

High-performance Video Signal Switchers

Ultra Wide Band Triple Circuits Video Signal Switchers

BA7657F,BH7659FS

No.11066EAT03

Description

The BA7657F, and BH7659FS are ICs that have been developed for use in PC monitors, HDTVs (high definition televisions), and other high-resolution display devices. In addition to their wide-range switching circuits for RGB signals, HD signals, and VD signals, the A7657F feature a separation (BUNRI) circuit for the synchronization signal that is superposed on the G signal, while the BH7659FS features an on-chip switch for I²C bus signals (SDA and SCL). These ICs can be used to simplify the input block configuration in advanced display devices.

Features

- 1) Operates on 5 V single power supply.
- 2) Built-in wide-range RGB signal switches.

(BA7657F :fc = 230 MHz) (BH7659FS:fc = 250 MHz)

- 3) Built-in switching circuit for HD signal and VD signal.
- 4) Built-in separation (BUNRI) circuit for synchronization signal superposed on G signal. (BA7657F)
- 5) Built-in switch for I^2C bus signals (SDA and SCL). (BH7659FS)
- 6) Built-in power saving function. (BH7659FS)

Applications

PC monitors, Plasma displays, LCD monitors, and Other devices that use wide-range RGB signal switching.

•Line up matrix

Parameter	BA7657F	BH7659FS	
Circuit current (mA)	35	25	
Circuit current during low-power mode (mA)	-	14	
RGB signal SW block frequency characteristics (MHz)	230	250	
Synchronization signal SW block circuit configuration	2 digital switching circuits	4 CMOS analog switching circuits	
Synchronization signal separation circuit	~	_	
Package	SOP24	SSOP-A32	

●Absolute Maximum Ratings(Ta=25°C)

Parameter		Symbol	Ratings	Unit
Supply voltage		Vcc	8.0	V
Dewer dissinction	BA7657F	Pd	550	mW
Power dissipation	BH7659FS	Pu	800	TTVV
Operating temperatu	re	Topr	-25~+75	°C
Storage temperature		Tstg	-55~+125	°C
V Deretings is done at E E				

* Deratings is done at 5.5mW/°C (BA7657F), 8mW/°C (BA7659FS) above Ta=25°C.

●Operating Range(Ta=25°C)

Parameter	Symbol		Ratings		Unit
Falameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V

Electrical characteristics

OBA7657F(Unless otherwise noted, Ta=25°C, Vcc=5.0V)

Parameter	Symbol		Limits		Unit	Conditions
	-	Min.	Тур.	Max.		Conditions
Circuit current	ICC	20	35	50	mA	_
〈Analog SW block〉						
Maximum output level	Vom	2.8	_	—	VP-P	f=1kHz
Voltage gain	Gv	-1.0	-0.5	0	dB	f=1MHz,VIN=1VP-P
Input pin voltage gain differential	∆Gvi	-0.2	0	0.2	dB	f=1MHz,VIN=1VP-P
Inter block voltage gain differential	Gvв	-0.2	0	0.2	dB	f=1MHz,VIN=1VP-P
Input pin cross talk1	CTI1	—	-50	-40	dB	f=10MHz,VIN=1VP-P
Interblock crosstalk1	CTB1	—	-50	-40	dB	f=10MHz,VIN=1VP-P
⟨Digital SW block⟩			1	1	·	
"H" level input voltage	Vін	1.8	_	_	V	_
"L" level input voltage	VIL	_	_	1.2	V	_
"H" level input current	Ін	80	100	130	μA	VIN=5.0V
"L" level input current	lı∟	-3	-1	_	μA	VIN=0V
Rise time	TR	_	30	50	ns	_
Fall time	TF	_	30	50	ns	-
Rise delay time	Trd	—	50	80	ns	-
Fall delay time	TFD	_	30	50	ns	-
"H" level output voltage	Vон	3.0	3.7	_	V	-
"L" level output voltage	Vol	_	0.2	0.4	V	-
"H" level output current	Іон	-400	_	_	μA	-
"L" level output current	IOL	5	_	_	mA	_
Synchronization signal separation	block〉		I	I		
Minimum SYNC separation level	VSMin.	-50	_	50	mVp-p	_
"H" level output voltage	Vон	4.5	5.0	_	V	-
"L" level output voltage	Vol	_	0.2	0.5	V	_
"L" level output current	IOL	2	_	_	mA	_
Rise time	Tr	_	80	130	ns	_
Fall time	TF	_	30	80	ns	_
Rise delay time	Trd	_	100	150	ns	_
Fall delay time	TFD	_	100	150	ns	_
<control block=""></control>			ı	ı	ı <u> </u>	1
"H" level input voltage	Vін	1.8	_	_	V	_
"L" level input voltage	VIL	—	-	1.2	V	_
"H" level input current	Ін	80	100	130	μA	_
"L" level input current	lı∟	-3	-1	-	μA	_

OBH7659FS(Unless otherwise noted, Ta=25°C, Vcc=5.0V)

Parameter	Symbol	Limits		Unit	Conditions	
Farameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
<pre><entire device=""></entire></pre>						
Circuit current	ICc	15	25	35	mA	_
Circuit current during power save	IPSV	7	14	22	mA	PS="H"
<pre> < R,G,B video SW ></pre>						
Voltage gain	Gv	-1.0	-0.5	0	dB	f=10MHz
Interchannel relative gain	∆Gvc	-0.5	0	0.5	dB	f=10MHz
Interblock relative gain	ΔGvb	-0.5	0	0.5	dB	f=10MHz
Output dynamic range	Vом	2.6	_	_	VP-P	f=1kHz
⟨C-MOS analog SW⟩						·
On-resistance	Ron	-	200	400	Ω	VIN=2.5V
Interchannel ON resistance differential	ΔRon	—	20	40	Ω	VIN=2.5V
Interchannel cross talk	СТ	_	-70	-55	dB	f=150kHz
Transmission delay time	tD	_	20	_	ns	RL=100 Ω ,CL=50pF
(Control block)						•
"H" level voltage	Vн	3.5	-	-	V	_
"L" level voltage	VL	_	_	1.5	V	_

•Guaranteed design parameters

OBA7657F(Unless otherwise noted, Ta=25°C, Vcc=5.0V)

Deremeter	Symbol	Limits		Linit	O an dition o	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
⟨Analog SW block⟩						
Input pin cross talk 2	CTI2	—	-30	-15	dB	f=230kHz, VIN=1VP-P
Interblock cross talk 2	CTB2	—	-30	-15	dB	f=230MHz,VIN=1VP-P
Frequency characteristic	Gf	-6	-3	-1	dB	f=1MHz/230MHz, VIN=1VP-P
Input pin frequency differential	∆Gfl	-1	0	+1	dB	f=1MHz/100MHz, VIN=1VP-P
Interblock frequency characteristic differential	∆GfB	-1	0	+1	dB	f=1MHz/100MHz, VIN=1VP-P
<pre>SYNC separation block></pre>						
SYNC separation frequency	fH-R	200	_	_	kHz	Input waveform *1
SYNC separation pulse width 1	pwH1	3.0	_	-	μs	Input waveform ^{**2} fH=20kHz
SYNC separation pulse width 2	pwH2	0.5	_	-	μs	Input waveform ^{**2} fH=100kHz
SYNC separation pulse width 3	pwH3	0.3	_	_	μs	Input waveform ^{**2} fH=200kHz
SYNC separation level 1	VS1	300	_	-	μs	Input waveform ^{**3} fH=20kHz
SYNC separation level 2	VS2	100	_	-	μs	Input waveform ^{**3} fH=100kHz
SYNC separation level 3	VS3	60	_	-	μs	Input waveform **3 fH=200kHz

(Input waveform)

 $\%1\,\text{VS}$ and pwH are variable. $\,$ VS and pwH are inter-related. See the characteristics diagram.

 \times 2 VS = 130 mW and pwH are variable.

%3 pwH = 1 μs and VS are variable.

Period of horizontal synchronization signal

OBH7659FS(Unless otherwise noted, Ta=25°C, Vcc=5.0V)

Parameter	Symbol		Limits			Quanditience
Falameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
<pre> (R/G/B video SW)</pre>						
Frequency characteristics 1	f1	-3.0	0	+1.0	dB	f=50MHz
Frequency characteristics 2	f2	-6.0	-3	-1.0	dB	f=250MHz
Interchannel relative frequency characteristics	∆fc	-0.5	0	0.5	dB	f=50MHz
Interblock relative frequency characteristics	∆fв	-0.5	0	0.5	dB	f=50MHz
Interchannel cross talk 1	CTC1	_	-50	-35	dB	f=50kHz
Interchannel cross talk 2	CTc2	_	-30	-15	dB	f=250MHz
Interblock cross talk 1	CT _{B1}	_	-50	-35	dB	f=50MHz
Interblock cross talk 2	CT _{B2}	_	-30	-15	dB	f=250MHz

Block diagram OBA7657F

OBH7659FS

Pin descriptions (BA7657F)

OBA7657F Pin Reference Pin name Equivalent circuit Function No. potential Vcc 1 Red1 Input 2-channel switching of R, Green1 Input 3 3.7V 6.8k G, and B signals. 100 5 7 Blue1 Input when selected Select between: Red2 Input 0V CTL: H input1 9 Green2 Input when not selected 21k CTL: L input2 11 Blue2 Input ≳ 1k Vcc 50 Λ Output pins for RGB signals. 15 Blue output Insert resistance from 100 to 19 Green output 2.0V 300Ω near the pins to suppress 21 Red output f peaks at high frequencies. 5m/ 400 < 77 35ł CTL pins Select between: H≧1.8V 16 Control CTL: H input1 L≦1.2V CTL: L input2 15 Vcc 2-channel switching of VD and 35k 12 VD1 input HD signals. 13 VD2 input H≧1.8V 1k 12,13 Select between: 23, 24pin 23 HD2 input L≦1.2V CTL: H input1 24 H_D1 input **本** 50k 15k CTL: L input2 Vcc 2.0k ₹100 Output pins for vertical synchronization signal (VD) 14 VD output Vон≧3.0V 22 HD output VoL≦10.5V And horizontal synchronization 15k 14,22pin signal (HD). 1.2k < 660 $\frac{1}{2}$

OBA765	57F			
Pin No.	Pin name	Reference potential	Equivalent circuit	Function
18	Composite Video input	2.5V	$18pin \bigcirc \frac{100}{100} \odot \frac{100}{100} \bigcirc \frac{100}{100} \odot \frac{100}$	Input pin for composite signal (Sync on Green).
2	HD Sync Signal detector	_	from HD out to sync sepa	This pin is used to detect whether or not the HD signal is being input. When the HD signal is being input, the synchronization signal separation circuit is stopped.
17	Composite sync output	_	V∞ 17pin □ 7// ///	Synchronization signal output pin Synchronization separation is performed for the input signal from pin 18 if the HD signal is not being input.
20	Vcc	5V	_	Insert a decoupling capacitor near the pin.
4 6 8	GND	0V	_	Use as large a GND pattern area as possible.

OBA7657F

●Pin descriptions (BH7659FS) OBH7659FS

Pin NO	Pin name	Reference potential	Equivalent circuit	Function
1 3 5 7 9 11	R chroma signal input pin A (RINA) G chroma signal input pin A (GINA) B chroma signal input pin A (BINA) R chroma signal input pin B (RINB) G chroma signal input pin B (GINB) B chroma signal input pin B (BINB)	3.5V when selected 0V when not selected		RGB signals are switched in two channels. When selected by SW, the DC potential is approximately 3.5V, and when not selected, the DC potential is about 0 V.
27 29 31	B chroma signal input pin (BOUT) G chroma signal input pin (GOUT) R chroma signal input pin (ROUT)	1.85V		Power save function is used when PSH pin is set to high level.
8 13	Power save input pin (PSH) Control input pin (CTL)	0V	Vcc ♥	PSH Pin Power save off ≤ 1.5 V Power save on ≥ 3.5 V CTL Pin Input A ≥ 3.5 V Input B ≤ 1.5 V

OBH765	973			
Pin No.	Pin name	Reference potential	Equivalent circuit	Function
14 15 16 17 18 19 20 22 23 24 25 26	VD signal input pin A (VDINA) VD signal input pin B (VDINB) VD signal output pin (VDOUT) SDA signal output pin (SDAIO) SDA signal input pin B (SDAIOB) SDA signal input pin A (SDAIOA) SCL signal input pin A (SCLIOB) SCL signal output pin SCL signal output pin (SCLIOA) SCL signal output pin (SCLIO) HD signal input pin B (HDINB) HD signal input pin A (HDINA) HD signal output pin	0V		VD, HD, SDA, and SCL are switched in two channels. Bidirectional access (I/O) is enabled by the CMOS analog SW.
20	(HDOUT)			
2	R GND pin (RGND)	0V	_	This is the GND pin for the R video SW block.
4	G GND pin (GGND)	0V	_	This is the GND pin for the B video SW block.
6	B GND pin (BGND)	0V	_	This is the GND pin for the G video SW block , C-MOS SW block.
10	C-MOS supply voltage pin (VDD)	5V	_	This is the VDD pin for the C-MOS SW block.
28	B supply voltage pin (BVcc)	5V	_	This is the Vcc pin for the B video SW block
30	G supply voltage pin (GVcc)	5V	_	This is the Vcc pin for the G video SW block
32	R supply voltage pin (RVcc)	5V	_	This is the Vcc pin for the R video SW block

Description of operations

OBA7657F

1) Analog SW block

Two channels of RGB signals can be switched. IN1 can be selected when high-level voltage is applied to the CTL pin, and IN2 can be selected when low level voltage is applied.

2) Digital SW block

This block switches between two channels of HD and VD ynchronization signals. HD and VD synchronization signals are output for IN1 when high-level voltage is applied to the CTL pin, and these signals are output for IN2 when a low-level voltage is applied to the CTL pin.

3) Synchronization signal separation block

This block separates composite signals (Sync on Green) and synchronization signals and outputs positive-electrode composite synchronization signals. When an HD signal is being input, the synchronization signal detector operates and stops the synchronization signal separation circuit. A low-level output voltage is used for output. The time at which the synchronization signal separation circuit will be stopped can be set using external time constants for the circuit detection pin.

I/O relations

Input			Output		
HD	VD	Sync on Green	HD	VD	Composite Sync
—		0	—	—	0
0	-	0	0	_	_
—	0	0	—	0	0
0	0	0	0	0	-
0	-	_	0	_	_
—	0	-	—	0	-
0	0	—	0	0	—

OBH7659FS

1) Analog SW block

R, G, and B chroma signals are switched in two channels. INA is selected by applying a high-level voltage to the CTL pin, and INB is selected by applying a low-level voltage. When the power save pin (pin 8) is set to high level, the current to the SW block's output transistors is reduced to lower the circuit current. Even during low power mode, signal switching can be performed normally as long as there is no drop in frequency characteristics.

2) CMOS analog SW block

SDA and SDC signals are switched via an I^2C bus to handle two channels of HD and VD synchronization signals, and to exchange information bidirectional between a computer and a monitor. The switching circuits used by this IC handle are configured as CMOS analog switches in order to handle I^2C BUS signals and to transmit input and output signals bidirectional. (ON resistance: Ron 200 Ω typ.)

Application circuit OBA7657F

OBH7659FS

Reference data OBA7657F

Fig.5 Frequency characteristic

Fig.6 Interchannel crosstalk

Fig.7 Input/output delay timevs. Temperatur

Fig.8 Minimum SYNC separation characteristic

Fig.9 Quiescent current vs. Temperature

OBH7659FS

Fig.10 Circuit current vs. Supply voltage

Fig.11 interchannel crosstalk

Fig.12 Frequency characteristics

Notes for use

OBA7657F, BH7659FS

- 1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
- 2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
- 3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.

4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.

- Thermal design Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.
- 6) Shorts between pins and misinstallation When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.
- 7) Operation in strong magnetic fields Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

OBA7657F

8) External resistance for analog SW block

The frequency characteristics of analog switches vary according to the output load capacity. Set an external resistance value of R0 to keep frequency characteristics as flat as possible.

- 9) Polarity of input coupling capacitor When this IC is switched, variation is approximately 3.7 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.
- 10) High-frequency characteristics of input coupling capacitor Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately 0.01 µF) in parallel.
- 11) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.

12) Switching speed

Since this IC changes the DC voltage of input pins when switching, some time is required for switching. The amount of switching time can be determined by time constants that are in turn determined by the capacity of the coupling capacitor connected to the input pin, and the IC's internal input resistance. When using the recommended input coupling capacitor whose capacitance is 47 µF, the switching time is approximately 0.5 seconds.

OBH7659FS

- 13) External resistance for analog SW block The frequency characteristics of analog switches vary according to the output load capacity. Set an external resistance value of R0 to keep frequency characteristics as flat as possible.
- 14) Polarity of input coupling capacitor When this IC is switched, variation is approximately 3.5 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.
- 15) High frequency characteristics of input coupling capacitor Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately 0.01 μF) in parallel.

16) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.

Ordering part number

SOP24

SSOP-A32

	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conter	nt specified herein is subject to change for improvement without notice.
"Products	nt specified herein is for the purpose of introducing ROHM's products (hereinafte '). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein ne standard usage and operations of the Products. The peripheral conditions mus nto account when designing circuits for mass production.
However,	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such n, ROHM shall bear no responsibility for such damage.
examples implicitly, a other parti	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o any license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the h technical information.
equipment	cts specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	HM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard e possibility of physical injury, fire or any other damage caused in the event of the ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHM no responsibility whatsoever for your use of any Product outside of the prescribed ot in accordance with the instruction manual.
system wh may result instrument controller of the Pro	icts are not designed or manufactured to be used with any equipment, device of hich requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica c, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- or other safety device). ROHM shall bear no responsibility in any way for use of an ducts for the above special purposes. If a Product is intended to be used for an ial purpose, please contact a ROHM sales representative before purchasing.
be control	nd to export or ship overseas any Product or technology specified herein that ma led under the Foreign Exchange and the Foreign Trade Law, you will be required to tense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/