 High-Speed, Low-Skew 1-to-18 Clock Buffer for Synchronous DRAM (SDRAM) Clock 		L PACKAG (TOP VIEW)	
Buffering Applications	Ę		Լ
 Output Skew, t_{sk(o)}, Less Than 250 ps 	NC		
 Pulse Skew, t_{sk(p)}, Less Than 500 ps 			
 Supports up to Four Unbuffered SDRAM 	V _{CC}		V _{CC}
Dual Inline Memory Modules (DIMMs)	1Y0 1Y1		4Y3
 I²C Serial Interface Provides Individual 	GND		4Y2 GND
Enable Control for Each Output			
-	1Y2		4Y1
• Operates at 3.3 V	1Y3		4Y0
Distributed V _{CC} and Ground Pins Reduce	GND		GND
Switching Noise	_		OE OE
 100-MHz Operation 	Vcc		I v _{cc}
 ESD Protection Exceeds 2000 V Per 	2Y0		3Y3
MIL-STD-883, Method 3015	2Y1	14 35] 3Y2
 Packaged in 48-Pin Shrink Small Outline 	GND[15 34] GND
(DL) Package	V _{CC}		I ∨ _{CC}
	2Y2		3Y1
description	2Y3] 3Y0
The CDC318A is a high-performance clock buffer	GND		GND
designed to distribute high-speed clocks in PC	V _{CC}		V _{CC}
applications. This device distributes one input (A)	5Y0		5Y1
to 18 outputs (Y) with minimum skew for clock	GND		
distribution. The CDC318A operates from a 3.3-V	V _{CC}		GND
	SINALAL	24 25	

NC - No internal connection

24

SDATA

25 SCLOCK

This device has been designed with consideration for optimized EMI performance. Depending on the application layout, damping resistors in series to the clock outputs (like proposed in the PC100 specification) may not be needed in most cases.

power supply. It is characterized for operation

from 0°C to 70°C.

The device provides a standard mode (100K-bits/s) I^2C serial interface for device control. The implementation is as a slave/receiver. The device address is specified in the I^2C device address table. Both of the I^2C inputs (SDATA and SCLOCK) are 5-V tolerant and provide integrated pullup resistors (typically 140 k Ω).

Three 8-bit I²C registers provide individual enable control for each of the outputs. All outputs default to enabled at powerup. Each output can be placed in a disabled mode with a low-level output when a low-level control bit is written to the control register. The registers are write only and must be accessed in sequential order (i.e., random access of the registers is not supported).

The CDC318A provides 3-state outputs for testing and debugging purposes. The outputs can be placed in a high-impedance state via the output-enable (OE) input. When OE is high, all outputs are in the operational state. When OE is low, the outputs are placed in a high-impedance state. OE provides an integrated pullup resistor.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

CDC318A 1-LINE TO 18-LINE CLOCK DRIVER WITH I²C CONTROL INTERFACE

SCAS614A - SEPTEMBER 1998 - REVISED JUNE 2002

FUNCTION TABLE							
INPUTS			OUTPUTS				
OE	Α	1Y0–1Y3	2Y0–2Y3	3Y0-3Y3	4Y0-4Y3	5Y0–5Y1	
L	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	
Н	L	L	L	L	L	L	
Н	Н	н†	H‡	н†	Нţ	Н†	

[†] The function table assumes that all outputs are enabled via the appropriate I²C configuration register bit. If the output is disabled via the appropriate configuration bit, then the output is driven to a low state, regardless of the state of the A input.

logic diagram (positive logic)

Terminal Functions

· ·	TERMINAL		
NAME	NO.	I/O	DESCRIPTION
1Y0-1Y3	4, 5, 8, 9	0	3.3-V SDRAM byte 0 clock outputs
2Y0-2Y3	13, 14, 17, 18	0	3.3-V SDRAM byte 1 clock outputs
3Y0-3Y3	31, 32, 35, 36	0	3.3-V SDRAM byte 2 clock outputs
4Y0-4Y3	40, 41, 44, 45	0	3.3-V SDRAM byte 3 clock outputs
5Y0-5Y1	21, 28	0	3.3-V clock outputs provided for feedback control of external phase-locked loops (PLLs)
А	11	I	Clock input
OE	38	I	Output enable. When asserted, OE puts all outputs in a high-impedance state. A nominal 140 -k Ω pullup resistor is internally integrated.
SCLOCK	25	I	I ² C serial clock input. A nominal 140-k Ω pullup resistor is internally integrated.
SDATA	24	I/O	Bidirectional I ² C serial data input/output. A nominal 140-k Ω pullup resistor is internally integrated.
GND	6, 10, 15, 19, 22, 26, 27, 30, 34, 39, 43		Ground
NC	1, 2, 47, 48		No internal connection. Reserved for future use.
VCC	3, 7, 12, 16, 20, 23, 29, 33, 37, 42, 46		3.3-V power supply

I²C DEVICE ADDRESS

A7	A6	A5	A4	A3	A2	A1	A0 (R/W)
Н	Н	L	Н	L	L	Н	—

I²C BYTE 0-BIT DEFINITION[†]

BIT	DEFINITION	DEFAULT VALUE
7	2Y3 enable (pin 18)	Н
6	2Y2 enable (pin 17)	Н
5	2Y1 enable (pin 14)	Н
4	2Y0 enable (pin 13)	Н
3	1Y3 enable (pin 9)	Н
2	1Y2 enable (pin 8)	Н
1	1Y1 enable (pin 5)	Н
0	1Y0 enable (pin 4)	Н

[†] When the value of the bit is high, the output is enabled. When the value of the bit is low, the output is forced to a low state. The default value of all bits is high.

BIT	DEFINITION	DEFAULT VALUE				
7	4Y3 enable (pin 45)	Н				
6	4Y2 enable (pin 44)	Н				
5	4Y1 enable (pin 41)	Н				
4	4Y0 enable (pin 40)	Н				
3	3Y3 enable (pin 36)	Н				
2	3Y2 enable (pin 35)	Н				
1	3Y1 enable (pin 32)	Н				
0	3Y0 enable (pin 31)	Н				

I²C BYTE 1-BIT DEFINITION[†]

[†]When the value of the bit is high, the output is enabled. When the value of the bit is low, the output is forced to a low state. The default value of all bits is high.

BIT	DEFINITION	DEFAULT VALUE					
7	5Y1 enable (pin 28)	Н					
6	5Y0 enable (pin 21)	Н					
5	Reserved	Н					
4	Reserved	Н					
3	Reserved	Н					
2	Reserved	Н					
1	Reserved	Н					
0	Reserved	Н					

I²C BYTE 2-BIT DEFINITION[†]

[†] When the value of the bit is high, the output is enabled. When the value of the bit is low, the output is forced to a low state. The default value of all bits is high.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Input voltage range, V_I (SCLOCK, SDATA) (see Note 1) Output voltage range, V_O (SDATA) (see Note 1) Voltage range applied to any output in the high or power-off state, V_O 0. Current into any output in the low state (except SDATA), I_O Current into SDATA in the low state, I_O Input clamp current, I_{IK} ($V_I < 0$) (SCLOCK) Output clamp current, I_{OK} ($V_O < 0$) (SDATA) Package thermal impedance, θ_{JA} (see Notes 2 and 3)	$\begin{array}{c}0.5 \ V \ to \ 4.6 \ V \\0.5 \ V \ to \ 6.5 \ V \\0.5 \ V \ to \ 6.5 \ V \\ 5 \ V \ to \ V_{CC} \ +0.5 \ V \\ \ 48 \ mA \\ \ 12 \ mA \\ \ -50 \ mA \\ \ 84^{\circ}C/W \end{array}$

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages,

which use a trace length of zero. The absolute maximum power dissipation allowed at TA = 55°C (in still air) is 1.2 W.

3. Thermal impedance (OIA) can be considerably lower if the device is soldered on the PCB board with a copper layer underneath the package. A simulation on a PCB board (3 in. × 3 in.) with two internal copper planes (1 oz. cu, 0.036 mm thick) and 0.071 mm cu (202) in area underneath the package, resulted in $\Theta_{JA} = 60^{\circ}$ C/W. This would allow 1.2 W total power dissipation at TA = 70°C.

recommended operating conditions (see Note 4)

			MIN	TYP MA	X UNI
VCC	3.3-V core supply voltage		3.135	3.40	5 V
		A, OE	2	V _{CC} +0	.3 V
VIH	High-level input voltage	SDATA, SCLOCK (see Note 3)	2.2	5	.5 V
		A, OE	-0.3	C	.8 V
VIL	Low-level input voltage	SDATA, SCLOCK (see Note 3)	0	1.(04 V
IOH	High-level output current	Y outputs		_:	86 mA
IOL	Low-level output current	Y outputs		2	.4 mA
ri	Input resistance to V _{CC}	SDATA, SCLOCK (see Note 3)		140	kΩ
f(SCL)	SCLOCK frequency			1(0 kHz
^t (BUS)	Bus free time		4.7		μs
^t su(START)	START setup time		4.7		μs
^t h(START)	START hold time		4		μs
^t w(SCLL)	SCLOCK low pulse duration		4.7		μs
^t w(SCLH)	SCLOCK high pulse duration		4		μs
^t r(SDATA)	SDATA input rise time			10	00 ns
^t f(SDATA)	SDATA input fall time			30	00 ns
tsu(SDATA)	SDATA setup time		250		ns
^t h(SDATA)	SDATA hold time		20		ns
^t su(STOP)	STOP setup time		4		μs
T _A	Operating free-air temperature		0	-	'0 °C

NOTE 4: The CMOS-level inputs fall within these limits: V_{IH} min = $0.7 \times V_{CC}$ and V_{II} max = $0.3 \times V_{CC}$.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	IDITIONS	MIN	TYP	MAX	UNIT
VIK	Input clamp voltage	_	V _{CC} = 3.135 V,	lj = -18 mA			-1.2	V
∨он	High-level output voltage	Y outputs	$V_{CC} = Min \text{ to Max}, I_{OH} = -1$	$I_{OH} = -1 \text{ mA}$	V _{CC} – 0.1 V			V
			V _{CC} = 3.135 V,	I _{OH} = -36 mA	2.4			
		V autouta	V _{CC} = Min to Max,	I _{OL} = 1 mA			0.1	
V.		Y outputs	V _{CC} = 3.135 V,	I _{OL} = 24 mA			0.4	V
VOL	Low-level output voltage	ODATA	N 0.405.V	I _{OL} = 3 mA			0.4	V
		SDATA	V _{CC} = 3.135 V	I _{OL} = 6 mA			0.6	
		SDATA	V _{CC} = 3.135 V,	AO = ACC WAX			20	μA
	LP-b laws bardward as more t		V _{CC} = 3.135 V,	$V_{O} = 2 V$	-54		-126	
ЮН	High-level output current	Y outputs	V _{CC} = 3.3 V,	V _O = 1.65 V		-92		mA
			V _{CC} = 3.465 V,	V _O = 3.135 V	-21		-46	
			V _{CC} = 3.135 V,	V _O = 1 V	49		118	
IOL	Low-level output current	Y outputs	V _{CC} = 3.3 V,	V _O = 1.65 V		93		mA
		V _{CC} = 3.465 V, V _O =	V _O = 0.4 V	24		53		
		А					5	
ЧΗ	High-level input current	OE	V _{CC} = 3.465 V,	$V_{I} = V_{CC}$			20	μA
		SCLOCK, SDATA					20	
		A					-5	
ц	Low-level input current	OE	V _{CC} = 3.465 V,	VI = GND	-10		-50	μA
		SCLOCK, SDATA			-10		-50	
I _{OZ}	High-impedance-state outp	ut current	V _{CC} = 3.465 V,	V _O = 3.465 V or 0			±10	μΑ
loff	Off-state current	SCLOCK, SDATA	V _{CC} = 0,	V _I = 0 V to 5.5 V			50	μA
ICC	Supply current	•	V _{CC} = 3.465 V,	IO = 0		0.2	0.5	mA
∆ICC	Change in supply current		$V_{CC} = 3.135$ V to 3.46 One input at $V_{CC} - 0$. All other inputs at V_{CC}	6 V,			500	μΑ
	Dynamic I _{CC} at 100 MHz		V _{CC} = 3.465 V,	C _L = 20 pF,		230		mA
CI	Input capacitance		$V_{I} = V_{CC} \text{ or } GND,$	V _{CC} = 3.3 V		4		pF
CO	Output capacitance		$V_{O} = V_{CC}$ or GND,			6		pF
CI/O	SDATA I/O capacitance		$V_{I/O} = V_{CC}$ or GND,	V _{CC} = 3.3 V		7		pF

	PARAMETER		FROM	то	TEST CONDITIONS	MIN	MAX	UNIT
			А	Y		1.2	4.5	ns
^t PLH	Low-to-high level propagation	delay time	SCLOCK↓	SDATA valid	V_{CC} = 3.3 V ±0.165 V, See Figure 3		2	μs
^t PLH	Low-to-high level propagation	delay time	SDATA↑	Y	V_{CC} = 3.3 V ±0.165 V, See Figure 3		150	ns
			А	Y		1.2	4.5	ns
^t PHL	High-to-low level propagation	delay time	SCLOCK↓	SDATA valid	V_{CC} = 3.3 V ±0.165 V, See Figure 3		2	μs
^t PHL	High-to-low level propagation	delay time	SDATAŤ	Y	V_{CC} = 3.3 V ±0.165 V, See Figure 3		150	ns
^t PZH	Enable time to the high level		05	V		1	7	
tPZL	Enable time to the low level		OE	Y		1	7	ns
^t PHZ	Disable time from the high leve	el	OE	Y		1	7	20
^t PLZ	Disable time from the low leve		ÛE	ř		1	7	ns
^t sk(o)	Skew time		А	Y			250	ps
^t sk(p)	Skew time		А	Y			500	ps
^t sk(pr)	Skew time		А	Y			1	ns
t _r	Rise time			Y		0.5	2.2	ns
	Rise time (see Note 5 and	SDATA			C _L = 10 pF	6		20
tr	Figure 3)	SDATA			C _L = 400 pF		950	ns
t _f	Fall time			Y		0.5	2.3	ns
4.	Fall time (see Note 5 and	CDATA			C _L = 10 pF	20		
tf	Figure 3)	SDATA			C _L = 400 pF		250	ns

switching characteristics over recommended operating conditions

NOTE 5: This parameter has a lower limit than BUS specification. This allows use of series resistors for current spike protection.

ESD information

ESD MODELS	LIMIT
Human Body Model (HBM)	2.0 kV
Machine Model (MM)	200 V
Charge Device Model (CDM)	2.0 kV

thermal information

		THE					
	CDC318A 48-PIN SSOP	0	150	250	500	UNIT	
$R_{\theta JA}$	High K		62	56	54	51	°C/W
$R_{\theta JA}$	Low K		95	71	65	58	°C/W
$R_{\theta JC}$	High K	36					°C/W
R ₀ JC	Low K	38					°C/W

CDC318A 1-LINE TO 18-LINE CLOCK DRIVER WITH I²C CONTROL INTERFACE

SCAS614A - SEPTEMBER 1998 - REVISED JUNE 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Output skew, $t_{Sk(0)}$, is calculated as the greater of:

- The difference between the fastest and slowest of tpLHn (n = 1:18)
- The difference between the fastest and slowest of t_{PHLn} (n = 1:18)
- B. Pulse skew, $t_{sk(p)}$, is calculated as the greater of $|t_{PLHn} t_{PHLn}|$ (n = 1:18)
- C. Process skew, $t_{sk(pr)}^{(i)}$, is calculated as the greater of:
 - The difference between the fastest and slowest of tPLHn (n = 1:18) across multiple devices under identical operating conditions
 - The difference between the fastest and slowest of tPHLn (n = 1:18) across multiple devices under identical operating conditions

Figure 2. Waveforms for Calculation of t_{sk(o)}, t_{sk(p)}, t_{sk(pr)}

4A - SEFTEMBER 1998 - REVISED JONE 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The repeat start condition is not supported.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 100 kHz, Z_O = 50 Ω , t_r \geq 10 ns, t_f \geq 10 ns.

Figure 3. Propagation Delay Times, tr and tf

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
CDC318ADL	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	CDC318A	Samples
CDC318ADLG4	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	CDC318A	Samples
CDC318ADLR	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	CDC318A	Samples
CDC318ADLRG4	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	CDC318A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nor	ninal
-------------------------	-------

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	· · ·	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDC318ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDC318ADLR	SSOP	DL	48	1000	367.0	367.0	55.0

www.ti.com

5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
CDC318ADL	DL	SSOP	48	25	473.7	14.24	5110	7.87
CDC318ADLG4	DL	SSOP	48	25	473.7	14.24	5110	7.87

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated