

Product / Process Change Notification (PCN)

909 N Sepulveda Blvd., Suite 230, El Segundo, CA 90245

Notification Date: March 28, 2022

PCN Number: PCN220301

PCN Title: Material and Process Change

Product Identification:

The following released to sales part numbers will be impacted by this change:

EPC Part Number EPC2019

Description of Change:

As part of continuous improvement efforts, EPC has made process modifications to the manufacturing steps that have improved the process control and manufacturability of the listed impacted devices. These changes will have no impact to form, fit, or function of the devices. However, there are minor changes to the datasheet specification as detailed below. Please consult EPC for applications support if needed.

This change will be in effect for devices shipping with date code of D2131 or later.

Comparison of Original Datasheet Specification vs. New Process Datasheet:

	Maximum Ratings			Change from original datasheet
V _{DS} -	Drain-to-Source Voltage (Continuous)	200		No change
	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150 °C)	240	V	Added specification
	Continuous (T _A = 25 °C)	8.5	_	No change
I _D	Pulsed (25 °C, T _{PULSE} = 300 μs)	45	Α	Increased from 42 A
\/	Gate-to-Source Voltage	6	\	No change
V _{GS}	Gate-to-Source Voltage	-4	٧	No change
T_J	Operating Temperature	-40 to 150	· C	No change
T_{STG}	Storage Temperature	-40 to 150	١	No change

	Stati	Change from animinal datashash					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Change from original datasheet
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_{D} = 125 \mu\text{A}$	200			٧	No change
I _{DSS}	Drain Source Leakage	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$		1	100	μA	typical was 20 μA
I _{GSS}	Gate-to-Source Forward Leakage	V _{GS} = 5 V, T _J = 25 °C		0.001	2.5	mΑ	typical was 0.8 mA
	Gate-to-Source Reverse Leakage	V_{GS} = -4 V, T_J = 25 °C		1	100	μA	typical was 20 μA
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1.5 \text{ mA}$	8.0	1.4	2.5	٧	No change
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_{D} = 7 \text{ A}$		22	42	mΩ	typical was 36, max was 50
V_{SD}	Source-to-Drain Forward Voltage	$I_S = 0.5 \text{ A, } V_{GS} = 0 \text{ V}$		2		٧	typical was 1.8 V
# Define	# Defined by design. Not subject to production test.						

Telephone: 310.615.0280; Fax: 310.615.0284 Page 1

Product / Process Change Notification (PCN)

909 N Sepulveda Blvd., Suite 230, El Segundo, CA 90245

Dynamic Characteristics [#]							Change from original datasheet	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Change from original datasneet	
C _{ISS}	Input Capacitance			254	288		typical was 200 pF, max was 270 pF	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		1.3				typical was 0.7 pF
Coss	Output Capacitance			135	163		typical was 110 pF, max was 150 pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 1)	V 04-100VV 0V		156		pF	new specification	
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 2)	$V_{DS} = 0$ to 100 V, $V_{GS} = 0$ V		201			new specification	
R_G	Gate Resistance			0.4		Ω	No change	
Q_G	Total Gate Charge	$V_{DS} = 100 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 7 \text{ A}$		2.4	2.9		typical was 1.8 nC, max was 2.5 nC	
Q_{GS}	Gate to Source Charge			8.0			typical was 0.6 nC	
Q_{GD}	Gate to Drain Charge	$V_{DS} = 100 \text{ V}, I_{D} = 7 \text{ A}$		0.6		пC	typical was 0.35 nC	
Q _{G(TH)}	Gate Charge at Threshold					nC	typical was 0.4 nC	
Qoss	Output Charge	V _{DS} = 100 V, V _{GS} = 0 V		20	24	1		typical was 18 nC, max was 23 nC
Q_{RR}	Source-Drain Recovery Charge			0			No change	
# Define	# Defined by design. Not subject to production test.							

Last	Time	Bu	/ :
------	-------------	----	------------

N/A

Samples

Contact EPC

Information Request

If there are any questions, comments or information required regarding this PCN please contact your local EPC Sales Representative.

EPC CONSIDERS THIS CHANGE APPROVED IF WE DO NOT RECEIVE ANY WRITTEN OBJECTION WITHIN 30 DAYS FROM NOTIFICATION DATE OF THIS PCN LETTER.

EPC Approval:

This PCN has been reviewed and approved by EPC's Quality & Reliability department:

Quality Director:	Yanping Ma	
Date:	03/28/2022	

Telephone: 310.615.0280; Fax: 310.615.0284 Page 2