BGM220P Wireless Gecko Bluetooth Module Data Sheet The BGM220P is a module designed and built to meet the performance, security, and reliability requirements of battery-powered IoT products running on Bluetooth networks. Based on the EFR32BG22 SoC, the BGM220P enables Bluetooth® Low Energy connectivity while delivering best-in-class RF range and performance, future-proof capability for feature and OTA firmware updates, enhanced security features, and low energy consumption. BGM220P modules are a full solution that comes with fully-upgradeable, robust software stacks, world-wide regulatory certifications, advanced development and debugging tools, and support that will minimize and simplify the engineering and development of your end-products helping to accelerate their time-to-market. The BGM220P is intended for a broad range of applications, including: - · Asset Tags and Beacons - · Sports, Fitness, and Wellness devices - · Portable Medical - · Connected Home - · Industrial and Building Automation - · Bluetooth mesh Low Power Node #### **KEY FEATURES** - Bluetooth 5.2 - · Bluetooth mesh Low Power Node - · Built-in antenna - Up to 8 dBm TX power - · -98.9 dBm BLE RX sensitivity at 1 Mbps - 32-bit ARM Cortex-M33 core at up to 76.8 MHz - 512/32 kB of Flash/RAM memory - · Optimal selection of MCU peripherals - · Up to 25 GPIO pins - 12.9 mm x 15.0 mm #### 1. Feature List #### Supported Protocols - · Bluetooth Low Energy (Bluetooth 5.2) - · Direction finding - · 1M, 2M and LE Coded PHYs - · Bluetooth Mesh Low Power Node #### · Wireless System-on-Chip - · 2.4 GHz radio - TX power up to +8 dBm - High-performance 32-bit ARM Cortex-M33[®] with DSP instruction and floating-point unit for efficient signal processing - 512 kB flash program memory - 32 kB RAM data memory - Embedded Trace Macrocell (ETM) for advanced debugging ## · High-Receiver Performance - -106.7 dBm sensitivity (0.1% BER) at 125 kbps GFSK - · -102.5 dBm sensitivity (0.1% BER) at 500 kbps GFSK - -98.9 dBm sensitivity (0.1% BER) at 1 Mbps GFSK - -96.2 dBm sensitivity (0.1% BER) at 2 Mbps GFSK # Low-Energy Consumption - 4.3 mA RX current at 1 Mbps GFSK - 4.8 mA TX current at 0 dBm output power - 10.6 mA TX current at 8 dBm output power - 26 μA/MHz in Active Mode (EM0) - 1.40 µA EM2 DeepSleep current (RTCC running from LFXO, Full RAM retention) #### · Regulatory Certifications - · CE and UKCA EU and UK - · FCC USA - · ISED Canada - MIC Japan - · KC South Korea #### Wide Operating Range - 1.8 to 3.8 V - -40 to +105°C #### Dimensions • 12.9 mm x 15.0 mm x 2.2 mm #### Security Features - · Secure Boot with Root of Trust and Secure Loader (RTSL) - Hardware Cryptographic Acceleration for AES128/256, SHA-1, SHA-2 (up to 256-bit), ECC (up to 256-bit), ECDSA, and ECDH - True Random Number Generator (TRNG) compliant with NIST SP800-90 and AIS-31 - ARM[®] TrustZone[®] - · Secure Debug with lock/unlock #### Wide Selection of MCU Peripherals - · Analog to Digital Converter (ADC) - 12-bit @ 1 Msps - 16-bit @ 76.9 ksps - Up to 25 General Purpose I/O pins with output state retention and asynchronous interrupts - · 8 Channel DMA Controller - 12 Channel Peripheral Reflex System (PRS) - 4 x 16-bit Timer/Counter with 3 Compare/Capture/PWM channels - 1 × 32-bit Timer/Counter with 3 Compare/Capture/PWM channels - · 32-bit Real Time Counter - · 24-bit Low Energy Timer for waveform generation - 1 × Watchdog Timer - 2 × Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I²S) - 1 × Enhanced Universal Asynchronous Receiver/Transmitter (EUART) - 2 × I²C interface with SMBus support - Digital microphone interface (PDM) - · RFSENSE with selective OOK mode # 2. Ordering Information **Table 2.1. Ordering Information** | Ordering Code | Protocol Stack | TX Power
Rating | Antenna | RF
Shield | Flash
(kB) | RAM
(kB) | LF Clock | GPIO | Temp Range | |----------------|---------------------------------------|--------------------|----------|--------------|---------------|-------------|--------------------|------|---------------| | BGM220PC22HNA2 | Bluetooth 5.2 • Direction Finding Rx | 8 dBm | Built-in | Yes | 512 | 32 | Crystal | 24 | -40 to 105 °C | | BGM220PC22WGA2 | Bluetooth 5.2 | 8 dBm | Built-in | Yes | 352 | 32 | Precision
LFRCO | 25 | -40 to 85 °C | - 1. LE Long Range (125 kbps and 500 kbps) PHYs are only supported on part numbers which include direction-finding capability. - 2. End-product manufacturers must verify that the module is configured to meet regulatory limits for each region in accordance with the formal certification test reports. - 3. Devices are pre-programmed with BGAPI UART DFU bootloader v1.10.2. - 4. Throughout this document, the devices in the table above may be referred to by their product family name (e.g. BGM220P), by model name (BGM220P22A), or by full ordering code. - 5. All devices in the table above support transmitting CTE (Constant Tone Extension) which is required in Direction Finding, but only specific devices support CTE receive. These devices are marked with "Direction Finding Rx" in the Protocol Stack Column. - 6. The SLWSTK6103A Wireless Starter Kit is available for BGM220P evaluation and development, as well as the SLWRB4311A radio board and the BGM220-EK4314A Explorer Kit. # **Table of Contents** | 1. | Feature List | . 2 | |----|--|-----| | 2. | Ordering Information | . 3 | | 3. | System Overview | . 6 | | | 3.1 Block Diagram | . 6 | | | 3.2 EFR32BG22 SoC | . 7 | | | 3.3 Antenna | . 7 | | | 3.4 Power Supply | . 7 | | 4. | Electrical Characteristics | . 8 | | | 4.1 Absolute Maximum Ratings | . 8 | | | 4.2 General Operating Conditions | | | | 4.3 MCU Current Consumption with 3 V Supply | .11 | | | 4.4 Radio Current Consumption with 3 V Supply | .12 | | | 4.5 RF Transmitter General Characteristics for the 2.4 GHz Band | .13 | | | 4.6 RF Receiver General Characteristics for the 2.4 GHz Band | .14 | | | 4.7 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate | .15 | | | 4.8 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate | .16 | | | 4.9 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate . | .17 | | | 4.10 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate . | .18 | | | 4.11 High-Frequency Crystal | .19 | | | 4.12 Low-Frequency Crystal | .19 | | | 4.13 Precision Low Frequency RC Oscillator (LFRCO) | .19 | | | 4.14 GPIO Pins | .20 | | | 4.15 Microcontroller Peripherals | .21 | | | 4.16 Typical Performance Curves | | | 5. | Reference Diagrams | 23 | | | 5.1 Network Co-Processor (NCP) Application with UART Host | .23 | | | 5.2 SoC Application | .24 | | 6. | Pin Definitions | 25 | | | 6.1 31-Pin PCB Module With LF Crystal Device Pinout | | | | 6.2 31-Pin PCB Module With Precision LFRCO Device Pinout | | | | 6.3 Alternate Function Table | .28 | | | 6.4 Analog Peripheral Connectivity | .29 | | | 6.5 Digital Peripheral Connectivity | | | 7. Design Guidelines | | | | | | | | | | | | | . 33 | |----------------------------------|--|--|---|--|--|--|--|--|--|---|--|--|------| | 7.1 Layout and Placement | | | | | | | | | | | | | .33 | | 7.2 Proximity to Other Materials | | | | | | | | | | | | | .34 | | 7.3 Proximity to Human Body . | | | - | | | | | | | | | | .34 | | 8. Package Specifications . | | | | | | | | | | | | | . 35 | | 8.1 Dimensions | | | | | | | | | | | | | .35 | | 8.2 PCB Land Pattern | | | | | | | | | | | | | .36 | | 8.3 Package Marking | | | | | | | | | | | | | .37 | | 9. Soldering Recommendations | | | | | | | | | | | | | . 38 | | 10. Tape and Reel | | | | | | | | | | | | | .39 | | 11. Certifications | | | | | | | | | | | | | 40 | | 11.1 Qualified Antennas | | | | | | | | | | | | | .40 | | 11.2 EU and UK - CE and UKCA | | | | | | | | | | | | | .40 | | 11.3 USA - FCC | | | | | | | | | | - | | | .40 | | 11.4 ISED Canada | | | | | | | | | | - | | | .43 | | 11.5 Proximity to Human Body . | | | | | | | | | | | | | .45 | | 11.6 Japan - MIC | | | | | | | | | | | | | .46 | | 11.7 South Korea - KC | | | | | | | | | | | | | .47 | | 11.8 Bluetooth Qualification | | | | | | | | | | - | | | .47 | | 12. Revision History | | | | | | | | | | | | | 48 | # 3. System Overview #### 3.1 Block Diagram The BGM220P module combines an energy-friendly MCU with a highly integrated radio transceiver in a PCB module with a robust, integrated antenna. This section gives a short introduction to the features of the module. The block diagram for the BGM220P module is shown in Figure 3.1 BGM220P Block Diagram on page 6. The wireless module includes the EFR32BG22 wirelss System on a Chip (SoC), required decoupling capacitors and inductors, 38.4 MHz and 32.768 kHz crystals, RF matching circuit, and integrated chip antenna. Figure 3.1. BGM220P Block Diagram A simplified internal schematic for the BGM220P module is shown in Figure 3.2 BGM220P Module Schematic on page 6. Figure 3.2. BGM220P Module Schematic #### 3.2 EFR32BG22 SoC The EFR32BG22 SoC features a 32-bit ARM Cortex M33 core, a 2.4 GHz high-performance radio, 512 kB of flash memory, a rich set of MCU peripherals, and various clock management and serial interfacing options. Consult the EFR32xG22 Wireless Gecko Reference Manual and the EFR32BG22 Data Sheet for details. #### 3.3 Antenna BGM220P modules include a ceramic chip antenna on board with the characteristics detailed in the table below. Table 3.1. Antenna Efficiency and Peak Gain | Parameter | With optimal layout | Note | |------------|---------------------|--| | Efficiency | -1 dB | Antenna efficiency, gain and radiation pattern are highly dependent on the application PCB layout and mechanical design. Refer | | Peak gain | 1.86 dBi
 to Design Guidelines for recommendations to achieve optimal antenna performance. | # 3.4 Power Supply The BGM220P requires a single nominal supply level of 3.0 V to operate. All necessary decoupling and filtering components are included in the module. ## 4. Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: - Typical values are based on T_A=25 °C and VDD supply at 3.0 V, by production test and/or technology characterization. - Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna. - Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. #### 4.1 Absolute Maximum Ratings Stresses beyond those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions beyond those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. **Table 4.1. Absolute Maximum Ratings** | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |-------------------------------------|------------------------|----------------|------|-----|------------------------|--------| | Storage temperature range | T _{STG} | | -40 | _ | +105 | °C | | Voltage on VDD supply pin | V _{DDMAX} | | -0.3 | _ | 3.8 | V | | Voltage ramp rate on VDD supply pin | V _{DDRAMPMAX} | | _ | _ | 1.0 | V / µs | | DC voltage on any GPIO pin | V _{DIGPIN} | | -0.3 | _ | V _{VDD} + 0.3 | V | | Total current into VDD pin | I _{VDDMAX} | Source | _ | _ | 200 | mA | | Total current into GND pin | I _{GNDMAX} | Sink | _ | _ | 200 | mA | | Current per I/O pin | I _{IOMAX} | Sink | _ | _ | 50 | mA | | | | Source | _ | _ | 50 | mA | | Current for all I/O pins | I _{IOALLMAX} | Sink | _ | _ | 200 | mA | | | | Source | _ | _ | 200 | mA | # 4.2 General Operating Conditions This table specifies the general operating temperature range and supply voltage range for all supplies. The minimum and maximum values of all other tables are specifed over this operating range, unless otherwise noted. **Table 4.2. General Operating Conditions** | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |----------------------------|--------------------------|---------------------------------|-----|------|--|------| | Operating ambient tempera- | T _A | -G temperature grade | -40 | _ | +85 | °C | | ture range | | -N temperature grade | -40 | _ | +105 | °C | | VDD operating supply volt- | V_{VDD} | DCDC in regulation ¹ | 2.2 | 3.0 | 3.8 | V | | age | | DCDC in bypass | 1.8 | 3.0 | - +85 - +105 3.0 3.8 | V | | HCLK and SYSCLK frequen- | f _{HCLK} | VSCALE2, MODE = WS1 | _ | _ | 76.8 | MHz | | су | | VSCALE2, MODE = WS0 | _ | _ | 40 | MHz | | | | VSCALE1, MODE = WS0 | _ | _ | 40 | MHz | | PCLK frequency | f _{PCLK} | VSCALE2 | _ | _ | 50 | MHz | | | | VSCALE1 | _ | _ | 40 | MHz | | EM01 Group A clock fre- | f _{EM01GRPACLK} | VSCALE2 | _ | _ | 76.8 | MHz | | quency | | VSCALE1 | _ | _ | 40 | MHz | | EM01 Group B clock fre- | f _{EM01GRPBCLK} | VSCALE2 | _ | _ | 76.8 | MHz | | quency | | VSCALE1 | _ | _ | 40 | MHz | | Radio HCLK frequency | f _{RHCLK} | VSCALE2 or VSCALE1 | _ | 38.4 | _ | MHz | ^{1.} The supported maximum V_{VDD} in regulation mode is a function of temperature and 10-year lifetime average load current. See more details in 4.2.1 DC-DC Operating Limits. #### 4.2.1 DC-DC Operating Limits The maximum supported voltage on the VDD supply pin is limited under certain conditions. Maximum input voltage is a function of temperature and the average load current over a 10-year lifetime. Figure 4.1 Lifetime average load current limit vs. Maximum input voltage on page 10 shows the safe operating region under specific conditions. Exceeding this safe operating range may impact the reliability and performance of the DC-DC converter. The average load current for an application can typically be determined by examining the current profile during the time the device is powered. For example, an application that is continuously powered which spends 99% of the time asleep consuming 2 μ A and 1% of the time active and consuming 10 mA has an average lifetime load current of about 102 μ A. Figure 4.1. Lifetime average load current limit vs. Maximum input voltage The minimum input voltage for the DC-DC in EM0/EM1 mode is a function of the maximum load current, and the peak current setting. Figure 4.2 Transient maximum load current vs. Minimum input voltage on page 10 shows the max load current vs. input voltage for different DC-DC peak inductor current settings. Figure 4.2. Transient maximum load current vs. Minimum input voltage # 4.3 MCU Current Consumption with 3 V Supply Unless otherwise indicated, typical conditions are: Module supply voltage = 3.0 V. Voltage scaling level = VSCALE1. T_A = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T_A = 25 °C. Table 4.3. MCU Current Consumption with 3 V Supply | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|---------------------|--|-----|------|-----|-----------------| | Current consumption in EM0 mode with all peripherals disabled | IACTIVE | 76.8 MHz HFRCO w/ DPLL referenced to 38.4 MHz crystal, CPU running while loop from flash, VSCALE2 | _ | 27 | _ | μA/MHz | | | | 76.8 MHz HFRCO w/ DPLL referenced to 38.4 MHz crystal, CPU running CoreMark loop from flash, VSCALE2 | _ | 37 | _ | μ A /MHz | | | | 38.4 MHz crystal, CPU running
Prime from flash | _ | 28 | _ | μA/MHz | | | | 38.4 MHz crystal, CPU running while loop from flash | _ | 26 | _ | μΑ/MHz | | | | 38.4 MHz crystal, CPU running
CoreMark loop from flash | _ | 38 | _ | μΑ/MHz | | | | 38 MHz HFRCO, CPU running while loop from flash | _ | 22 | _ | μΑ/MHz | | | | 76.8 MHz HFRCO w/ DPLL referenced to 38.4 MHz crystal, CPU running Prime from flash, VSCALE2 | _ | 28 | _ | μA/MHz | | Current consumption in EM1 mode with all peripherals disabled | I _{EM1} | 76.8 MHz HFRCO w/ DPLL referenced to 38.4 MHz crystal, VSCALE2 | _ | 17 | _ | μA/MHz | | | | 38.4 MHz crystal | _ | 17 | _ | µA/MHz | | | | 38 MHz HFRCO | _ | 13 | _ | μA/MHz | | Current consumption in EM2 mode, VSCALE0 | I _{EM2_VS} | Full RAM retention and RTC running from LFXO | _ | 1.40 | _ | μА | | | | Full RAM retention and RTC running from LFRCO | _ | 1.40 | _ | μА | | | | Full RAM retention and RTC running from LFRCO in precision mode | _ | 1.75 | _ | μА | | | | 24 kB RAM retention and RTC running from LFXO | _ | 1.32 | _ | μА | | | | 24 kB RAM retention and RTC running from LFRCO in precision mode | _ | 1.66 | _ | μА | | | | 8 kB RAM retention and RTC running from LFXO | _ | 1.21 | _ | μА | | | | 8 kB RAM retention and RTC running from LFRCO | _ | 1.20 | _ | μА | | Current consumption in EM3 mode, VSCALE0 | I _{EM3_VS} | 8 kB RAM retention and RTC running from ULFRCO | _ | 1.05 | _ | μА | | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|----------------------|---|-----|------|-----|------| | Current consumption in EM4 mode | I _{EM4} | No BURTC, No LF Oscillator, DCDC bypassed | _ | 0.17 | _ | μA | | Additional current in EM2 or EM3 when any peripheral in PD0B is enabled ¹ | I _{PD0B_VS} | | _ | 0.37 | _ | μA | #### Note: ### 4.4 Radio Current Consumption with 3 V Supply RF current consumption measured with MCU in EM1, HCLK = 38.4 MHz, and all MCU peripherals disabled. Unless otherwise indicated, typical conditions are: VDD = 3.0 V. T_A = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T_A = 25 °C. Table 4.4. Radio Current Consumption with 3 V Supply | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|------------------------|--|-----|------|-----|------| | System current consumption in receive mode, active pack- | I _{RX_ACTIVE} | 125 kbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.5 | _ | mA | | et reception | | 500 kbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.5 | _ | mA | | | | 1 Mbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.3 | _ | mA | | | | 2 Mbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.8 | _ | mA | | System current consumption in receive mode, listening for | I _{RX_LISTEN} | 125 kbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.4 | _ | mA | | packet | | 500 kbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.4 | _ | mA | | | | 1 Mbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.2 | _ | mA | | | | 2 Mbit/s, 2GFSK, f = 2.4 GHz,
Bluetooth stack running | _ | 4.7 | _ | mA | | System current consumption in transmit mode | I _{TX} | f = 2.4 GHz, CW, 0 dBm output power | _ | 4.8 | _ | mA | | | | f = 2.4 GHz, CW, 6 dBm output power | _ | 8.8 | _ | mA | | | | f = 2.4 GHz, CW, 8 dBm output power | _ | 10.6 | _ | mA | ^{1.} Extra current consumed by power domain. Does not include current associated with the enabled peripherals.
See for a list of the peripherals in each power domain. # 4.5 RF Transmitter General Characteristics for the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T_A = 25 °C, VDD = 3.0V. RF center frequency 2.45 GHz. Table 4.5. RF Transmitter General Characteristics for the 2.4 GHz Band | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|-----------------------|---|--------------|------|--------|------| | RF tuning frequency range | F _{RANGE} | | 2400 | _ | 2483.5 | MHz | | Maximum TX power ¹ | POUT _{MAX} | 8 dBm output power | _ | 8.2 | _ | dBm | | | | 6 dBm output power | _ | 6.4 | _ | dBm | | | | 0 dBm output power | _ | 0.3 | _ | dBm | | Minimum active TX Power | POUT _{MIN} | 8 dBm output power | _ | -27 | _ | dBm | | | | 6 dBm output power | _ | -27 | _ | dBm | | | | 0 dBm output power | _ | -28 | _ | dBm | | Output power variation vs
VDD supply voltage varia- | POUT _{VAR_V} | 8 dBm output power with VDD voltage swept from 1.8 V to 3.0 V | _ | 0.04 | _ | dB | | tion, frequency = 2450 MHz | | 6 dBm output power with VDD voltage swept from 1.8 V to 3.0 V | _ | 0.04 | _ | dB | | | | 0 dBm output power, with VDD voltage swept from 1.8 to 3.0 V | _ | 0.04 | _ | dB | | Output power variation vs
temperature, Frequency = | POUT _{VAR_T} | 8 dBm output power, (-40 to +105 °C) | _ | 0.9 | _ | dB | | 2450 MHz | | 6 dBm output power, (-40 to +105 °C) | _ | 0.3 | _ | dB | | | | 0 dBm output power, (-40 to +105 °C) | _ | 1.3 | _ | dB | | | | 8 dBm output power, (-40 to +85 °C) | _ | 0.8 | _ | dB | | | | 6 dBm output power, (-40 to +85 °C) | _ | 0.4 | _ | dB | | | | 0 dBm output power, (-40 to +85 °C) | _ | 1.0 | _ | dB | | Output power variation vs RF | POUT _{VAR_F} | 8 dBm output power | _ | 0.2 | _ | dB | | frequency | | 6 dBm output power | _ | 0.2 | _ | dB | | | | 0 dBm output power | _ | 0.2 | _ | dB | ^{1.} Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this data sheet can be found in the Max TX Power column of the Ordering Information Table. # 4.6 RF Receiver General Characteristics for the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T_A = 25 °C, VDD = 3.0V. RF center frequency 2.45 GHz. # Table 4.6. RF Receiver General Characteristics for the 2.4 GHz Band | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---------------------------|--------------------|----------------|------|-----|--------|------| | RF tuning frequency range | F _{RANGE} | | 2400 | _ | 2483.5 | MHz | # 4.7 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate Unless otherwise indicated, typical conditions are: T_A = 25 °C, VDD = 3.0V. RF center frequency 2.45 GHz. Table 4.7. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|---------------------|--|-----|-------|-----|------| | Max usable receiver input level | SAT | Signal is reference signal ¹ | _ | 10 | _ | dBm | | Sensitivity | SENS | Signal is reference signal, 37 byte payload ² | _ | -98.9 | _ | dBm | | | | Signal is reference signal, 255 byte payload ¹ | _ | -97.4 | _ | dBm | | | | With non-ideal signals ³ 1 | _ | -96.9 | _ | dBm | | Signal to co-channel interferer | C/I _{CC} | (see notes) ^{1 4} | _ | 8.7 | _ | dB | | N ± 1 Adjacent channel selectivity | C/I ₁ | Interferer is reference signal at +1 MHz offset ^{1 5 4 6} | _ | -6.6 | _ | dB | | | | Interferer is reference signal at -1 MHz offset ^{1 5 4 6} | _ | -6.5 | _ | dB | | N ± 2 Alternate channel selectivity | C/I ₂ | Interferer is reference signal at +2 MHz offset ^{1 5 4 6} | _ | -40.9 | _ | dB | | | | Interferer is reference signal at -2 MHz offset ^{1 5 4 6} | _ | -39.9 | _ | dB | | N ± 3 Alternate channel selectivity | C/I ₃ | Interferer is reference signal at +3 MHz offset ^{1 5 4 6} | _ | -45.9 | _ | dB | | | | Interferer is reference signal at -3 MHz offset ^{1 5 4 6} | _ | -46.2 | _ | dB | | Selectivity to image frequency | C/I _{IM} | Interferer is reference signal at image frequency with 1 MHz precision ^{1 6} | _ | -23.5 | _ | dB | | Selectivity to image frequency ± 1 MHz | C/I _{IM_1} | Interferer is reference signal at image frequency +1 MHz with 1 MHz precision ^{1 6} | _ | -40.9 | _ | dB | | | | Interferer is reference signal at image frequency -1 MHz with 1 MHz precision ^{1 6} | _ | -6.6 | _ | dB | | Intermodulation performance | IM | n = 3 (see note ⁷) | _ | -17.1 | _ | dBm | - 1.0.017% Bit Error Rate. - 2.0.1% Bit Error Rate. - 3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1 - 4. Desired signal -67 dBm. - 5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz. - 6. With allowed exceptions. - 7. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4 # 4.8 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate Unless otherwise indicated, typical conditions are: T_A = 25 °C, VDD = 3.0V. RF center frequency 2.45 GHz. Table 4.8. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|---|--|-----|-------|-----|------| | Max usable receiver input level | SAT | Signal is reference signal ¹ | _ | 10 | _ | dBm | | Sensitivity | SENS Signal is reference signal, 37 byte payload ² | | _ | -96.2 | _ | dBm | | | | Signal is reference signal, 255 byte payload ¹ | _ | -94.6 | _ | dBm | | | | With non-ideal signals ³ ¹ | _ | -94.4 | _ | dBm | | Signal to co-channel interferer | C/I _{CC} | (see notes) ^{1 4} | _ | 8.8 | _ | dB | | N ± 1 Adjacent channel selectivity | C/I ₁ | Interferer is reference signal at +2 MHz offset ^{1 5 4 6} | _ | -9.2 | _ | dB | | | | Interferer is reference signal at -2 MHz offset ^{1 5 4 6} | _ | -6.6 | _ | dB | | N ± 2 Alternate channel selectivity | C/I ₂ | Interferer is reference signal at +4 MHz offset ^{1 5 4 6} | _ | -43.3 | _ | dB | | | | Interferer is reference signal at -4 MHz offset ^{1 5 4 6} | _ | -44.0 | _ | dB | | N ± 3 Alternate channel selectivity | C/I ₃ | Interferer is reference signal at +6 MHz offset ^{1 5 4 6} | _ | -48.6 | _ | dB | | | | Interferer is reference signal at -6 MHz offset ^{1 5 4 6} | _ | -50.7 | _ | dB | | Selectivity to image frequency | C/I _{IM} | Interferer is reference signal at image frequency with 1 MHz precision ^{1 6} | _ | -23.8 | _ | dB | | Selectivity to image frequency ± 2 MHz | C/I _{IM_1} | Interferer is reference signal at image frequency +2 MHz with 1 MHz precision ^{1 6} | _ | -43.3 | _ | dB | | | | Interferer is reference signal at image frequency -2 MHz with 1 MHz precision ^{1 6} | _ | -9.2 | _ | dB | | Intermodulation performance | IM | n = 3 (see note ⁷) | _ | -18.8 | _ | dBm | - 1.0.017% Bit Error Rate. - 2.0.1% Bit Error Rate. - 3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1 - 4. Desired signal -64 dBm. - 5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz. - 6. With allowed exceptions. - 7. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4 # 4.9 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate Unless otherwise indicated, typical conditions are: T_A = 25 °C, VDD = 3.0V. RF center frequency 2.45 GHz. Table 4.9. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|---------------------|--|-----|--------|-----|------| | Max usable receiver input level | SAT | Signal is reference signal ¹ | _ | 10 | _ | dBm | | Sensitivity | SENS | Signal is reference signal, 37 byte payload ² | _ | -102.5 | _ | dBm | | | | Signal is reference signal, 255 byte payload ¹ | _ | -101.2 | _ | dBm | | | | With non-ideal signals ³ ¹ | _ | -100.2 | _ | dBm | | Signal to co-channel interferer | C/I _{CC} | (see notes) ^{1 4} | _ | 2.7 | _ | dB | | N ± 1 Adjacent channel selectivity | C/I ₁ | Interferer is reference signal at +1 MHz offset ^{1 5 4 6} | _ | -8.0 | _ | dB | | | | Interferer is reference signal at -1 MHz offset ^{1 5 4 6} | _ | -7.9 | _ | dB | | N ± 2 Alternate channel selectivity | C/I ₂ | Interferer is reference signal at +2 MHz offset ^{1 5 4 6} | _ | -46.5 | _ | dB | | | | Interferer is reference signal at -2 MHz offset ^{1 5 4 6} | _ | -49.9 | _ | dB | | N ± 3 Alternate channel selectivity | C/I ₃ | Interferer is reference signal at +3 MHz offset ^{1 5 4 6} | _ | -48.9 | _ | dB | | | | Interferer is reference signal at -3 MHz offset ^{1 5 4 6} | _ | -53.8 | _ | dB | | Selectivity to image frequency | C/I _{IM} | Interferer is reference signal at image frequency with 1 MHz precision 1 6 | _ | -48.3 | _ | dB | | Selectivity to image frequency ± 1 MHz | C/I _{IM_1} | Interferer is reference signal at image frequency +1 MHz with 1 MHz precision 1 6 | _ | -49.9 | _ | dB | | | | Interferer is reference signal at image frequency -1 MHz with 1 MHz precision ^{1 6} | _ | -46.5 | _ | dB | - 1.0.017% Bit Error Rate. - 2.0.1% Bit Error Rate. - 3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1 - 4. Desired signal -72 dBm. - 5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz. - 6. With allowed
exceptions. # 4.10 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate Unless otherwise indicated, typical conditions are: T_A = 25 °C, VDD = 3.0V. RF center frequency 2.45 GHz. Table 4.10. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|---------------------|--|-----|--------|-----|------| | Max usable receiver input level | SAT | Signal is reference signal ¹ | _ | 10 | _ | dBm | | Sensitivity | SENS | Signal is reference signal, 37 byte payload ² | _ | -106.7 | _ | dBm | | | | Signal is reference signal, 255 byte payload ¹ | _ | -106.4 | _ | dBm | | | | With non-ideal signals ³ ¹ | _ | -105.8 | _ | dBm | | Signal to co-channel interferer | C/I _{CC} | (see notes) ^{1 4} | _ | 0.9 | _ | dB | | N ± 1 Adjacent channel selectivity | C/I ₁ | Interferer is reference signal at +1 MHz offset ^{1 5 4 6} | _ | -13.6 | _ | dB | | | | Interferer is reference signal at -1 MHz offset ^{1 5 4 6} | _ | -13.4 | _ | dB | | N ± 2 Alternate channel selectivity | C/I ₂ | Interferer is reference signal at +2 MHz offset ^{1 5 4 6} | _ | -52.6 | _ | dB | | | | Interferer is reference signal at -2 MHz offset ^{1 5 4 6} | _ | -55.8 | _ | dB | | N ± 3 Alternate channel selectivity | C/I ₃ | Interferer is reference signal at +3 MHz offset ^{1 5 4 6} | _ | -53.7 | _ | dB | | | | Interferer is reference signal at -3 MHz offset ^{1 5 4 6} | _ | -59.0 | _ | dB | | Selectivity to image frequency | C/I _{IM} | Interferer is reference signal at image frequency with 1 MHz precision 1 6 | _ | -52.7 | _ | dB | | Selectivity to image frequency ± 1 MHz | C/I _{IM_1} | Interferer is reference signal at image frequency +1 MHz with 1 MHz precision 1 6 | _ | -53.7 | _ | dB | | | | Interferer is reference signal at image frequency -1 MHz with 1 MHz precision ^{1 6} | _ | -52.6 | _ | dB | - 1.0.017% Bit Error Rate. - 2.0.1% Bit Error Rate. - 3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1 - 4. Desired signal -79 dBm. - 5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz. - 6. With allowed exceptions. # 4.11 High-Frequency Crystal Table 4.11. High-Frequency Crystal | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |-----------------------------|-------------------------|------------------------------------|-----|------|-----|------| | Crystal frequency | f _{HFXTAL} | | _ | 38.4 | _ | MHz | | Initial calibrated accuracy | ACC _{HFXTAL} | | -10 | +/-5 | 10 | ppm | | Temperature drift | DRIFT _{HFXTAL} | Across specified temperature range | -20 | _ | 20 | ppm | # 4.12 Low-Frequency Crystal Table 4.12. Low-Frequency Crystal | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--------------------------------|-------------------------|-------------------|------|--------|-----|------| | Crystal frequency ¹ | f _{LFXTAL} | | _ | 32.768 | _ | kHz | | Temperature drift | DRIFT _{LFXTAL} | -40 °C to +85 °C | -100 | _ | 100 | ppm | | | | -40 °C to +105 °C | -150 | _ | 150 | ppm | # Note: # 4.13 Precision Low Frequency RC Oscillator (LFRCO) Table 4.13. Precision Low Frequency RC Oscillator (LFRCO) | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |-------------------------------|------------------------|---|------|--------|-----|------| | Nominal oscillation frequency | F _{LFRCO} | | _ | 32.768 | _ | kHz | | Frequency accuracy | F _{LFRCO_ACC} | Normal mode | -3 | _ | 3 | % | | | | Precision mode ¹ , across operating temperature range ² | -500 | _ | 500 | ppm | | Startup time | t _{STARTUP} | Normal mode | _ | 204 | _ | μs | | | | Precision mode ¹ | _ | 11.7 | _ | ms | | Current consumption | I _{LFRCO} | Normal mode | _ | 175 | _ | nA | | | | Precision mode ¹ , T = stable at 25 °C ³ | _ | 655 | _ | nA | - 1. The LFRCO operates in high-precision mode when CFG_HIGHPRECEN is set to 1. High-precision mode is not available in EM4. - 2. Includes \pm 40 ppm frequency tolerance of the HFXO crystal. - 3. Includes periodic re-calibration against HFXO crystal oscillator. ^{1.} Nominal frequency tolerance of the crystal is \pm 20 ppm. # 4.14 GPIO Pins Unless otherwise indicated, typical conditions are: VDD = 3.0 V. Table 4.14. GPIO Pins | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |-------------------------------------|------------------------|--|----------------|------|------------|------| | Leakage current | I _{LEAK_IO} | MODEx = DISABLED, VDD = 3.0
V | _ | 2.5 | _ | nA | | Input low voltage ¹ | V _{IL} | Any GPIO pin | _ | _ | 0.3 * VDD | V | | | | RESETn | _ | _ | 0.3 * DVDD | V | | Input high voltage ¹ | V _{IH} | Any GPIO pin | 0.7 * VDD | _ | _ | V | | | | RESETn | 0.7 * DVDD | _ | _ | V | | Hysteresis of input voltage | V _{HYS} | Any GPIO pin | 0.05 * VDD | _ | _ | V | | | | RESETn | 0.05 *
DVDD | _ | _ | V | | Output low voltage | V _{OL} | Sinking 20mA, VDD = 3.0 V | _ | _ | 0.2 * VDD | V | | | | Sinking 8mA, VDD = 1.62 V | _ | _ | 0.4 * VDD | V | | Output high voltage | V _{OH} | Sourcing 20mA, VDD = 3.0 V | 0.8 * VDD | | _ | V | | | | Sourcing 8mA, VDD = 1.62 V | 0.6 * VDD | _ | _ | V | | GPIO rise time | T _{GPIO_RISE} | VDD = 3.0V, C _{load} = 50pF, SLEW-
RATE = 4, 10% to 90% | _ | 8.4 | _ | ns | | | | VDD = 1.7V, C _{load} = 50pF, SLEW-
RATE = 4, 10% to 90% | _ | 13 | _ | ns | | GPIO fall time | T _{GPIO_FALL} | VDD = 3.0V, C _{load} = 50pF, SLEW-
RATE = 4, 90% to 10% | _ | 7.1 | _ | ns | | | | VDD = 1.7V, C _{load} = 50pF, SLEW-
RATE = 4, 90% to 10% | _ | 11.9 | _ | ns | | Pull up/down resistance | R _{PULL} | GPIO pull-up to VDD: MODEn = DISABLE, DOUT=1. GPIO pull-down to VSS: MODEn = WIRE-DORPULLDOWN, DOUT = 0. RESETn pin pull-up to DVDD. | 35 | 44 | 55 | kΩ | | Maximum filtered glitch width | T _{GF} | MODE = INPUT, DOUT = 1 | _ | 27 | _ | ns | | RESETn low time to ensure pin reset | T _{RESET} | | 100 | _ | _ | ns | ^{1.} GPIO input thresholds are proportional to the VDD pin. RESETn input thresholds are proportional to the internal DVDD supply, which is generated by the DC-DC converter. DVDD is equal to 1.8 V when DC-DC is active and bypassed to VDD when DC-DC is inactive. #### 4.15 Microcontroller Peripherals The MCU peripherals set available in BGM220P modules includes: - ADC: 12-bit at 1 Msps, 16-bit at 76.9 ksps - 16-bit and 32-bit Timers/Counters - · 24-bit Low Energy Timer for waveform generation - · 32-bit Real Time Counter - USART (UART/SPI/SmartCards/IrDA/I2S) - EUART (UART/IrDA) - I²C peripheral interfaces - · PDM interface - · 12 Channel Peripheral Reflex System For details on their electrical performance, consult the relevant portions of Section 4 in the SoC datasheet. To learn which GPIO ports provide access to every peripheral, consult Analog Peripheral Connectivity and Digital Peripheral Connectivity. # 4.16 Typical Performance Curves Typical performance curves indicate typical characterized performance under the stated conditions. #### 4.16.1 Antenna Radiation and Efficiency Typical BGM220P radiation patterns and efficiency for the on-board chip antenna under optimal operating conditions are plotted in the figures that follow. Antenna gain and radiation patterns have a strong dependence on the size and shape of the application PCB the module is mounted on, as well as on the proximity of any mechanical design to the antenna. Figure 4.3. Typical 2D Antenna Radiation Patterns and Efficiency Top Left: Phi 0°, Top Right: Phi 90°, Bottom Left: Theta 90°, Bottom Right: Radiation Efficiency vs Application Board GND Plane Width # 5. Reference Diagrams # 5.1 Network Co-Processor (NCP) Application with UART Host The BGM220P can be controlled over the UART interface as a peripheral to an external host processor. Typical power supply, programming/debug interface, and host interface connections are shown in the figure below. For more details, refer to AN958: Debugging and Programming Interfaces for Custom Designs. Figure 5.1. UART NCP Configuration # 5.2 SoC Application The BGM220P can be used in a stand-alone SoC configuration without an external host processor. Typical power supply and programming/debug interface connections are shown in the figure below. For more details, refer to AN958: Debugging and Programming Interfaces for Custom Designs. Figure 5.2. Stand-Alone SoC Configuration #### 6. Pin Definitions # 6.1 31-Pin PCB Module With LF Crystal Device Pinout Figure 6.1. 31-Pin PCB Module With LF Crystal Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.3 Alternate Function Table, 6.4 Analog Peripheral Connectivity, and 6.5 Digital Peripheral Connectivity. Table 6.1. 31-Pin PCB Module With LF Crystal Device Pinout | Pin Name | Pin(s) | Description | Pin Name | Pin(s) | Description | |----------|--------|-------------|----------|--------|-------------| | GND | 1 | Ground | PB04 | 2 | GPIO | | PB03 | 3 | GPIO | PB02 | 4 | GPIO | | PB01 | 5 | GPIO | PB00 | 6 | GPIO | | PA00 | 7 | GPIO | PA01 | 8 | GPIO | | PA02 | 9 | GPIO | PA03 | 10 | GPIO | | Pin Name | Pin(s) | Description | Pin Name | Pin(s) | Description | |----------|--------|----------------|----------|--------
---| | PA04 | 11 | GPIO | GND | 12 | Ground | | VDD | 13 | Power supply | PA05 | 14 | GPIO | | PA06 | 15 | GPIO | PA07 | 16 | GPIO | | PA08 | 17 | GPIO | PD03 | 18 | GPIO | | PD02 | 19 | GPIO | GND | 20 | Ground | | NC | 21 | Do not connect | PC00 | 22 | GPIO | | PC01 | 23 | GPIO | PC02 | 24 | GPIO | | PC03 | 25 | GPIO | PC04 | 26 | GPIO | | PC05 | 27 | GPIO | PC06 | 28 | GPIO | | PC07 | 29 | GPIO | RESETn | 30 | Reset Pin. The RESETn pin is pulled up to an internal DVDD supply. An external pull-up is not recommended. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. The RESETn pin can be left unconnected if no external reset switch or source is used. | | GND | 31 | Ground | | | | Figure 6.2. 31-Pin PCB Module With Precision LFRCO Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.3 Alternate Function Table, 6.4 Analog Peripheral Connectivity, and 6.5 Digital Peripheral Connectivity. Table 6.2. 31-Pin PCB Module With Precision LFRCO Device Pinout | Pin Name | Pin(s) | Description | Pin Name | Pin(s) | Description | |----------|--------|--------------|----------|--------|-------------| | GND | 1 | Ground | PB04 | 2 | GPIO | | PB03 | 3 | GPIO | PB02 | 4 | GPIO | | PB01 | 5 | GPIO | PB00 | 6 | GPIO | | PA00 | 7 | GPIO | PA01 | 8 | GPIO | | PA02 | 9 | GPIO | PA03 | 10 | GPIO | | PA04 | 11 | GPIO | GND | 12 | Ground | | VDD | 13 | Power supply | PA05 | 14 | GPIO | | Pin Name | Pin(s) | Description | Pin Name | Pin(s) | Description | |----------|--------|-------------|----------|--------|---| | PA06 | 15 | GPIO | PA07 | 16 | GPIO | | PA08 | 17 | GPIO | PD03 | 18 | GPIO | | PD02 | 19 | GPIO | GND | 20 | Ground | | PD01 | 21 | GPIO | PC00 | 22 | GPIO | | PC01 | 23 | GPIO | PC02 | 24 | GPIO | | PC03 | 25 | GPIO | PC04 | 26 | GPIO | | PC05 | 27 | GPIO | PC06 | 28 | GPIO | | PC07 | 29 | GPIO | RESETn | 30 | Reset Pin. The RESETn pin is pulled up to an internal DVDD supply. An external pull-up is not recommended. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. The RESETn pin can be left unconnected if no external reset switch or source is used. | | GND | 31 | Ground | | | | # **6.3 Alternate Function Table** A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows what functions are available on each device pin. **Table 6.3. GPIO Alternate Function Table** | GPIO | | | Alternate Function | | |------|-------------|---------------|----------------------|--| | PB03 | GPIO.EM4WU4 | | | | | PB01 | GPIO.EM4WU3 | | | | | PB00 | IADC0.VREFN | | | | | PA00 | IADC0.VREFP | | | | | PA01 | GPIO.SWCLK | | | | | PA02 | GPIO.SWDIO | | | | | PA03 | GPIO.SWV | GPIO.TDO | GPIO.TRACEDA-
TA0 | | | PA04 | GPIO.TDI | GPIO.TRACECLK | | | | PA05 | GPIO.EM4WU0 | | | | | PD02 | GPIO.EM4WU9 | | | | | PC00 | GPIO.EM4WU6 | GPIO.THMSW_EN | | | | PC05 | GPIO.EM4WU7 | | | | | PC07 | GPIO.EM4WU8 | | | | # 6.4 Analog Peripheral Connectivity Many analog resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are avaliable on each GPIO port. When a differential connection is being used Positive inputs are restricted to the EVEN pins and Negative inputs are restricted to the ODD pins. When a single ended connection is being used positive input is avaliable on all pins. See the device Reference Manual for more details on the ABUS and analog peripherals. Table 6.4. ABUS Routing Table | Peripheral | Signal | PA | | РВ | | PC | | PD | | |------------|---------|------|-----|------|-----|------|-----|------|-----| | | | EVEN | ODD | EVEN | ODD | EVEN | ODD | EVEN | ODD | | IADC0 | ana_neg | Yes | | ana_pos | Yes # 6.5 Digital Peripheral Connectivity Many digital resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are avaliable on each GPIO port. Table 6.5. DBUS Routing Table | Peripheral.Resource | | PORT | | | | | | |---------------------|-----------|-----------|-----------|-----------|--|--|--| | | PA | РВ | PC | PD | | | | | CMU.CLKIN0 | | | Available | Available | | | | | CMU.CLKOUT0 | | | Available | Available | | | | | CMU.CLKOUT1 | | | Available | Available | | | | | CMU.CLKOUT2 | Available | Available | | | | | | | EUARTO.CTS | Available | Available | Available | Available | | | | | EUARTO.RTS | Available | Available | Available | Available | | | | | EUARTO.RX | Available | Available | Available | Available | | | | | EUART0.TX | Available | Available | Available | Available | | | | | FRC.DCLK | | | Available | Available | | | | | FRC.DFRAME | | | Available | Available | | | | | FRC.DOUT | | | Available | Available | | | | | I2C0.SCL | Available | Available | Available | Available | | | | | I2C0.SDA | Available | Available | Available | Available | | | | | I2C1.SCL | | | Available | Available | | | | | I2C1.SDA | | | Available | Available | | | | | LETIMER0.OUT0 | Available | Available | | | | | | | LETIMER0.OUT1 | Available | Available | | | | | | | MODEM.ANT0 | Available | Available | Available | Available | | | | | MODEM.ANT1 | Available | Available | Available | Available | | | | | MODEM.ANT_ROLL_OVER | | | Available | Available | | | | | MODEM.ANT_RR0 | | | Available | Available | | | | | MODEM.ANT_RR1 | | | Available | Available | | | | | MODEM.ANT_RR2 | | | Available | Available | | | | | MODEM.ANT_RR3 | | | Available | Available | | | | | MODEM.ANT_RR4 | | | Available | Available | | | | | MODEM.ANT_RR5 | | | Available | Available | | | | | MODEM.ANT_SW_EN | | | Available | Available | | | | | MODEM.ANT_SW_US | | | Available | Available | | | | | MODEM.ANT_TRIG | | | Available | Available | | | | | MODEM.ANT_TRIG_STOP | | | Available | Available | | | | | MODEM.DCLK | Available | Available | | | | | | | Peripheral.Resource | PORT | | | | |---------------------|-----------|-----------|-----------|-----------| | | PA | РВ | PC | PD | | MODEM.DIN | Available | Available | | | | MODEM.DOUT | Available | Available | | | | PDM.CLK | Available | Available | Available | Available | | PDM.DAT0 | Available | Available | Available | Available | | PDM.DAT1 | Available | Available | Available | Available | | PRS.ASYNCH0 | Available | Available | | | | PRS.ASYNCH1 | Available | Available | | | | PRS.ASYNCH10 | | | Available | Available | | PRS.ASYNCH11 | | | Available | Available | | PRS.ASYNCH2 | Available | Available | | | | PRS.ASYNCH3 | Available | Available | | | | PRS.ASYNCH4 | Available | Available | | | | PRS.ASYNCH5 | Available | Available | | | | PRS.ASYNCH6 | | | Available | Available | | PRS.ASYNCH7 | | | Available | Available | | PRS.ASYNCH8 | | | Available | Available | | PRS.ASYNCH9 | | | Available | Available | | PRS.SYNCH0 | Available | Available | Available | Available | | PRS.SYNCH1 | Available | Available | Available | Available | | PRS.SYNCH2 | Available | Available | Available | Available | | PRS.SYNCH3 | Available | Available | Available | Available | | TIMER0.CC0 | Available | Available | Available | Available | | TIMER0.CC1 | Available | Available | Available | Available | | TIMER0.CC2 | Available | Available | Available | Available | | TIMER0.CDTI0 | Available | Available | Available | Available | | TIMER0.CDTI1 | Available | Available | Available | Available | | TIMER0.CDTI2 | Available | Available | Available | Available | | TIMER1.CC0 | Available | Available | Available | Available | | TIMER1.CC1 | Available | Available | Available | Available | | TIMER1.CC2 | Available | Available | Available | Available | | TIMER1.CDTI0 | Available | Available | Available | Available | | TIMER1.CDTI1 | Available | Available | Available | Available | | TIMER1.CDTI2 | Available | Available | Available | Available | | TIMER2.CC0 | Available | Available | | | | TIMER2.CC1 | Available | Available | | | | TIMER2.CC2 | Available | Available | | | | Peripheral.Resource | PORT | | | | | |---------------------|-----------|-----------|-----------|-----------|--| | | PA | РВ | PC | PD | | | TIMER2.CDTI0 | Available | Available | | | | | TIMER2.CDTI1 | Available | Available | | | | | TIMER2.CDTI2 | Available | Available | | | | | TIMER3.CC0 | | | Available | Available | | | TIMER3.CC1 | | | Available | Available | | | TIMER3.CC2 | | | Available | Available | | | TIMER3.CDTI0 | | | Available | Available | | | TIMER3.CDTI1 | | | Available | Available | | | TIMER3.CDTI2 | | | Available | Available | | | TIMER4.CC0 | Available | Available | | | | | TIMER4.CC1 | Available | Available | | | | | TIMER4.CC2 | Available | Available | | | | | TIMER4.CDTI0 | Available | Available | | | | | TIMER4.CDTI1 | Available | Available | | | | | TIMER4.CDTI2 | Available | Available | | | | | USART0.CLK | Available | Available | Available | Available | | | USART0.CS | Available | Available | Available | Available | | | USART0.CTS | Available | Available | Available | Available | | | USART0.RTS | Available | Available | Available | Available | | | USART0.RX |
Available | Available | Available | Available | | | USART0.TX | Available | Available | Available | Available | | | USART1.CLK | Available | Available | | | | | USART1.CS | Available | Available | | | | | USART1.CTS | Available | Available | | | | | USART1.RTS | Available | Available | | | | | USART1.RX | Available | Available | | | | | USART1.TX | Available | Available | | | | # 7. Design Guidelines # 7.1 Layout and Placement For optimal performance of the BGM220P, - Place the module aligned to the edge of the application PCB, as illustrated in the figures below. - · Leave the antenna clearance area void of any traces, components, or copper on all layers of the application PCB. - · Connect all ground pads directly to a solid ground plane. - · Place the ground vias as close to the ground pads as possible. - · Avoid plastic or any other dielectric material in contact with the antenna. Figure 7.1. Recommended Layout for BGM220P The figure below illustrates layout scenarios that will lead to severely degraded RF performance for the module. Figure 7.2. Non-Optimal Layout Examples The width of the GND plane to the sides the module will impact the efficiency of the on-board chip antenna. To achieve optimal performance, a GND plane width of 50 mm is recommended. See 4.16.1 Antenna Radiation and Efficiency for reference. #### 7.2 Proximity to Other Materials Avoid plastic or any other dielectric material in contact with the antenna. Conformal coating and other thin dielectric layers are acceptable directly on top of the antenna region, but this will also negatively impact antenna efficiency and reduce range. Any metallic objects in close proximity to the antenna will prevent the antenna from radiating freely. The minimum recommended distance of metallic and/or conductive objects is 10 mm in any direction from the antenna except in the directions of the application PCB ground planes. #### 7.3 Proximity to Human Body Placing the module in contact with or very close to the human body will negatively impact antenna efficiency and reduce range. # 8. Package Specifications ### 8.1 Dimensions Figure 8.1. Module Dimensions Note: All dimensions in millimeters (mm). # 8.2 PCB Land Pattern Figure 8.2. Recommended Land Pattern Note: All dimensions in millimeters (mm). ### 8.3 Package Marking The figure below shows the module markings engraved on the RF shield. Figure 8.3. BGM220P Top Marking ### **Mark Description** The package marking consists of: - BGM220Pxxxxxxx Part number designation - Model: BGM220Pxxx Model number designation - QR Code: YYWWMMABCDE - YY Last two digits of the assembly year. - WW Two-digit workweek when the device was assembled. - MMABCDE Silicon Labs unit code - YYWWTTTTTT - YY Last two digits of the assembly year. - WW Two-digit workweek when the device was assembled. - TTTTTT Manufacturing trace code. The first letter is the device revision. - Certification marks such as the CE logo, FCC and IC IDs, etc will be engraved on the grayed out area, according to regulatory body requirements. # 9. Soldering Recommendations It is recommended that final PCB assembly of the BGM220P follows the industry standard as identified by the Institute for Printed Circuits (IPC). This product is assembled in compliance with the J-STD-001 requirements and the guidelines of IPC-AJ-820. Surface mounting of this product by the end user is recommended to follow IPC-A-610 to meet or exceed class 2 requirements. ### **CLASS 1 General Electronic Products** Includes products suitable for applications where the major requirement is function of the completed assembly. ### **CLASS 2 Dedicated Service Electronic Products** Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures. ### **CLASS 3 High Performance/Harsh Environment Electronic Products** Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems. Note: General SMT application notes are provided in the AN1223 document. # 10. Tape and Reel BGM220P modules are delivered to the customer in cut tape (100 pcs) or reel (1000 pcs) packaging with the dimensions below. All dimensions are given in mm unless otherwise indicated. Figure 10.1. Carrier Tape Dimensions Figure 10.2. Reel Dimensions ### 11. Certifications This section details the regulatory certification status of BGM220P modules in various regions. BGM220P modules are also referred to by their model name BGM220P22A. The address for the module manufacturer and certification applicant is: SILICON LABORATORIES FINLAND OY Alberga Business Park, Bertel Jungin aukio 3, 02600 Espoo, Finland #### 11.1 Qualified Antennas BGM220P modules have been tested and certified with the on-board chip antenna. Performance characteristics for the chip antenna are presented in Table 3.1 Antenna Efficiency and Peak Gain on page 7 and 4.16.1 Antenna Radiation and Efficiency. ### 11.2 EU and UK - CE and UKCA The BGM220P modules have been tested against the relevant harmonized/designated standards and are in conformity with the essential requirements and other relevant requirements of the Radio Equipment Directive (RED) (2014/53/EU) and of the Radio Equipment Regulations (RER) (S.I. 2017/1206). Please notice that every end-product integrating a BGM220P module will need to perform the radio EMC tests on the whole assembly, according to the ETSI 301 489-x relevant standards. Furthermore, it is ultimately the responsibility of the manufacturer to ensure the compliance of the end-product as a whole. The specific product assembly is likely to have an impact to RF radiated characteristics, when compared to the bare module. Hence, manufacturers should carefully consider RF radiated testing with the final product assembly, especially taking into account the gain of the external antenna if any, and the possible deviations in the PSD, EIRP and spurious emissions measurements, as defined in the ETSI 300 328 standard. The modules are entitled to carry the CE and UKCA Marks, and a formal Declaration of Conformity (DoC) is available at the product web page which is reachable starting from https://www.silabs.com/. ### 11.3 USA - FCC This device complies with Part 15 of the FCC Rules when operating with the embedded antenna. Operation is subject to the following two conditions: - 1. This device may not cause harmful interference, and - 2. This device must accept any interference received, including interference that may cause undesirable operation. Any changes or modifications not expressly approved by Silicon Labs could void the user's authority to operate the equipment. # FCC RF Radiation Exposure Statement This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter meets the Mobile requirements at a distance of 20 cm and above from the human body, in accordance to the limit(s) exposed in the RF Exposure Analysis. This transmitter also meets the Portable requirements at distances equal or above those listed for convenience in Table 11.1 Minimum Separation Distances for SAR Evaluation Exemption on page 45. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures. ### **OEM Responsibilities to comply with FCC Regulations** This module has been tested for compliance to FCC Part 15. OEM integrators are responsible for testing their end-product for any additional compliance requirements needed with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). Additionally, investigative measurements and spot checking are strongly recommended to verify that the full system compliance is maintained when the module is integrated, in accordance to the "Host Product Testing Guidance" in FCC's KDB 996369 D04 Module Integration Guide V01. #### General Considerations This transmitter module is tested as a subsystem and its certification does not cover the FCC Part 15 Subpart B (unintentional radiator) rule requirement. However, such requirement is typically applicable to the final host. Thus, the final host will still need to be reassessed for compliance to this portion of rule requirements, if applicable. ### · Manual Information to the End User The OEM integrator has to be aware not to provide information to the end-user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warnings as shown in this manual. #### OEM/Host Manufacturer Responsibilities OEM / Host manufacturers are ultimately responsible for the compliance of the Host and Module. The final product must be reassessed against all the essential requirements of the FCC rule such as FCC Part 15 Subpart B before it can be placed on the US market. This includes reassessing the transmitter module for compliance with the Radio and EMF essential requirements of the FCC rules. This module must not be incorporated into any other device or system without retesting for compliance as multi-radio and combined equipment. # Separation - To meet the SAR exemption for portable conditions, the minimum separation distance indicated in Table 11.1 Minimum Separation Distances for SAR Evaluation Exemption on page 45 must be maintained between the human body and the radiator (antenna) at all times. - This transmitter module is tested in a standalone mobile RF exposure condition, and in case of any co-located radio transmitter being allowed to transmit
simultaneously, or in case of portable use at closer distances from the human body than those allowing the exceptions rules to be applied, a separate additional SAR evaluation will be required, ultimately leading to a Class II Permissive Change, or more rarely to a new grant. - Important Note: In the event that these conditions cannot be met, then for the FCC authorization to remain valid the final product will have to undergo additional testing to evaluate the RF exposure, and a permissive change will have to be applied. The evaluation (SAR) is in the responsibility of the end-product's manufacturer, as well as the permissive change that can be carried out with the help of the customer's own Telecommunication Certification Body typically acting as the grant holder's agent. # **End Product Labeling** BGM220P modules are labeled with their own FCC ID. If the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: # "Contains Transmitter Module FCC ID: QOQ-GM220P" Or ### "Contains FCC ID: QOQ-GM220P" The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. As long as all conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed. #### **Class B Device Notice** **Note:** This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - · Reorient or relocate the receiving antenna. - · Increase the separation between the equipment and receiver. - · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - · Consult the dealer or an experienced radio / TV technician for help. #### 11.4 ISED Canada #### **ISED** This radio transmitter (IC: 5123A-GM220P) has been approved by *Innovation, Science and Economic Development Canada (ISED Canada, formerly Industry Canada*) to operate with the embedded antenna and with the antenna type(s) listed in 11.1 Qualified Antennas, with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain listed, are strictly prohibited for use with this device. This device complies with ISED's license-exempt RSS standards. Operation is subject to the following two conditions: - 1. This device may not cause interference; and - 2. This device must accept any interference, including interference that may cause undesired operation of the device #### **RF Exposure Statement** Exception from routine SAR evaluation limits are given in RSS-102 Issue 5. The module meets the given requirements when the minimum separation distance to human body is as indicated in Table 11.1 Minimum Separation Distances for SAR Evaluation Exemption on page 45. RF exposure or SAR evaluation is not required when the separation distances from the human body are equal or above those stated in Table 11.1 Minimum Separation Distances for SAR Evaluation Exemption on page 45. If the separation distance is less than stated in Table 11.1 Minimum Separation Distances for SAR Evaluation Exemption on page 45. the OEM integrator is responsible for evaluating the SAR. ### **OEM Responsibilities to comply with IC Regulations** The module has been certified for integration into products only by OEM integrators under the following conditions: - The antenna must be installed such that a minimum separation distance as stated above is maintained between the radiator (antenna) and all persons at all times. - The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter. **Important Note:** In the event that these conditions cannot be met, the final product will have to undergo additional testing to evaluate the RF exposure in order for the ISED authorization to remain valid, and a permissive change will have to be applied with the help of the customer's own Telecommunication Certification Body typically acting as the certificate holder's agent. ### **End Product Labeling** The BGM220P module is labeled with its own IC ID. If the IC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: "Contains Transmitter Module IC: 5123A-GM220P" or ### "Contains IC: 5123A-GM220P" The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. As long as all the conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). ### CAN ICES-003 (B) This Class B digital apparatus complies with Canadian ICES-003. ### ISEDC (Français) Le présent émetteur radio (IC: 5123A-GM220P) a été approuvé par Innovation, Sciences et Développement Économique Canada (IS-ED Canada, anciennement Industrie Canada) pour fonctionner avec l'antenne intégrée et le ou les types d'antenne énumérés à la section 11.1 Qualified Antennas, avec le gain maximal admissible indiqué. Les types d'antenne non inclus dans cette liste, ayant un gain-supérieur au gain maximal indiqué, sont strictement interdits d'utilisation avec cet appareil. Ce composant est conforme aux normes RSS, exonérées de licence d'ISED. Son mode de fonctionnement est soumis aux deux conditions suivantes: - 1. Ce composant ne doit pas générer d'interférences. - 2. Ce composant doit pouvoir être soumis à tout type de perturbation y compris celle pouvant nuire à son bon fonctionnement. #### **Déclaration d'exposition RF** L'exception tirée des limites courantes d'évaluation SAR est donnée dans le document RSS-102 Issue 5. Les modèles BGM220P respectent les exigences d'exemption prévues lorsque la distance de séparation minimale entre le(s) antenne(s) et le corps humain est conforme aux valeurs indiquées dans le Table 11.1 Minimum Separation Distances for SAR Evaluation Exemption on page 45. La déclaration d'exposition RF ou l'évaluation DAS n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à celle indiquée ci-dessus. Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de procédé à une évaluation DAS. La déclaration d'exposition RF ou l'évaluation SAR n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à celle indiquée ci-dessus. Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de procédé à une évaluation SAR. ### Responsabilités des OEM pour une mise en conformité avec le Règlement du Circuit Intégré Le module a été approuvé pour l'intégration dans des produits finaux exclusivement réalisés par des OEM sous les conditions suivantes: - L'antenne doit être installée de sorte qu'une distance de séparation minimale indiquée ci-dessus soit maintenue entre le radiateur (antenne) et toutes les personnes avoisinante, ce à tout moment. - Le module émetteur ne doit pas être localisé ou fonctionner avec une autre antenne ou un autre transmetteur que celle indiquée plus haut. Tant que les deux conditions ci-dessus sont respectées, il n'est pas nécessaire de tester ce transmetteur de façon plus poussée. Cependant, il incombe à l'intégrateur OEM de s'assurer de la bonne conformité du produit fini avec les autres normes auxquelles il pourrait être soumis de fait de l'utilisation de ce module (par exemple, les émissions des périphériques numériques, les exigences de périphériques PC, etc.). Remarque Importante: Dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou co-implantation avec un autre émetteur), l'autorisation ISED n'est plus considérée comme valide et le numéro d'identification ID IC ne peut pas être apposé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera responsable de la réévaluation du produit final (y compris le transmetteur) et de l'obtention d'une autorisation ISED distincte. ### Étiquetage des produits finis Les modules BGM220P sont étiquetés avec leur propre ID IC. Si l'ID IC n'est pas visible lorsque le module est intégré au sein d'un autre produit, cet autre produit dans lequel le module est installé devra porter une étiquette faisant apparaître les référence du module intégré. Dans un tel cas, sur le produit final doit se trouver une étiquette aisément lisible sur laquelle figurent les informations suivantes: "Contient le module transmetteur: 5123A-GM220P" or ### "Contient le
circuit: 5123A-GM220P" L'intégrateur OEM doit être conscient qu'il ne doit pas fournir, dans le manuel d'utilisation, d'informations relatives à la façon d'installer ou de d'enlever ce module RF ainsi que sur la procédure à suivre pour modifier les paramètres liés à la radio. # **CAN ICES-003 (B)** Cet appareil numérique de classe B est conforme à la norme canadienne ICES-003. ### 11.5 Proximity to Human Body When using the module in an application where the radio is located close to the human body, the human RF exposure must be evaluated. FCC, ISED, and CE all have different standards for evaluating the RF exposure, and because of this, each standard requires a different minimum separation distance between the module and human body. Certification of BGM220P allows for the minimum separation distances detailed in the table below in portable use cases (less than 20 cm from human body). The module is approved for the mobile use case (more than 20 cm) without any need for RF exposure evaluation. Table 11.1. Minimum Separation Distances for SAR Evaluation Exemption | Certification | BGM220P22A | |---------------|--| | FCC | Bluetooth LE: 0 mm | | ISED | Bluetooth LE: 14 mm | | CE | The RF exposure must always be evaluated using the end-product when transmitting with power levels higher than 20 mW (13 dBm). | For FCC and ISED, using the module in end-products where the separation distance from the human body is smaller than that listed above is allowed but requires evaluation of the RF exposure in the final assembly and applying for a *Class 2 Permissive Change* or *Change of ID* to be applied to the existing FCC/ISED approvals of the module. For CE, RF exposure must be evaluated using the end-product in all cases when transmitting at more than the power level indicated in the table. **Note:** Placing the module in touch or very close to the human body will have a negative impact on the efficiency of the antenna thus a reduced range is to be expected. #### 11.6 Japan - MIC The BGM220P22A are certified in Japan with certification number 020-200011. It is the end-product manufacturer's responsibility to ensure that the module is configured to meet the limits documented in the formal certification test report available at https://www.silabs.com/. If needed, refer to the API reference manual(s) to learn how to configure the maximum RF TX power for the normal operations. Since September 1, 2014 it is allowed (and highly recommended) that a manufacturer who integrates a radio module in their host equipment places the certification mark and certification number on the outside of the host equipment. This combination of mark and number, and their relative placement, is depicted in figure 11.1, and depending on the size of the module it might also appear on the top shield markings of the radio module. The certification mark and certification number must be placed close to the text in the Japanese language which is provided below. This change in the Radio Law has been made in order to enable users of the combination of host and radio module to verify if they are actually using a radio device which is approved for use in Japan Certification Text to be Placed on the Outside Surface of the Host Equipment: 当該機器には電波法に基づく、技術基準適合証明等を受けた特定無線設備を装着している。 #### Translation of the text: "This equipment contains specified radio equipment that has been certified to the Technical Regulation Conformity Certification under the Radio Law." The "Giteki" marking shown in the figures below must be affixed to an easily noticeable section of the specified radio equipment. Note that additional information may be required if the device is also subject to a telecom approval. Figure 11.1. GITEKI Mark and ID Figure 11.2. GITEKI Mark #### 11.7 South Korea - KC The BGM220P22A modules have a RF certification for import and use in South-Korea. Certification number is: R-R-BGT-GM220P When integrating the RF-certified module, an end-product is exempted from doing the RF emission testing, as long as the recommended design guidance is followed, and the approved antennas are used. EMC testing, and any other relevant test, might still be required for full compliance. ### 11.8 Bluetooth Qualification The BGM220P modules are launched with a pre-qualified Bluetooth Low Energy RF-PHY Tested Component based on Core Specification 5.2 having Declaration ID of D044525 and QDID of 146980, and having a listing date of 2020-03-16. The BGM220P modules additionally have a pre-qualified Bluetooth Low Energy RF-PHY Tested Component based on Core Specification 5.3 having Declaration ID of D056804 and QDID of 178496, and having a listing date of 2021-11-12. Notice that the validity set by the SIG for Tested Components is currently of 3 years: during the product lifetime, Silicon Labs will reassess or re-qualify an RF-PHY Component as it expires, whenever applicable. In case of a re-qualification an RF-PHY Tested Component will come with a new DID and a new QDID, and these will be then reffered to in end-product listings. Newer DIDs and QDIDs can be discovered by using the search engine in the SIG's Launch Studio, or by asking Silicon Labs via the technical support platform. A module's RF-PHY Tested Component should be combined with the latest Wireless Gecko Link Layer and Host pre-qualified Components by Silicon Labs, when in the process of qualifying an end-product embedding the BGM220P via the SIG's Launch Studio. # 12. Revision History #### **Revision 1.1** October, 2022 - Updated Regulatory Certifications in 1. Feature List to include UKCA. - Updated direction finding language in 2. Ordering Information. - Added kits available for evaluation in 2. Ordering Information. - Added RESETn low time to ensure pin reset (T_RESET) specification to Table 4.14 GPIO Pins on page 20. - Added note in 8.1 Dimensions and 8.2 PCB Land Pattern. - · Updated 8.3 Package Marking. - Updated 11.2 EU and UK CE and UKCA. - Updated wording for 11.8 Bluetooth Qualification. ### **Revision 1.0** June, 2020 - Figure 3.1 BGM220P Block Diagram on page 6: Clarified that LF XTAL only included in BGM220PC22HNAx device. - Updated 4.2.1 DC-DC Operating Limits to relax lifetime safe operating region. - Updated 5. Reference Diagrams to mark PTI interface as recommended in figures. - · Updated 4. Electrical Characteristics with latest characterization results and limits. - · Updated 11. Certifications with final certification details. #### Revision 0.5 March, 2020 - · Updated 4. Electrical Characteristics with latest characterization results. - · In the front page block diagram, updated the lowest energy mode for LETIMER. - Update part numbers in 2. Ordering Information to reflect new ordering code scheme. - · In 2. Ordering Information, added note about referencing by family, model, or ordering code. - Added supply voltage, crystal frequencies and RF frequencies to Figure 3.1 BGM220P Block Diagram on page 6. - Added certification sections: , 11.6 Japan MIC and 11.7 South Korea KC. - Updated 8.3 Package Marking with latest revision. - · Added section 10. Tape and Reel. - · Added section 5. Reference Diagrams. ### Revision 0.1 August, 2019 Initial release. **IoT Portfolio** www.silabs.com/IoT **SW/HW** www.silabs.com/simplicity **Quality** www.silabs.com/quality **Support & Community** www.silabs.com/community ### Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these term ### Trademark Information Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadio®, Cecko®, Gecko®, Gecko OS, Gecko OS Studio, Precision32®,
Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA