1. Drawing is not to scale.

Table 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, package mechanical data

S. comb.		millimeters	1000	0	inches	
Symbo	Тур	Min	Max	Тур	Min	Max
Α		3.17	3.56	8	0.125	0.140
A1		1.53	2.41		0.060	0.095
A2	. (6)	0.38	70-2		0.015	_
В	90,	0.33	0.53		0.013	0.021
B1	70	0.66	0.81		0.026	0.032
CF		(3)	0.10			0.004
D	4110	12.32	12.57		0.485	0.495
D1		11.35	11.51		0.447	0.453
D2		4.78	5.66		0.188	0.223
D3	7.62	_	_	0.300	-	_
E		14.86	15.11		0.585	0.595
E1		13.89	14.05		0.547	0.553
E2		6.05	6.93		0.238	0.273
E3	10.16	-	_	0.400	-	_
е	1.27	_	_	0.050	-	_
F		0.00	0.13		0.000	0.005
R	0.89	-	_	0.035	-	-
N		32			32	

M27W801 Package mechanical

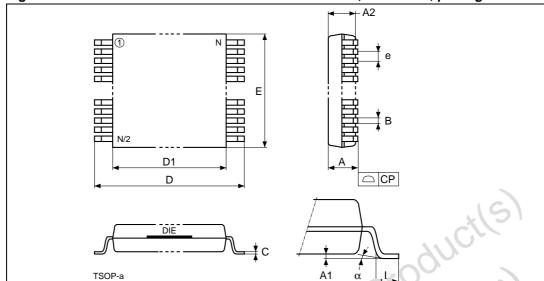
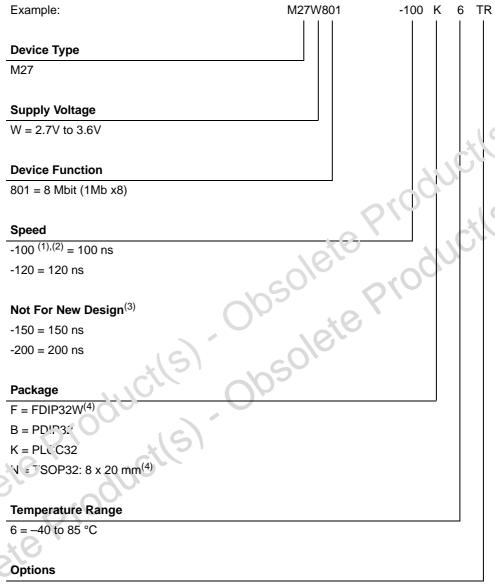


Figure 14. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, package outline

1. Drawing is not to scale.


Table 15. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, package mechanical data

Symbol		millimeters	1050	0	inches	
Symbol	Тур	Min	Max	Тур	Min	Max
А			1.200	0		0.0472
A1	~	J.050	0.150		0.0020	0.0059
A2	1110	0.950	1.050		0.0374	0.0413
В	70-	0.170	0.250		0.0067	0.0098
(3)		0.100	0.210		0.0039	0.0083
СР	(0)		0.100			0.0039
D	70,	19.800	20.200		0.7795	0.7953
D1	0	18.300	18.500		0.7205	0.7283
е	0.500	-	-	0.0197	-	_
X OE		7.900	8.100		0.3110	0.3189
L		0.500	0.700		0.0197	0.0276
N		32			32	•
α		0°	5°		0°	5°

Part numbering M27W801

6 Part numbering

Table 16. Ordering information scheme

TR = Tape & Reel Packing

- 1. High Speed, see AC Characteristics section for further information.
- 2. This speed also guarantees 80ns access time at V_{CC} = 3.0V to 3.6V.
- 3. These speeds are replaced by the 120ns.
- 4. Packages option available on request. Please contact STMicroelectronics local Sales Office.

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

577

M27W801 Revision history

7 Revision history

Table 17. Document revision history

	Version	Revision Details
July 1999	1.0	First Issue
15-Mar-2000	1.1	FDIP32W Package Dimension, L Max added (<i>Table 12</i> .) TSOP32 Package Dimension changed (<i>Table 15</i>) 0 to 70°C Temperature Range removed Programming Time changed
21-Apr-2000	1.2	Read Mode AC Characteristics: t_{AVQV} , t_{ELQV} , t_{GLQV} , t_{EHQZ} , t_{GHQZ} changed (Table 9)
20-Feb-2002	1.3	PDIP32 Mechanical data and drawing changed (<i>Table 13</i>) PLCC32 Mechanical data: A2 clarified (<i>Table 14</i>) Read Mode DC Characteristics: V _{OH} clarified (<i>Table 7</i>)
06-May-2002	1.4	PLCC32 Mechanical data and drawing c.arif.ed (Table 14, Figure 13) ICC Standby value clarified
21-Mar-2003	1.5	Ordering Information Scheme c'a it eq (<i>Table 16</i>) TSOP32 Package Mechanical Cata clarified (<i>Table 15</i>)
22-May-2006	2	Document converted to new template (sections added, information moved). Packages are ECCPACK® compliant. Package specifications updated (see Section 5: Package mechanical).
	. (1(5) 150
te Pro	odiuli.	Packages are ECCPACK® compliant. Package specifications updated (see Section 5: Package mechanical).

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsultaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and ser rices described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property lights is granted under this document. If any part of this document refers to any third party products or services it shall not be depined a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USF AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, F'I NEGS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINCEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED NO RITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARP ALTITOTOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS ON SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale cf. 21 products with provisions different from the statements and/or technical features set forth in this document shall immediately void any mananty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577