# S32R274 Data Sheet

#### Features

- On-chip modules available within the device include the following features:
- Safety core: Power Architecture® e200Z4 32-bit CPU with checker core
- Dual issue computation cores: Power Architecture® e200Z7 32-bit CPU
- 2 MB on-chip code flash (FMC flash) with ECC
- 1.5 MB on-chip SRAM with ECC
- RADAR processing
  - Signal Processing Toolbox (SPT) for RADAR signal processing acceleration
  - Cross Timing Engine (CTE) for precise timing generation and triggering
  - Waveform generation module (WGM) for chirp ramp generation
  - 4x 12-bit  $\Sigma\Delta$ -ADC with 10 MSps
  - One DAC with 10 MSps
  - MIPICSI2 interface to connect external ADCs
- Memory Protection
  - Each core memory protection unit provides 24 entries
  - Data and instruction bus system memory protection unit (SMPU) with 16 region descriptors each
  - Register protection
- Clock Generation
  - 40 MHz external crystal (XOSC)
  - 16 MHz Internal oscillator (IRCOSC)
  - Dual system PLL with one frequency modulated phase-locked loop (FMPLL)
  - Low-jitter PLL to  $\Sigma\Delta$ -ADC and DAC clock generation (not supported on SC66760x devices)
- Functional Safety
  - Enables up to ASIL-D applications
  - FCCU for fault collection and fault handling
  - MEMU for memory error management
  - Safe eDMA controller
  - Self-Test Control Unit (STCU2)
  - Error Injection Module (EIM)
  - On-chip voltage monitoring
  - Clock Monitor Unit (CMU)

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

- Security
  - Cryptographic Security Engine (CSE2)
  - Supports censorship and life-cycle management

S32R274

- Timers
  - Two Periodic Interval Timers (PIT) with 32-bit counter resolution
  - Three System Timer Module (STM)
  - Three Software Watchdog Timers (SWT)
  - Two eTimer modules with 6 channels each
  - One FlexPWM module for 12 PWM signals
- Communication Interfaces
  - Two Serial Peripheral interface (SPI) modules
  - One LINFlexD module
  - Two inter-IC communication interface (I2C) modules
  - One dual-channel FlexRay module with 128 message buffers
  - Three FlexCAN modules with configurable buffers -CAN FD optionally supported on 2 FlexCAN modules
  - One ENET MAC supporting MII/RMII/RGMII interface
  - ZipWire high-speed serial communication
- Debug Functionality
  - 4-pin JTAG interface and Nexus/Aurora interface for serial high-speed tracing
  - e200Z7 core and e200Z4 core: Nexus development interface (NDI) per IEEE-ISTO 5001-2012 Class 3+
- Two analog-to-digital converters (SAR ADC)
  - Each ADC supports up to 16 input channels
  - Cross Trigger Unit (CTU)
- On-chip voltage DC/DC regulator for core clock (VREG)
- Two Temperature Sensors (TSENS)



# **Table of Contents**

| 1 | Intro  | duction                                            | 4  |
|---|--------|----------------------------------------------------|----|
|   | 1.1    | Family comparison                                  | 4  |
|   | 1.2    | Feature list                                       | 5  |
|   | 1.3    | Block diagram                                      | 9  |
| 2 | Orde   | ring parts                                         | 9  |
|   | 2.1    | Determining valid orderable parts                  | 9  |
| 3 | Part i | identification                                     | 10 |
|   | 3.1    | Description                                        | 10 |
|   | 3.2    | Fields                                             | 10 |
| 4 | Gene   | ral                                                | 11 |
|   | 4.1    | Absolute maximum ratings                           | 11 |
|   | 4.2    | Operating conditions                               | 13 |
|   | 4.3    | Supply current characteristics                     | 15 |
|   | 4.4    | Voltage regulator electrical characteristics       | 16 |
|   | 4.5    | Electromagnetic Compatibility (EMC) specifications | 20 |
|   | 4.6    | Electrostatic discharge (ESD) characteristics      | 20 |
| 5 | I/O P  | Parameters                                         | 21 |
|   | 5.1    | I/O pad DC electrical characteristics              | 21 |
|   | 5.2    | I/O pad AC specifications                          | 22 |
|   | 5.3    | Aurora LVDS driver electrical characteristics      | 23 |
|   | 5.4    | Reset pad electrical characteristics               | 24 |
| 6 | Perip  | heral operating requirements and behaviours        | 26 |
|   | 6.1    | Clocks and PLL Specifications                      | 26 |
| 7 | Anal   | og modules                                         | 29 |
|   | 7.1    | ADC electrical characteristics                     | 29 |
|   | 7.2    | Sigma Delta ADC electrical characteristics         | 33 |
|   | 7.3    | DAC electrical specifications                      | 37 |
| 8 | Mem    | ory modules                                        | 38 |
|   | 8.1    | Flash memory program and erase specifications      | 38 |
|   | 8.2    | Flash memory Array Integrity and Margin Read       |    |
|   |        | specifications                                     | 39 |
|   | 8.3    | Flash memory module life specifications            | 39 |

| 8.4   | Data retention vs program/erase cycles40                                                                                                                                                                                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.5   | Flash memory AC timing specifications                                                                                                                                                                                                |
| 8.6   | Flash memory read wait-state and address-pipeline control                                                                                                                                                                            |
|       | settings41                                                                                                                                                                                                                           |
| Comr  | nunication modules                                                                                                                                                                                                                   |
| 9.1   | Ethernet switching specifications                                                                                                                                                                                                    |
| 9.2   | FlexRay timing parameters                                                                                                                                                                                                            |
| 9.3   | LVDS Fast Asynchronous Transmission (LFAST) electrical                                                                                                                                                                               |
|       | characteristics                                                                                                                                                                                                                      |
| 9.4   | Serial Peripheral Interface (SPI) timing specifications                                                                                                                                                                              |
| 9.5   | LINFlexD timing specifications                                                                                                                                                                                                       |
| 9.6   | I2C timing 59                                                                                                                                                                                                                        |
| Debu  | g modules60                                                                                                                                                                                                                          |
| 10.1  | JTAG/CJTAG interface timing60                                                                                                                                                                                                        |
| 10.2  | Nexus Aurora debug port timing63                                                                                                                                                                                                     |
| WKU   | P/NMI timing specifications64                                                                                                                                                                                                        |
| Exter | nal interrupt timing (IRQ pin)                                                                                                                                                                                                       |
| Temp  | erature sensor electrical characteristics65                                                                                                                                                                                          |
| Radar | module                                                                                                                                                                                                                               |
| 14.1  | MIPICSI2 D-PHY electrical and timing specifications                                                                                                                                                                                  |
| 14.2  | MIPICSI2 Disclaimer                                                                                                                                                                                                                  |
| Thern | nal Specifications71                                                                                                                                                                                                                 |
| 15.1  | Thermal characteristics                                                                                                                                                                                                              |
| Packa | ging73                                                                                                                                                                                                                               |
| Reset | sequence73                                                                                                                                                                                                                           |
| 17.1  | Reset sequence duration74                                                                                                                                                                                                            |
| 17.2  | Reset sequence description74                                                                                                                                                                                                         |
| Powe  | r sequencing requirements76                                                                                                                                                                                                          |
| Pinou | ts77                                                                                                                                                                                                                                 |
| 19.1  | Package pinouts and signal descriptions77                                                                                                                                                                                            |
| Revis | ion History77                                                                                                                                                                                                                        |
|       | 8.5<br>8.6<br>Comr<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5<br>9.6<br>Debuş<br>10.1<br>10.2<br>WKU<br>Exteri<br>10.2<br>WKU<br>Exteri<br>14.2<br>Themp<br>Radar<br>14.2<br>Therm<br>15.1<br>Packa<br>Reset<br>17.1<br>17.2<br>Powe<br>Pinu |

## 1 Introduction

## **1.1 Family comparison**

The following table provides a comparison of the devices: S32R274, , and MPC5775K. This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative.

| Feature                     | S32R274                                                         | MPC5775K                                                         |
|-----------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| CPUs                        | e200z420                                                        | ) lock-step                                                      |
|                             | 2x e20                                                          | 0z7260                                                           |
| SIMD                        | SPE2 + I                                                        | EFP2 (z7)                                                        |
| Maximum Operating Frequency | 240 MHz (z7 cores) / 180 MHz (z4)                               | 266 MHz (z7 cores) / 133 MHz (z4)                                |
| Flash                       | 2 MB with ECC                                                   | 4 MB with ECC                                                    |
| EEPROM support              | 64 KB (emulation)                                               | 96 KB (emulation)                                                |
| RAM                         | 1.5 MB v                                                        | with ECC                                                         |
| ECC                         | end-t                                                           | o-end                                                            |
| MPU                         | Core MPU: 24 entries per con                                    | re, System MPU: 2x16 entries                                     |
| eDMA                        | safe eDMA with 32 of                                            | channels, 64 triggers                                            |
| Control ADC                 | 2x 12-bit SAR ADC, 1 MSps input mux<br>for 16 external channels | 4x 12-bit SAR ADC, 1 MSps, input mux<br>for 37 external channels |
| SD-ADC                      | 4 channels, 10 MSps                                             | 8 channels, 10 MSps                                              |
| SPT                         | 1                                                               | X                                                                |
| CTE                         | 1                                                               | x                                                                |
| WGM                         | 1                                                               | x                                                                |
| CTU                         | 1x                                                              | 2x                                                               |
| SWT                         | 3                                                               | 3x                                                               |
| STM                         | 3                                                               | 3x                                                               |
| PIT                         | 2                                                               | 2x                                                               |
| CRC                         | 2                                                               | ²x                                                               |
| SEMA42                      | 1                                                               | x                                                                |
| LINFlexD                    | 1x                                                              | 4x                                                               |
| CAN                         | 3x FlexCAN including 2x FlexCAN-FD                              | 4x FlexCAN + 1x MCAN-FD                                          |
| SPI                         | 2x                                                              | 4x                                                               |
| l <sup>2</sup> C            | 2x                                                              | Зх                                                               |
| Zipwire                     | 1x LFAST+S                                                      | IPI, 320 MHz                                                     |
| FlexRay                     | 1x dual                                                         | channel                                                          |

Table 1. S32R274 Family Comparison

Table continues on the next page ...

| Feature                | S32R274                                                  | MPC5775K                               |
|------------------------|----------------------------------------------------------|----------------------------------------|
| Ethernet               | 10/100 and >100 Mbps, RMII/MII/RGMII<br>I/F, AVB support | 10/100 Mbps, RMII/MII I/F, AVB support |
| FlexPWM                | 1x, 12 PWM channels                                      | 2x, 12 PWM channels each               |
| eTimer                 | 2x, 6 channels each                                      | 3x, 6 channels each                    |
| External ADC interface | 1x 4 lanes MIPICSI2 Rx, 1 Gbps/lane                      | 1x PDI (16-bit data, clock, sync)      |
| IRCOSC                 | 16 M                                                     | ИНz                                    |
| XOSC                   | 40 M                                                     | ИНz                                    |
| FMPLL                  | dual system PLL,                                         | 1x FM modulated                        |
| DAC                    | 1x 12-bit 10 MSps                                        | 1x 12-bit 2 MSps                       |
| SIUL2                  | 1                                                        | x                                      |
| BAM                    | 1                                                        | x                                      |
| INTC                   | 1                                                        | x                                      |
| SSCM                   | 1                                                        | x                                      |
| FCCU/FOSU              | 1                                                        | x                                      |
| MEMU                   | 1                                                        | x                                      |
| STCU2                  | 1                                                        | x                                      |
| CSE                    | 1x                                                       | -                                      |
| PASS/TDM               | 1x                                                       | -                                      |
| MC_ME                  | 1                                                        | x                                      |
| MC_CGM                 | 1                                                        | x                                      |
| MC_RGM                 | 1                                                        | x                                      |
| TSENS                  | 2                                                        | x                                      |
| Debug                  | JTAGC, JTAGM, CJTAG, wit                                 | h class3+ Nexus, Aurora only           |
| Safety level           | ISO26262 SEooC                                           | ASIL-B to ASIL-D                       |
| Temp. range (Tj)       | -40 to                                                   | 150°C                                  |

Table 1. S32R274 Family Comparison (continued)

## 1.2 Feature list

On-chip modules available within the device include the following features:

- Safety core: Power Architecture<sup>®</sup> e200Z4 32-bit CPU with checker core
  - 2 cycle delayed lockstep
  - Harvard architecture with 64-bit bus for data and instructions
  - Dual issue: up to two instructions per clock cycle
  - 8 KB instruction cache and 4 KB data cache
  - 64 KB data local memory
    - with background load/store: backdoor access
    - 0-wait state for all read and 32/64-bit write accesses
    - Low number of wait states for backdoor accesses

#### Introduction

- Support for decorated storage
- Variable Length Encoding (VLE) compliant for higher code density
- Single precision floating point operations
- Computation cores: Power Architecture<sup>®</sup> e200Z7 32-bit CPU
  - Dual issue: up to two instructions per clock cycle
  - Harvard architecture with 64-bit bus for data instructions
  - 16 KB instruction cache and 16 KB data cache
  - 64 KB data local memory
    - with background load/store: backdoor access
    - 0-wait state for all read and 32/64-bit write accesses
    - Low number of wait states for backdoor accesses
  - Support for decorated storage
  - Using variable length encoding (VLE) for higher code density
  - 4-way integer processing unit (SPE2)
  - 2-way single-precision Floating Point Unit (EFPU2)
- 2 MB on-chip code flash (FMC flash) with ECC
  - Three ports (one per CPU) shared between code and data flash with 4 × 256 bit buffer for code and data flash including prefetch functions
  - Data flash is part of the code flash module
  - Including 64 KB EEPROM emulation
- 1.5 MB on-chip SRAM with ECC
  - Decorated memory controller to support atomic read-modify-write operations
  - Single- and double-bit error visibility is supported
  - Up to four ports (one per CPU and SPT) and up to 8 banks allow simultaneous accesses from different masters to different banks
- RADAR processing
  - Signal Processing Toolbox (SPT) for RADAR signal processing acceleration
  - Cross Timing Engine (CTE) for precise timing generation and triggering
  - Waveform generation module (WGM) for chirp ramp generation
  - 4x 12-bit  $\Sigma\Delta$ -ADC with 10 MSps
  - One DAC with 10 MSps
  - MIPICSI2 interface to connect external ADCs
    - Four data lanes, with up to 1 Gbps per lane and in total
    - One clock lane
- Memory Protection
  - Each core memory protection unit provides 24 entries
  - Data and instruction bus system memory protection Unit (SMPU) with 16 region descriptors each
  - Register protection
- Clock Generation
  - 40 MHz external crystal (XOSC)

- 16 MHz Internal oscillator (IRCOSC)
- Dual system PLL with one frequency modulated phase-locked loop (FMPLL)
- Low-jitter PLL to  $\Sigma\Delta$ -ADC and DAC clock generation
- Functional Safety
  - Enables up to ASIL-D applications
  - End to end ECC ensuring full protection of all data accesses throughout the system, from each of the systems masters through the crossbar and into the memories and peripherals
  - FCCU for fault collection and fault handling
  - MEMU for memory error management
  - Safe eDMA controller
  - User selectable Memory BIST (MBIST) can be enabled to run out of various reset conditions or during runtime
  - Self-Test Control Unit (STCU2)
  - Error Injection Module (EIM)
  - On-chip voltage monitoring
  - Clock Monitor Unit (CMU) to support monitoring of critical clocks
- Security
  - Cryptographic Security Engine (CSE2) enabling advanced security management
  - Supports censorship and life-cycle management via Password and Device Security (PASS) module
  - Diary control for tamper detection (TDM)
- Support Modules
  - Global Interrupt controller (INTC) capable of routing interrupts to any CPU
  - Semaphore unit to manage access to shared resources
  - Two CRC computation units with four polynomials
  - 32-channel eDMA controller with multiple transfer request sources using DMAMUX
  - Boot Assist Module (BAM) supports internal flash programming via a serial link (LIN / CAN)
- Timers
  - Two Periodic Interval Timers (PIT) with 32-bit counter resolution
  - Three System Timer Module (STM)
  - Three Software Watchdog Timers (SWT)
  - Two eTimer modules with 6 channels each
  - One FlexPWM module for 12 PWM signals
- Communication Interfaces
  - Two Serial Peripheral interface (SPI) module
  - Two inter-IC communication interface (I2C) modules
  - One LINFlexD module
  - One dual-channel FlexRay module with 128 message buffers

#### Introduction

- Three FlexCAN modules with configurable buffers
  - CAN FD optionally supported on 2 FlexCAN modules
- One ENET MAC supporting MII/RMII/RGMII interface
  - Supports 10/100 Mbps (MII/RMII/RGMII) and >100 Mbps (RGMII)
  - Supports IEEE1588 timestamps and PTP
- Zipwire high-speed serial communication
  - Supports LFAST and SIPI protocol
  - Fast interprocessor communication with 320 Mbps gross data rate
  - DMA based access to memory resources
- Debug Functionality
  - 4-pin JTAG interface and Nexus/Aurora interface for serial high-speed tracing
  - e200Z7 core and e200Z4 core: Nexus development interface (NDI) per IEEE-ISTO 5001-2012 Class 3+
  - All platform bus masters except CSE can be monitored via Nexus/Aurora
  - Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) (IEEE 1149.1) and 1149.7 (cJTAG)
  - On-chip control for Nexus development interface by JTAGM module
- Two analog-to-digital converters (SAR ADC)
  - Each ADC supports up to 16 input channels
  - Cross Trigger Unit to enable synchronization of ADC conversions with eTimer
- On-chip voltage DC/DC regulator for core clock (VREG)
- Two Temperature Sensors (TSENS)



## 1.3 Block diagram

Figure 1. S32R274 block diagram

## 2 Ordering parts

## 2.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the device number.

## 3 Part identification

## 3.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

## 3.2 Fields

This section lists the possible values for each field in the part number (not all combinations are valid):

| 257MAPBGA       | Configuration | Performance | Temperature |
|-----------------|---------------|-------------|-------------|
| FS32R274KSK2MMM | S             | К           | М           |
| FS32R274KCK2MMM | С             | К           | М           |
| FS32R274VBK2MMM | В             | V           | М           |
| FS32R274VCK2MMM | С             | V           | М           |
| FS32R274KSK2VMM | S             | К           | V           |
| FS32R274KCK2VMM | С             | К           | V           |
| FS32R274VBK2VMM | В             | V           | V           |
| FS32R274VCK2VMM | С             | V           | V           |

#### Table 2. Configuration

#### Table 3. Configuration

| Configuration | 2 MB Flash | 1.5 MB RAM | CSE |
|---------------|------------|------------|-----|
| B or S        | Yes        | Yes        | Yes |
| С             | Yes        | Yes        | No  |

#### Table 4. Performance

| Perf (MHz) | Z7  | Z7  | Z4  | Z4  |
|------------|-----|-----|-----|-----|
| К          | 240 | 240 | 120 | 120 |
| V          | 200 | 200 | 100 | 100 |

#### Table 5. Temperature values

| Temperature | T <sub>A</sub>   |
|-------------|------------------|
| М           | -40 °C to 125 °C |
| V           | -40 °C to 105 °C |

## 4 General

### 4.1 Absolute maximum ratings

#### NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed.

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

| Symbol                       | Parameter                                                                                | Conditions | Min  | Max                  | Unit |
|------------------------------|------------------------------------------------------------------------------------------|------------|------|----------------------|------|
| V <sub>DD_HV_PMU</sub>       | 3.3 V PMU supply voltage                                                                 | —          | -0.3 | 4.0 <sup>1, 2</sup>  | V    |
| V <sub>DD_HV_REG3V8</sub>    | REG3V8 Supply Voltage                                                                    | _          | -0.3 | 5.5                  | V    |
| V <sub>DD_HV_IO*</sub>       | 3.3 V Input/Output Supply Voltage, LFAST IO<br>Supply, RGMII IO Supply and PWM IO Supply |            | -0.3 | 3.63 <sup>1, 2</sup> | V    |
| V <sub>SS_HV_IOx</sub>       | Input/output ground voltage                                                              | _          | -0.1 | 0.1                  | V    |
| V <sub>DD_HV_FLA</sub>       | 3.3 V flash supply voltage                                                               | —          | -0.3 | 3.63 <sup>1, 2</sup> | V    |
| V <sub>DD_HV_RAW</sub>       | AFE RAW supply voltage                                                                   | _          | -0.1 | 4                    | V    |
| V <sub>DD_HV_DAC</sub>       | AFE DAC supply voltage                                                                   | _          | -0.1 | 4                    | V    |
| V <sub>DD_LV_IO*</sub>       | Aurora supply voltage                                                                    | _          | -0.3 | 1.5                  | V    |
| V <sub>DD</sub>              | 1.25 V core supply voltage <sup>3, 4, 5</sup>                                            | _          | -0.3 | 1.5                  | V    |
| V <sub>SS</sub>              | 1.25 V core supply ground <sup>3, 4, 5</sup>                                             | _          | -0.3 | 0.3                  | V    |
| V <sub>SS_LV_OSC</sub>       | Oscillator amplifier ground                                                              | _          | -0.1 | 0.1                  | V    |
| V <sub>DD_LV_PLL0</sub>      | System PLL supply voltage                                                                | _          | -0.3 | 1.5                  | V    |
| V <sub>DD_LV_LFASTPLL</sub>  | LFAST PLL supply voltage                                                                 | _          | -0.3 | 1.5                  | V    |
| V <sub>DD_HV_ADCREF0/1</sub> | ADC_0 and ADC_1 high reference voltage                                                   | —          | -0.3 | 5.5                  | V    |
| V <sub>SS_HV_ADCREF0/1</sub> | ADC_0 and ADC_1 ground and low reference voltage                                         |            | -0.1 | 0.1                  | V    |
| V <sub>DD_HV_ADC</sub>       | 3.3 V ADC supply voltage                                                                 | —          | -0.3 | 4.0 <sup>1, 2</sup>  | V    |

 Table 6.
 Absolute maximum ratings

Table continues on the next page...

| Symbol                  | Parameter                                                                          | Conditions                            | Min     | Max                          | Unit |
|-------------------------|------------------------------------------------------------------------------------|---------------------------------------|---------|------------------------------|------|
| V <sub>SS_HV_ADC</sub>  | 3.3 V ADC supply ground                                                            | —                                     | -0.1    | 0.1                          | V    |
| TV <sub>DD</sub>        | Supply ramp rate <sup>6</sup>                                                      | —                                     | 0.00005 | 0.1                          | V/µs |
| V <sub>IN_XOSC</sub>    | Voltage on XOSC pins with respect to ground                                        | —                                     | -0.3    | 1.47                         | V    |
| V <sub>INA</sub>        | Voltage on SAR ADC analog pin with respect to ground (V <sub>SS_HV_ADCREFx</sub> ) |                                       | -0.3    | 6.0                          | V    |
| V <sub>INA_SD</sub>     | Voltage on Sigma-Delta ADC analog pin with respect to ground <sup>7</sup>          | Powered up <sup>8</sup>               | -0.3    | V <sub>DD_HV_RAW</sub> + 0.3 | V    |
|                         |                                                                                    | Powered down                          | -0.3    | 1.47                         |      |
| V <sub>IN</sub>         | Voltage on any digital pin with respect to ground (V <sub>SS_HV_IOx</sub> )        | Relative to<br>V <sub>DD_HV_IOx</sub> | -0.3    | $V_{DD\_HV\_IOx} + 0.3$      | V    |
| V <sub>DD_LV_DPHY</sub> | MIPICSI2 DPHY voltage supply <sup>3, 4, 5</sup>                                    | —                                     | -0.3    | 1.5                          | V    |
| V <sub>SS_LV_DPHY</sub> | MIPICSI2 DPHY supply ground <sup>3, 4, 5</sup>                                     | —                                     | -0.3    | 0.3                          | V    |
| I <sub>INJPAD</sub> 11  | Injected input current on any pin during overload condition <sup>12</sup>          | —                                     | -10     | 10 <sup>13</sup>             | mA   |
| I <sub>INJSUM</sub>     | Absolute sum of all injected input currents during overload condition              | —                                     | -50     | 50                           | mA   |
| T <sub>STG</sub>        | Storage temperature                                                                | —                                     | -55     | 150                          | °C   |

Table 6. Absolute maximum ratings (continued)

1. 5.3 V for 10 hours cumulative over lifetime of device; 3.3 V +10% for time remaining.

2. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.

- 3. 1.45 V to 1.5 V allowed for 60 seconds cumulative time at maximum  $T_J = 150^{\circ}$ C; remaining time as defined in note 5 and note 6.
- 4. 1.375 V to 1.45 V allowed for 10 hours cumulative time at maximum  $T_J = 150^{\circ}C$ ; remaining time as defined in note 6.
- 5. 1.32 V to 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at maximum  $T_J$ =150°C.
- 6.  $TV_{DD}$  is relevant for all external supplies.
- ADC inputs include an overvoltage detect function that detects any voltage higher than 1.2 V with respect to ground on either ADC input and open circuit (disconnect) the input in order to prevent damage to the ADC internal circuitry. The ADC input remains disconnected until the inputs return to the normal operating range.
- 8. SDADC is powered up and overvoltage protection is ON.
- 9. SDADC is powered up and overvoltage protection is OFF.
- 10. Only when  $V_{DD_HV_IOx} < 3.63$  V.
- 11. The maximum value limits of injection current and input voltage both must be followed together for proper device operation.
- 12. No input current injection circuitry on AFE pins.
- 13. The maximum value of 10 mA applies to pulse injection only. DC current injection is limited to a maximum of 5 mA.

## 4.2 Operating conditions

The following table describes the operating conditions for the device, and for which all specifications in the datasheet are valid, except where explicitly noted. The device operating conditions must not be exceeded, or the functionality of the device is not guaranteed.

| Symbol                              | Parameter                                                                                     | Conditions   | Min               | Тур  | Max <sup>1</sup>               | Unit   |
|-------------------------------------|-----------------------------------------------------------------------------------------------|--------------|-------------------|------|--------------------------------|--------|
| V <sub>DD_HV_PMU</sub>              | 3.3V PMU Supply Voltage                                                                       | _            | 3.13 <sup>2</sup> | 3.3  | 3.6                            | V      |
| V <sub>DD_HV_REG3V8</sub>           | REG3V8 Supply Voltage                                                                         | _            | 3.13              | 3.8  | 5.5                            | V      |
| V <sub>DD</sub>                     | Core Supply Voltage                                                                           | —            | 1.19 <sup>2</sup> | 1.25 | 1.31 <sup>3</sup>              | V      |
| V <sub>DD_HV_IO*</sub>              | Main GPIO 3V Supply<br>Voltage, LFAST IO Supply,<br>RGMII IO Supply, PWM IO<br>Supply Voltage | _            | 3.13 <sup>2</sup> | 3.3  | 3.6                            | V      |
| V <sub>DD_LV_IO_*</sub> 4           | Aurora Supply Voltage                                                                         | _            | 1.19              | 1.25 | 1.31                           | V      |
| V <sub>DD_LV_PLL0</sub>             | System PLL Supply Voltage                                                                     | —            | 1.19 <sup>2</sup> | _    | 1.31                           | V      |
| V <sub>DD_LV_LFASTPLL</sub>         | LFAST PLL Supply Voltage                                                                      | _            | 1.19              | —    | 1.31                           | V      |
| V <sub>DD_HV_FLA</sub> <sup>5</sup> | Flash Supply Voltage                                                                          | _            | 3.13 <sup>2</sup> | 3.3  | 3.6                            | V      |
| V <sub>DD_HV_ADC</sub>              | SAR ADC Supply Voltage<br>(HVD supervised)                                                    | _            | 3.13 <sup>2</sup> | 3.3  | 3.6 <sup>6</sup>               | V      |
| $V_{DD_HV_RAW}$                     | 3.3V AFE RAW Supply<br>Voltage                                                                | _            | 3.13              | 3.3  | 3.6                            | V      |
| V <sub>DD_HV_DAC</sub>              | 3.3V AFE DAC Supply<br>Voltage                                                                | _            | 3.13              | 3.3  | 3.6                            | V      |
| V <sub>DD_HV_ADCREF0/1</sub>        | ADC_0 and ADC_1 high reference voltage                                                        | _            | 3.13              | 3.3  | 3.6                            | V      |
| V <sub>IN</sub>                     | Voltage on digital pin with respect to ground (V <sub>SS_HV_IOx</sub> )                       | _            | _                 | -    | V <sub>DD_HV_IOx</sub><br>+0.3 | V      |
| VINSDPP                             | Sigma-Delta ADC Input<br>Voltage (peak-peak) <sup>7, 8</sup>                                  | Differential | _                 | -    | 1.2                            | V      |
| V <sub>INSR</sub>                   | Sigma-Delta ADC Input Slew Rate <sup>7</sup>                                                  | _            |                   | _    | 165                            | V/µs   |
| R <sub>TRIM_TOL</sub>               | External Trim Resistor tolerance                                                              | ±0.1%        | 40.16             | 40.2 | 40.25                          | kΩ     |
| R <sub>TRIM_TEMPCO</sub>            | External Trim Resistor<br>Temperature Coefficient                                             | _            | _                 | -    | 25                             | ppm/°C |
| V <sub>INA</sub> 9                  | Voltage on SAR ADC analog<br>pin with respect to ground<br>(V <sub>SS_HV_ADCREFx</sub> )      |              | _                 | -    | V <sub>DD_HV_ADCRE</sub><br>Fx | V      |
| V <sub>DD_LV_DPHY</sub>             | MIPICSI2 DPHY voltage supply <sup>10</sup>                                                    |              | 1.19              | 1.25 | 1.31                           | V      |
| T <sub>A</sub> , 11                 | Ambient temperature at full performance <sup>12</sup>                                         | _            | -40               | -    | 125                            | °C     |

Table 7. Device operating conditions

Table continues on the next page...

| Symbol                          | Parameter                                         | Conditions          | Min               | Тур  | Max <sup>1</sup>  | Unit |
|---------------------------------|---------------------------------------------------|---------------------|-------------------|------|-------------------|------|
| T <sub>J</sub> <sup>11</sup>    | Junction temperature                              | —                   | -40               | _    | 150               | °C   |
| F <sub>XTAL</sub>               | XOSC Crystal Frequency <sup>13</sup>              | —                   |                   | 40   | _                 | MHz  |
|                                 | AF                                                | E Bypass Modes Or   | nly               |      |                   | •    |
|                                 | Single                                            | -Ended External Cl  | ock <sup>14</sup> |      |                   |      |
| EXTAL <sub>clk</sub>            | EXTAL external clock<br>frequency                 |                     |                   | 40   |                   | MHz  |
| V <sub>inxoscjit</sub>          | EXTAL external clock Cycle to Cycle Jitter (RMS)  | —                   | _                 | -    | 2.5 <sup>15</sup> | ps   |
| Vinxoscclkvil                   | EXTAL external clock input<br>low voltage         | —                   | 0                 | -    | 0.4               | V    |
| Vinxoscclkvih                   | EXTAL external clock input<br>high voltage        | _                   | 1                 | -    | 1.23              | V    |
| t <sub>r</sub> /t <sub>f</sub>  | Rise/fall time of EXTAL<br>external clock input   |                     |                   |      | 1                 | ns   |
| t <sub>dc</sub>                 | Duty Cycle of EXTAL external<br>clock input       |                     | 47                | 50   | 53                | %    |
|                                 | Differe                                           | ntial LVDS External | Clock             | -1   |                   |      |
| LVDS <sub>clk</sub>             | LVDS external clock<br>frequency                  |                     |                   | 40   |                   | MHz  |
| LVDSV <sub>inxoscclk</sub>      | LVDS external clock input voltage                 |                     | 0                 |      | 1.36              | V    |
| LVDSV <sub>inxoscclk(p-p)</sub> | LVDS external clock input                         | Voltage driven,     | 0.45              | 0.70 | 1.12              | V    |
|                                 | voltage (peak-peak)                               | AC coupled          |                   |      |                   |      |
|                                 |                                                   | Differential        |                   |      |                   |      |
| LVDSI <sub>inxoscclk</sub>      | LVDS external clock input                         | Current driven,     | 3.0               | 3.5  | 4.0               | mA   |
|                                 | current                                           | DC coupled.         |                   |      |                   |      |
| LVDSV <sub>inxoscjit</sub>      | LVDS external clock Jitter<br>(RMS) <sup>15</sup> |                     |                   |      | 2.5               | ps   |
| t <sub>r</sub> /t <sub>f</sub>  | Rise/fall time of LVDS<br>external clock input    | 20% - 80%           |                   |      | 1.5               | ns   |
| t <sub>dcLVDS</sub>             | Duty Cycle of LVDS external<br>clock input        |                     | 47                | 50   | 53                | %    |

#### Table 7. Device operating conditions (continued)

1. Full functionality cannot be guaranteed when voltages are out of the recommended operating conditions.

- 2. Min voltage takes into account the LVD variation.
- 3. Max voltage takes into account HVD variation.
- 4. Aurora supply must connect to core supply voltage at board level.
- 5. The ground connection for the  $V_{DD HV FLA}$  is shared with  $V_{SS}$ .
- 6. Supply range does not take into account HVD levels. Full range can be achieved after power-up, if HVD is disabled. See Voltage regulator electrical characteristics section for details.
- 7. Around common mode voltage of 0.7 V. Input voltage cannot exceed 1.4 V prior to AFE start-up completion (VREF and VREGs on and LVDs cleared).
- 8. SDADC input voltage full scale is 1.2 Vpp
- 9. On channels shared between ADC0 and 1, V<sub>DD\_HV\_ADCREFx</sub> is the lower of V<sub>DD\_HV\_ADCREF0/1</sub>.
- 10. V<sub>DD\_LV\_DPHY</sub> supply should be shorted to core supply voltage VDD on board. Refer to AN5251. Contact your NXP sales representative for details.

- 11. While determining if the operating temperature specifications are met, either the ambient temperature or junction temperature specification can be used. It is critical that the junction temperature specification is not exceeded under any condition.
- 12. Full performance means Core0 running @ 120 MHz, Core1/2 running @ 240 MHz, SPT running @ 200 MHz, rich set of peripherals used.
- 13. Recommended Crystal 40 MHz (ESR≤30 Ω), 8 pF load capacitance.
- 14. External mode can be used as differential input with EXTAL and XTAL
- 15. The number is 3.5 ps when SD-ADC and/or DAC is not used in the device.

### 4.3 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

| Symbol                    | Parameter                                            | Conditions                                                                    | Min | Тур              | Max               | Unit |
|---------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|-----|------------------|-------------------|------|
| I <sub>DD_CORE</sub>      | Core current in run mode                             | All cores at max frequency. 1.31 V. Tj = 150°C                                | -   | -                | 1480 <sup>1</sup> | mA   |
| I <sub>DD_HV_FLA</sub>    | Flash operating current                              | $Tj = 150^{\circ}C. V_{DD_HV_FLA} = 3.6 V$                                    | -   | 3 <mark>2</mark> | 40 <sup>3</sup>   | mA   |
| I <sub>DD_LV_AURORA</sub> | Aurora operating current                             | Tj = 150°C. $V_{DD_{LV}AURORA}$ = 1.31 V. 4 TX lanes enabled.                 | -   | -                | 60                | mA   |
| I <sub>DD_HV_ADC</sub>    | ADC operating current                                | Tj = 150°C. $V_{DD_HV_ADC}$ = 3.6 V. 2 ADCs operating at 80 MHz.              | -   | 2                | 5                 | mA   |
| I <sub>DD_HV_ADCREF</sub> | Reference current per                                | Tj = 150°C. $V_{DD_HV_ADCREFx}$ = 3.6 V. ADC operating                        | -   | -                | 1.5               | mA   |
|                           | ADC <sup>4</sup>                                     | at 80 MHz.                                                                    | -   | -                | 0.75              |      |
|                           | Reference current per temp sensor <sup>5</sup>       |                                                                               |     |                  |                   |      |
| I <sub>DD_HV_RAW</sub>    | AFE SD and regulator<br>operating current            | Tj = 150°C. $V_{DD_HV_RAW}$ = 3.6 V. SD-PLL, AFE regulators and 4 SD enabled. | -   | 70 <sup>6</sup>  | 75                | mA   |
| I <sub>DD_HV_DAC</sub>    | AFE DAC operating<br>current                         | Tj = 150°C. $V_{DD_HV_DAC}$ = 3.6 V. DAC enabled.                             | -   | 10               | 15                | mA   |
| I <sub>DD_HV_PMU</sub>    | PMU operating current                                | Tj = 150°C. VDD_HV_PMU = 3.6 V. Internal regulation enabled.                  | -   | 2                | 10                | mA   |
| I <sub>DD_LV_DPHY</sub>   | MIPICSI2 DPHY<br>operating current in HS-<br>RX mode | Tj = 150°C, $V_{DD_LV_DPHY}$ =1.31 V                                          | -   | 14.9             | 23.2              | mA   |

Table 8. Current consumption characteristics

- 1. Strong dependence on use case, cache usage.
- 2. Measured during flash read.
- 3. Peak Flash current measured during read while write (RWW) operation.
- 4. ADC0 and 1 on ADCREF0/1.
- 5. Temp sensor current when PMC\_CTL\_TD[TSx\_AOUT\_EN] = 1. TS0 on ADCREF0/1.
- 6. Typical number is approximately 10 mA per each SD-ADC enabled, 12 mA for SD-PLL and 15 mA for the AFE regulators.

## 4.4 Voltage regulator electrical characteristics

| Symbol               | Parameter                                                     | Conditions                          | Min   | Тур   | Max   | Unit |
|----------------------|---------------------------------------------------------------|-------------------------------------|-------|-------|-------|------|
| POR-R                | 1.25 V VDD core POR release                                   | —                                   | 0.97  | 1.02  | 1.06  | V    |
| POR-E                | 1.25 V VDD core POR engage                                    | —                                   | 0.93  | 0.98  | 1.02  | V    |
| LVD12R               | Low-Voltage Detection 1.25 V release (Core                    | Untrimmed                           | 1.122 | 1.157 | 1.192 | V    |
| LVD12R-trim          | VDD supply, and PLL0/1 supply LVDs)                           | Trimmed                             | 1.142 | 1.157 | 1.172 | V    |
| LVD12E               | Low-Voltage Detection 1.25 V engage (Core                     | Untrimmed                           | 1.102 | 1.137 | 1.172 | V    |
| LVD12E-trim          | VDD supply and PLL0/1 supply LVDs)                            | Trimmed                             | 1.122 | 1.137 | 1.152 | V    |
| HVD12R-trim          | High-Voltage Detection 1.25 V release<br>(Core VDD)           | Trimmed                             | 1.33  | 1.35  | 1.37  | V    |
| HVD12E-trim          | High-Voltage Detection 1.25 V engage<br>(Core VDD supply)     | Trimmed                             | 1.36  | 1.38  | 1.40  | V    |
| LVD_MIPI12R-trim     | Low-Voltage Detection 1.25V release<br>(MIPICSI2 DPHY supply) | _                                   | 1.130 | 1.157 | 1.184 | V    |
| LVD_MIPI12E-trim     | Low-Voltage Detection 1.25V engage<br>(MIPICSI2 DPHY supply)  |                                     | 1.111 | 1.137 | 1.163 | V    |
| POR-R-<br>VDD_HV_PMU | 3.3 V PMU supply voltage POR release threshold                |                                     | 2.54  | 2.645 | 2.735 | V    |
| POR-E-<br>VDD_HV_PMU | 3.3 V PMU supply voltage POR engage threshold                 | —                                   | 2.50  | 2.60  | 2.695 | V    |
| LVD33R               | 3.3V Low-Voltage Detection Release                            | Untrimmed                           | 2.90  | 3.02  | 3.13  | V    |
| LVD33R-trim          | Threshold (PMC, FLASH, IO, ADC)                               | Trimmed                             | 3.00  | 3.05  | 3.10  | V    |
| LVD33E               | 3.3V Low-Voltage Detection Engage                             | Untrimmed                           | 2.86  | 2.98  | 3.09  | V    |
| LVD33E-trim          | Threshold (PMC, FLASH, IO, ADC)                               | Trimmed                             | 2.96  | 3.01  | 3.06  | V    |
| HVD33R               | 3.3V High-Voltage Detection Release                           | Untrimmed                           | 3.45  | 3.61  | 3.75  | V    |
| HVD33R-trim          | Threshold (ADC)                                               | Trimmed                             | 3.47  | 3.53  | 3.58  | V    |
| HVD33E               | 3.3V High-Voltage Detection Engage                            | Untrimmed                           | 3.51  | 3.65  | 3.79  | V    |
| HVD33E-trim          | Threshold (ADC)                                               | Trimmed                             | 3.51  | 3.57  | 3.62  | V    |
| UVL30R               | SMPS under-voltage lockout release<br>threshold               | Untrimmed                           | 2.75  | 2.90  | 3.05  | V    |
| UVL25E               | SMPS under-voltage lockout engage<br>threshold                |                                     | 2.40  | 2.55  | 2.7   | V    |
| DGLITCHE             | Voltage Detector Deglitcher Filter Time -<br>Engage           | —                                   | 2.0   | 3.5   | 5     | μs   |
| DGLITCHR             | Voltage Detector Deglitcher Filter Time -<br>Release          | —                                   | 5     | 7     | 12    | μs   |
| RSTDGLTC             | VREG_POR_B Input Deglitch Filter Time                         | —                                   | 200   | 320   | 500   | ns   |
| RSTPUP               | VREG_POR_B Pin Pull-up Resistance                             | —                                   | 37    | 75    | 150   | kΩ   |
| REGENPUP             | VREG_SEL Pin Pull-up Resistance                               | —                                   | 37    | 75    | 150   | kΩ   |
| VSMPS                | Internal switched regulator output voltage <sup>1</sup>       | Load Current from 10<br>mA to 1.8 A | 1.19  | 1.255 | 1.35  | V    |

Table 9. Voltage regulator electrical specifications

Table continues on the next page ...

| Symbol           | Parameter                                                                         | Conditions | Min                     | Тур  | Max                     | Unit |
|------------------|-----------------------------------------------------------------------------------|------------|-------------------------|------|-------------------------|------|
| FSMPS            | Internal switched regulator operating                                             | Untrimmed  | 0.65                    | 1.00 | 1.35                    | MHz  |
|                  | frequency without modulation                                                      | Trimmed    | 0.93                    | 1.00 | 1.07                    | MHz  |
| FSMPS-M7.5       | Internal switched regulator frequency                                             | —          | —                       | 7.5  | _                       | %    |
| FSMPS-M15        | modulation                                                                        | —          | _                       | 15   | _                       | %    |
| FSMPS-M30        |                                                                                   |            |                         | 30   | _                       | %    |
| VREGSWPUP        | Internal switched regulator gate-driver pull-<br>up resistance <sup>2</sup>       | _          | _                       | _    | _                       | —    |
| VREF_BG_T        | PMC bandgap reference voltage for<br>SARADC                                       | Trimmed    | 1.20                    | 1.22 | 1.237                   | V    |
| Vih (VREG_POR_B) | VREG_POR_B pin High Voltage level                                                 | _          | 0.7 x<br>VDD_H<br>V_PMU | _    | VDD_H<br>V_PMU<br>+ 0.3 | V    |
| Vil (VREG_POR_B) | VREG_POR_B pin Low Voltage level                                                  | _          | -0.3                    | _    | 0.3 x<br>VDD_H<br>V_PMU | V    |
| LVDAFER          | Low Voltage Detection 3.3V Release (AFE<br>VDD_HV_DAC and VDD_HV_RAW<br>supplies) |            | 2.75                    | 2.80 | 2.90                    | V    |
| LVDAFEE          | Low Voltage Detection 3.3V Engage (AFE<br>VDD_HV_DAC and VDD_HV_RAW<br>supplies)  |            | 2.68                    | 2.77 | 2.86                    | V    |

Table 9. Voltage regulator electrical specifications (continued)

1. Min/Max includes transient load conditions. Steady state voltage is within the core supply operating specifications.

2. There is a strong pull up from VREG\_SWP to VDD\_HV\_REG3V8 which is connected when SMPS is disabled. The pullup has resistance less than 1 Kohm, therefore VREG\_SWP should not be connected to ground if unused.



Figure 2. SMPS External Components Configuration

| Table 10. | SMPS External | Components |
|-----------|---------------|------------|
|-----------|---------------|------------|

| Ref | Description                                                            |  |
|-----|------------------------------------------------------------------------|--|
| M1  | SI3443, 2SQ2315                                                        |  |
| L1  | 2.2 uH 3A < 100 m $\Omega$ series resistance (Ex. Bourns SRU8043-2R2Y) |  |
| D1  | SS8P3L 8A Schottcky Diode                                              |  |
| R1  | 24 kΩ                                                                  |  |
| C1  | 10 µF Ceramic                                                          |  |
| C2  | 100 nF Ceramic                                                         |  |
| C3  | 100 nF Ceramic (place close to inductor)                               |  |
| C4  | 10 uF Ceramic (place close to inductor)                                |  |
| C5  | 1 nF Ceramic                                                           |  |
| C6  | 4 x 100 nF + 4 x 10nF Ceramic (place close to MCU supply pins)         |  |
| C7  | 4 x 10 µF Ceramic (place close to MCU supply pins)                     |  |
| C8  | 100 nF Ceramic                                                         |  |
| C9  | 1 $\mu$ F Ceramic (Unless C1 is really close to the pin)               |  |

#### S32R274 Data Sheet, Rev. 4, 05/2018



#### Figure 3. Radar AFE External Components Configuration

| Table 11. | Radar A | FE External | Components |
|-----------|---------|-------------|------------|
|-----------|---------|-------------|------------|

| Component | Component<br>Value | Tolerance | Placement<br>Priority of<br>larger cap. <sup>1</sup> | Placement<br>Priority of<br>smaller cap <sup>1</sup> | Special notes |
|-----------|--------------------|-----------|------------------------------------------------------|------------------------------------------------------|---------------|
| C1        | 0.47 µF            | ±35%      | 3                                                    | —                                                    | _             |
| C2        | 0.1 µF             | ±35%      | —                                                    | 1                                                    | —             |
| C3        | 1.0 µF             | ±35%      | 7                                                    | _                                                    | —             |
| C4        | 1.0 µF             | ±35%      | 2                                                    | —                                                    | —             |
| C5        | 0.1 µF             | ±35%      | —                                                    | 4                                                    | —             |
| C6        | 1.0 µF             | ±35%      | 8                                                    | —                                                    | —             |
| C7        | 0.1 µF             | ±35%      | —                                                    | 6                                                    | —             |
| C8        | 1.0 µF             | ±35%      | 6                                                    | —                                                    | —             |
| C9        | 0.1 µF             | ±35%      | _                                                    | 5                                                    | _             |
| C10       | 1.0 µF             | ±35%      | 4                                                    |                                                      |               |
| C11       | 0.1 µF             | ±35%      | —                                                    | 2                                                    | _             |
| C12       | 1.0 µF             | ±35%      | 5                                                    | _                                                    | _             |
| C13       | 0.1 µF             | ±35%      | —                                                    | 3                                                    |               |
| C14       | 1.0 µF             | ±35%      | 10                                                   | —                                                    | _             |
| C15       | 0.1 µF             | ±35%      | _                                                    | 8                                                    | _             |
| C16       | 1.0 µF             | ±35%      | 9                                                    | —                                                    | _             |
| C17       | 0.1µF              | ±35%      | _                                                    | 7                                                    |               |

Table continues on the next page...

S32R274 Data Sheet, Rev. 4, 05/2018

| Component | Component<br>Value | Tolerance | Placement<br>Priority of<br>larger cap. <sup>1</sup> | Placement<br>Priority of<br>smaller cap <sup>1</sup> | Special notes                                                   |
|-----------|--------------------|-----------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|
| C18       | 10 µF              | —         | 1                                                    | —                                                    | X7R type                                                        |
| C19       | 220 nF             |           |                                                      | _                                                    | Sigma Delta ADC input capacitor. See Figure 9                   |
| C20       | 220 nF             | _         |                                                      |                                                      | Sigma Delta ADC input capacitor. See Figure 9                   |
| R1        | 40.2 kΩ            | ±0.1%     |                                                      |                                                      | tempco = 25ppm/C                                                |
| R2        | 300 Ω              | —         | —                                                    | —                                                    | DAC RI See Table 27                                             |
| R3        | 300 Ω              | —         | —                                                    |                                                      | DAC RI See Table 27                                             |
| Crystal   | 40MHz              | _         | _                                                    | —                                                    | Connected between XOSC_EXTAL/<br>XOSC_XTAL, ESR $\leq 30\Omega$ |

Table 11. Radar AFE External Components (continued)

 All Radar AFE external bypass capacitors should be placed as close as possible to the associated package pin. As shown in Radar AFE External Components Configuration figure, most pins have two values of bypass capacitor. Greater than 0.1 μF is referred to as the larger cap. 0.1 μF is referred to as the smaller cap.

## 4.5 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

## 4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts  $\times$  (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

#### NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 12. ESD ratings

| No. | Symbol                | Parameter               | Conditions <sup>1</sup> | Class | Max value <sup>2</sup> | Unit |
|-----|-----------------------|-------------------------|-------------------------|-------|------------------------|------|
| 1   | V <sub>ESD(HBM)</sub> | Electrostatic discharge | T <sub>A</sub> = 25 °C  | H1C   | 2000                   | V    |
|     |                       | (Human Body Model)      |                         |       |                        |      |

Table continues on the next page ...

| Table 12. E | ESD ratings ( | (continued) |
|-------------|---------------|-------------|
|-------------|---------------|-------------|

| No. | Symbol                | Parameter               | Conditions <sup>1</sup>        | Class | Max value <sup>2</sup> | Unit |
|-----|-----------------------|-------------------------|--------------------------------|-------|------------------------|------|
|     |                       |                         | conforming to AEC-<br>Q100-002 |       |                        |      |
| 2   | V <sub>ESD(CDM)</sub> | Electrostatic discharge | T <sub>A</sub> = 25 °C         | C3A   | 500 <sup>3</sup>       | V    |
|     |                       | (Charged Device Model)  | conforming to AEC-<br>Q100-011 |       | 750 (corners)          |      |

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

3. 500 V for non-AFE pins, 250 V for AFE pins.

### 5 I/O Parameters

### 5.1 I/O pad DC electrical characteristics

NMI, TCK, TMS, JCOMP are treated as GPIO.

| Symbol               | Parameter                                                 | Va                           | lue                                 | Unit |
|----------------------|-----------------------------------------------------------|------------------------------|-------------------------------------|------|
|                      |                                                           | Min                          | Max                                 |      |
| Vih_hys              | CMOS Input Buffer High Voltage (with hysteresis enabled)  | 0.65*V <sub>DD_HV_IO</sub>   | $V_{DD_HV_IO} + 0.3$                | V    |
| Vil_hys              | CMOS Input Buffer Low Voltage (with hysteresis enabled)   | -0.3                         | 0.35*V <sub>DD_HV_IO</sub>          | V    |
| Vih                  | CMOS Input Buffer High Voltage (with hysteresis disabled) | 0.55 * V <sub>DD_HV_IO</sub> | V <sub>DD_HV_IO</sub> + 0.3         | V    |
| Vil                  | CMOS Input Buffer Low Voltage (with hysteresis disabled)  | -0.3                         | 0.40 * V <sub>DD_HV_IO</sub>        | V    |
| Vhys                 | CMOS Input Buffer Hysteresis                              | 0.1 * V <sub>DD_HV_IO</sub>  | —                                   | V    |
| Vih <sub>TTL</sub>   | TTL Input high level voltage (All SAR_ADC input pins)     | 2                            | V <sub>DD_HV_ADCREFx</sub><br>+ 0.3 | V    |
| Vil <sub>TTL</sub>   | TTL Input low level voltage (All SAR_ADC input pins)      | -0.3                         | 0.56                                | V    |
| Vhyst <sub>TTL</sub> | TTL Input hysteresis voltage (All SAR_ADC input pins)     | 0.3                          | _                                   | V    |
| Pull_loh             | Weak Pullup Current <sup>1</sup>                          | 10                           | 55                                  | μA   |
| Pull_lol             | Weak Pulldown Current <sup>2</sup>                        | 10                           | 55                                  | μA   |
| linact_d             | Digital Pad Input Leakage Current (weak pull inactive)    | -2.5                         | 2.5                                 | μA   |
| Voh                  | Output High Voltage <sup>3</sup>                          | 0.8 * V <sub>DD_HV_IO</sub>  |                                     | V    |
| Vol                  | Output Low Voltage <sup>4</sup>                           | _                            | 0.2 * V <sub>DD_HV_IO</sub>         | V    |
| loh_f                | Full drive loh <sup>5</sup> (ipp_sre[1:0] = 11)           | 18                           | 70                                  | mA   |
| lol_f                | Full drive lol <sup>5</sup> (ipp_sre[1:0] = 11)           | 21                           | 120                                 | mA   |
| loh_h                | Half drive loh <sup>5</sup> (ipp_sre[1:0] = 10)           | 9                            | 35                                  | mA   |
| lol_h                | Half drive Iol <sup>5</sup> (ipp_sre[1:0] = 10)           | 10.5                         | 60                                  | mA   |

Table 13. I/O pad DC electrical specifications

#### I/O Parameters

- 1. Measured when pad = 0 V
- 2. Measured when pad =  $V_{DD HV IO}$
- 3. Measured when pad is sourcing 2 mA
- 4. Measured when pad is sinking 2 mA
- 5. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

#### 5.1.1 RGMII pad DC electrical characteristics Table 14. RGMII pad DC electrical specifications

| Symbol   | Parameter                                              | Value                        | Unit                         |    |
|----------|--------------------------------------------------------|------------------------------|------------------------------|----|
|          |                                                        | Min                          | Max                          |    |
| Vih      | CMOS Input Buffer High Voltage                         | 0.65 x V <sub>DD_HV_IO</sub> | $V_{DD_HV_IO} + 0.3$         | V  |
| Vil      | CMOS Input Buffer Low Voltage                          | -0.3                         | 0.35 x V <sub>DD_HV_IO</sub> | V  |
| Pull_loh | Weak Pullup Current <sup>1</sup>                       | 10                           | 55                           | μA |
| Pull_lol | Weak Pulldown Current <sup>2</sup>                     | 10                           | 55                           | μA |
| linact_d | Digital Pad Input Leakage Current (weak pull inactive) | -2.5                         | 2.5                          | μA |
| Voh      | Output High Voltage <sup>3</sup>                       | 0.8 x V <sub>DD_HV_IO</sub>  | —                            | V  |
| Vol      | Output Low Voltage <sup>4</sup>                        | —                            | 0.2 * V <sub>DD_HV_IO</sub>  | V  |
| loh_f    | Full drive loh <sup>5</sup>                            | 8                            | 26                           | mA |
| lol_f    | Full drive lol <sup>6</sup>                            | 8                            | 24                           | mA |

- 1. Measured when pad = 0 V
- 2. Measured when pad =  $V_{DD_HV_IO}$
- 3. Measured when pad is sourcing 2 mA
- 4. Measured when pad is sinking 2 mA
- 5. loh\_f value is measured with 0.8\*VDDE applied to the pad.
- 6.  $Iol_f$  is measured when 0.2\*VDDE is applied to the pad.

## 5.2 I/O pad AC specifications

AC Parameters are specified over the full operating junction temperature range of -40°C to +150°C and for the full operating range of the  $V_{DD_{HV_{IO}}}$  supply defined in Table 7.

| Symbol    | -       | elay (ns) <sup>1</sup><br>I/H>L | Rise/Fall Edge (ns) <sup>2</sup> |         | Drive Load (pF) | SIUL2_MSCR[SRC<br>] |
|-----------|---------|---------------------------------|----------------------------------|---------|-----------------|---------------------|
|           | Min     | Max                             | Min                              | Max     |                 | MSB,LSB             |
| pad_sr_hv | 2.5/2.5 | 8.25/7.5                        | 0.7/0.6                          | 3/3     | 50              | 11                  |
| (output)  | 6.4/5   | 19.5/19.5                       | 2.5/2.0                          | 12/12   | 200             | -                   |
| (output)  | 2.2/2.5 | 8/8                             | 0.4/0.3                          | 3.5/3.5 | 25              | 10                  |
|           | 2.9/3.5 | 12.5/11                         | 1.0/0.8                          | 6.5/6.5 | 50              | -                   |
|           | 11/8    | 35/31                           | 6.5/3.0                          | 25/21   | 200             |                     |

 Table 15. Functional Pad electrical characteristics

Table continues on the next page...

#### S32R274 Data Sheet, Rev. 4, 05/2018

| Symbol               | Prop. Delay (ns) <sup>1</sup><br>L>H/H>L |         |         |         | Drive Load (pF) | SIUL2_MSCR[SRC<br>] |
|----------------------|------------------------------------------|---------|---------|---------|-----------------|---------------------|
|                      | Min                                      | Max     | Min     | Max     |                 | MSB,LSB             |
|                      | 8.3/9.6                                  | 45/45   | 4/3.5   | 25/25   | 50              | 01 <sup>3</sup>     |
|                      | 13.5/15                                  | 65/65   | 6.3/6.2 | 30/30   | 200             | -                   |
|                      | 13/13                                    | 75/75   | 6.8/6   | 40/40   | 50              | 00 <sup>3</sup>     |
|                      | 21/22                                    | 100/100 | 11/11   | 51/51   | 200             | -                   |
| pad_sr_hv            |                                          | 2/2     |         | 0.5/0.5 | 0.5             | NA                  |
| (input) <sup>4</sup> |                                          |         |         |         |                 |                     |

Table 15. Functional Pad electrical characteristics (continued)

- 1. As measured from 50% of core side input to Voh/Vol of the output
- 2. Measured from 20% 80% of output voltage swing
- 3. Slew rate control modes
- 4. Input slope = 2ns

#### NOTE

Data based on characterization results, not tested in production.

#### Table 16. Functional Pad AC Specifications

| Symbol        | Parameter                       | Value |     | Unit |    |
|---------------|---------------------------------|-------|-----|------|----|
|               |                                 | Min   | Тур | Max  |    |
| pad_sr_hv(Cp) | Parasitic Input Pin Capacitance | 4.5   | 4.7 | 5.0  | pF |

## 5.3 Aurora LVDS driver electrical characteristics

#### NOTE

The Aurora interface is AC coupled, so there is no commonmode voltage specification.

Table 17. Aurora LVDS driver electrical characteristics

| Symbol                               | Parameter <sup>1</sup>                         | Value     |         |         | Unit |  |  |
|--------------------------------------|------------------------------------------------|-----------|---------|---------|------|--|--|
|                                      |                                                | Min       | Тур     | Max     |      |  |  |
| F <sub>TXRX</sub>                    | Data rate                                      | —         | _       | 1.15    | Gbps |  |  |
|                                      | Transmitter Specifications                     |           |         |         |      |  |  |
| V <sub>diffout</sub>                 | Differential output voltage swing (terminated) | +/- 400   | +/- 600 | +/- 800 | mV   |  |  |
| T <sub>rise</sub> /T <sub>fall</sub> | Rise/Fall time (10% - 90% of swing)            | 60        |         |         | ps   |  |  |
|                                      | Receiver Speci                                 | fications |         |         |      |  |  |
| V <sub>diffin</sub>                  | Differential voltage                           | +/- 100   |         | +/- 800 | mV   |  |  |
|                                      | Terminati                                      | on        |         | •       |      |  |  |

Table continues on the next page...

#### S32R274 Data Sheet, Rev. 4, 05/2018

| Symbol                  | Parameter <sup>1</sup>                       | Value |     | Unit |      |
|-------------------------|----------------------------------------------|-------|-----|------|------|
|                         |                                              | Min   | Тур | Мах  |      |
| R <sub>V_L</sub>        | Terminating Resistance (external)            | 99    | 100 | 101  | Ohms |
| C <sub>P</sub>          | Parasitic Capacitance (pad + bondwire + pin) |       |     | 1    | pF   |
| L <sub>P</sub>          | Parasitic Inductance                         |       |     | 7    | nH   |
|                         | STARTU                                       | Р     |     | •    | •    |
| T <sub>STRT_BIAS</sub>  | Bias startup time                            |       | —   | 5    | μs   |
| T <sub>STRT_TX</sub>    | Transmitter startup time <sup>2</sup>        | —     | _   | 5    | μs   |
| T <sub>STRT_RX</sub>    | Receiver startup time <sup>2</sup>           | —     | _   | 5    | μs   |
| LVDS_RXOUT <sup>3</sup> | Receiver o/p duty cycle                      | 30    |     | 70   | %    |

 Table 17. Aurora LVDS driver electrical characteristics (continued)

1. Conditions for these values are  $V_{DD_LV_IO_AURORA} = 1.19V$  to 1.32V,  $T_J = -40 / 150 \text{ °C}$ 

2. Startup time is defined as the time taken by LVDS current reference block for settling bias current after its pwr\_down (power down) has been deasserted. LVDS functionality is guaranteed only after the startup time.

3. Receiver o/p duty cycle is measured with 1.25 Gbps, 50% duty cycle, max 1 ns rise/fall time, 100 mV voltage swing signal applied at the receiver input.

### 5.4 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET\_B pin.



Figure 4. Start-up reset requirements





Figure 5. Noise filtering on reset signal

| Symbol                        | Parameter                              | Conditions <sup>1</sup>             | Value |     | alue                         | Unit |
|-------------------------------|----------------------------------------|-------------------------------------|-------|-----|------------------------------|------|
|                               |                                        |                                     | Min   | Тур | Max                          | 1    |
| V <sub>IH</sub>               | Input high level TTL (Schmitt Trigger) | _                                   | 2.0   | _   | V <sub>DD_HV_IOx</sub> + 0.4 | V    |
| V <sub>IL</sub>               | Input low level TTL (Schmitt Trigger)  | —                                   | -0.4  | —   | 0.56                         | V    |
| V <sub>HYS</sub> <sup>2</sup> | Input hysteresis TTL (Schmitt Trigger) | —                                   | 300   | _   | _                            | mV   |
| I <sub>OL_R</sub>             | Strong pull-down current               | Device under power-on reset         | 0.2   | —   | —                            | mA   |
|                               |                                        | $V_{DD_HV_IO} = 1.2 V$              |       |     |                              |      |
|                               |                                        | $V_{OL} = 0.35 \times V_{DD_HV_IO}$ |       |     |                              |      |
|                               |                                        | Device under power-on reset         | 15    | —   | —                            | mA   |
|                               |                                        | V <sub>DD_HV_IO</sub> =3.0 V        |       |     |                              |      |
|                               |                                        | $V_{OL} = 0.35 \times V_{DD_HV_IO}$ |       |     |                              |      |
| W <sub>FRST</sub>             | RESET_B input filtered pulse           | —                                   | —     | —   | 500                          | ns   |
| W <sub>NFRST</sub>            | RESET_B input not filtered pulse       | —                                   | 2400  | —   | —                            | ns   |
| I <sub>WPD</sub>              | Weak pull-down current absolute value  | $V_{IN} = V_{DD_HV_IOx}$            | 30    | —   | 100                          | μA   |

| Table 18. | RESET | B electrical | characteristics |
|-----------|-------|--------------|-----------------|
|-----------|-------|--------------|-----------------|

1.  $V_{DD_HV_IOx} = 3.3 \text{ V} - 5\%, +10\%, T_J = -40 / 150^{\circ}C$ , unless otherwise specified.

2. Data based on characterization results, not tested in production.

## 6 Peripheral operating requirements and behaviours

## 6.1 Clocks and PLL Specifications

### 6.1.1 40 MHz Oscillator (XOSC) electrical characteristics

The device provides an oscillator/resonator driver.

#### NOTE

XTAL/EXTAL must not be directly used to drive external circuits.

| Symbol               | Parameter                                       | Conditions             | Min  | Тур  | Max              | Unit |
|----------------------|-------------------------------------------------|------------------------|------|------|------------------|------|
| XOSC <sub>fout</sub> | Oscillator frequency                            |                        |      | 40   |                  | MHz  |
| t <sub>stab</sub>    | Oscillator start-up time                        |                        |      |      | 2                | ms   |
| t <sub>jitcc</sub>   | Cycle to cycle jitter (peak – peak)             |                        |      |      | 2.5 <sup>1</sup> | ps   |
|                      | Output Duty Cycle                               |                        | 45   | 50   | 55               | %    |
| Cin                  | Input Capacitance <sup>2</sup>                  | Extal and Xtal each    | 3.0  | 4.0  | 5.0              | pF   |
| R <sub>inLVDS</sub>  | LVDS bypass mode input termination <sup>3</sup> | Between Extal and Xtal | 75   | 100  | 125              | ohm  |
| V <sub>CMLVDS</sub>  | LVDS Common Mode<br>Voltage                     | Vdda/2                 | 0.60 | 0.70 | 0.80             | V    |

#### Table 19. XOSC electrical characteristics

- 1. The number is 3.5 ps when SD-ADC and/or DAC is not used in the device.
- 2. When using a 40 MHz crystal, the recommended load capacitance is 8 pF. Need quiet ground connection on the board and external crystal/load capacitor placement as close to the Extal and Xtal pins as possible to allow good jitter performance.
- 3. The termination resistance is only active when the AFE is powered (VDD\_HV\_RAW, VDD\_HV\_DAC and the AFE regulators are powered up) and the XOSC is powered down (default case once device is out of reset) or the XOSC is configured in differential bypass mode.

## 6.1.2 FMPLL electrical characteristics



Figure 6. PLL integration

| Table 20. PLL0 electrical characteristics | Table 20. | L0 electrical characteristic | CS |
|-------------------------------------------|-----------|------------------------------|----|
|-------------------------------------------|-----------|------------------------------|----|

| Symbol                | Parameter                                         | Conditions <sup>1</sup>                     | Min  | Тур | Max              | Unit |
|-----------------------|---------------------------------------------------|---------------------------------------------|------|-----|------------------|------|
| f <sub>PLL0IN</sub>   | PLL0 input clock <sup>2, 3</sup>                  | _                                           | 14   | —   | 44               | MHz  |
| $\Delta_{PLLOIN}$     | PLL0 input clock duty cycle <sup>2</sup>          | _                                           | 40   | —   | 60               | %    |
| f <sub>PLL0VCO</sub>  | PLL0 VCO frequency                                | —                                           | 600  | —   | 1250             | MHz  |
| f <sub>PLL0PHI0</sub> | PLL0 output clock PHI0                            | _                                           | 4.76 | —   | 625 <sup>4</sup> | MHz  |
| f <sub>PLL0PHI1</sub> | PLL0 output clock PHI1                            | _                                           | 20   | —   | 156              | MHz  |
| t <sub>PLL0LOCK</sub> | PLL0 lock time                                    | _                                           | _    | —   | 100              | μs   |
| $\Delta_{PLLOLTJ}$    | PLL0 long term jitter f <sub>PLL0IN</sub> = 8 MHz | f <sub>PLL0PHI0</sub> = 40 MHz, 1 μs        |      |     | ± 1              | ns   |
|                       | (resonator) <sup>5</sup>                          | $f_{PLL0PHI0} = 40 \text{ MHz}, 13 \ \mu s$ |      |     | ± 1              | ns   |
| I <sub>PLL0</sub>     | PLL0 consumption                                  |                                             |      | —   | 5                | mA   |

- 1.  $V_{DD_LV_PLL0} = 1.25 \text{ V} \pm 5\%$ ,  $T_J = -40 / 150 \text{ °C}$  unless otherwise specified.
- 2. PLLOIN clock retrieved directly from either IRCOSC or external XOSC clock.
- f<sub>PLL0IN</sub> frequency must be scaled down using PLLDIG\_PLL0DV[PREDIV] to ensure the reference clock to the PLL analog loop is in the range 8 MHz-20 MHz
- 4. The maximum clock outputs are limited by the design clock frequency requirements as per recommended operating conditions.
- V<sub>DD\_LV\_PLL0</sub> noise due to application in the range V<sub>DD\_LV\_PLL0</sub> = 1.25 V±5%, with frequency below PLL bandwidth (40 KHz) will be filtered.

| Symbol                  | Parameter                                | Conditions <sup>1</sup> | Min  | Тур | Мах  | Unit |
|-------------------------|------------------------------------------|-------------------------|------|-----|------|------|
| f <sub>PLL1IN</sub>     | PLL1 input clock <sup>2</sup>            | —                       | 38   | —   | 78   | MHz  |
| $\Delta_{PLL1IN}$       | PLL1 input clock duty cycle <sup>2</sup> | _                       | 35   | —   | 65   | %    |
| f <sub>PLL1VCO</sub>    | PLL1 VCO frequency                       | —                       | 600  | —   | 1250 | MHz  |
| f <sub>PLL1PHI0</sub>   | PLL1 output clock PHI0                   | —                       | 4.76 | —   | 625  | MHz  |
| t <sub>PLL1LOCK</sub>   | PLL1 lock time                           | _                       |      | —   | 100  | μs   |
| f <sub>PLL1MOD</sub>    | PLL1 modulation frequency                | —                       | —    | —   | 250  | kHz  |
| lδ <sub>PLL1MOD</sub> l | PLL1 modulation depth (when              | Center spread           | 0.25 | —   | 2    | %    |
|                         | enabled)                                 | Down spread             | 0.5  | —   | 4    | %    |
| I <sub>PLL1</sub>       | PLL1 consumption                         |                         | _    | —   | 6    | mA   |

Table 21. FMPLL1 electrical characteristics

1.  $V_{DD LV PLL0} = 1.25 V \pm 5\%$ ,  $T_J = -40 / 150^{\circ}C$  unless otherwise specified.

2. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock.

### 6.1.3 16 MHz Internal RC Oscillator (IRCOSC) electrical specifications Table 22. Internal RC Oscillator electrical specifications

| Symbol               | Parameter                                    | Conditions | Min | Тур | Мах | Unit |
|----------------------|----------------------------------------------|------------|-----|-----|-----|------|
| F <sub>Target</sub>  | IRC target frequency                         | —          | _   | 16  | —   | MHz  |
| Funtrimmed           | IRC frequency (untrimmed)                    | —          | 9.6 |     | 24  | MHz  |
| δF <sub>var</sub>    | IRC trimmed frequency variation <sup>1</sup> | —          | -8  | —   | 8   | %    |
| T <sub>startup</sub> | Startup time                                 |            | _   |     | 5   | μs   |

 The typical user trim step size (δf<sub>TRIM</sub>) is 0.3% of current frequency for application of positive trim and 0.26% of current frequency for application of negative trim, based on characterization results.

#### 6.1.4 320 MHz AFE PLL electrical characteristics Table 23. 320 MHz AFE PLL parameters

| Symbol              | Parameter                           | Conditions        | Min | Тур | Max | Unit |
|---------------------|-------------------------------------|-------------------|-----|-----|-----|------|
| PLL <sub>fout</sub> | Output Frequency                    | —                 | —   | 320 | —   | MHz  |
| PLL <sub>fin</sub>  | Input Frequency                     | —                 | —   | —   | 40  | MHz  |
| t <sub>cal</sub>    | Calibration Time <sup>1</sup>       | LW64 = 1          | —   | —   | 150 | μs   |
|                     |                                     | LW64 = 0          |     |     | 500 |      |
| t <sub>lock</sub>   | Lock Time                           | after calibration | —   | —   | 75  | μs   |
| t <sub>jitcck</sub> | Cycle to cycle jitter (peak – peak) | —                 | —   | —   | 10  | ps   |
| —                   | Output duty cycle                   | —                 | 48  | 50  | 52  | %    |

1. The LW64 bit sets the wait time before the PLL frequency is measured after each calibration step to allow for stabilization. If LW64 is '0', wait time of 256 reference clock cycles is used. If LW64 is'1', wait time of 64 reference clock cycles is used.

#### 6.1.5 LFAST PLL electrical characteristics

The specifications in the following table apply to the interprocessor bus LFAST interface.

 Table 24.
 LFAST PLL electrical characteristics

| Symbol              | Parameter                                   | Condition                                   | Min | Тур              | Max | Unit |
|---------------------|---------------------------------------------|---------------------------------------------|-----|------------------|-----|------|
| f <sub>RF_REF</sub> | PLL reference clock frequency               | —                                           | 10  | —                | 26  | MHz  |
| ERR <sub>REF</sub>  | PLL reference clock frequency error         | —                                           | -1  | _                | 1   | %    |
| DC <sub>REF</sub>   | PLL reference clock duty cycle              | —                                           | 45  | _                | 55  | %    |
| f <sub>VCO</sub>    | PLL VCO frequency                           | —                                           | —   | 640 <sup>1</sup> | _   | MHz  |
| t <sub>LOCK</sub>   | PLL phase lock <sup>2</sup>                 | —                                           | —   | _                | 40  | μs   |
| ΔPER <sub>REF</sub> | Input reference clock jitter (peak to peak) | Single period, f <sub>RF_REF</sub> = 10 MHz |     | _                | 300 | ps   |

Table continues on the next page ...

# Table 24. LFAST PLL electrical characteristics (continued)

| Symbol              | Parameter                                     | Condition                                  | Min  | Тур  | Max  | Unit                  |
|---------------------|-----------------------------------------------|--------------------------------------------|------|------|------|-----------------------|
|                     |                                               | Long term, f <sub>RF_REF</sub> = 10<br>MHz | -500 | _    | 500  |                       |
| ΔPER <sub>EYE</sub> | Output Eye Jitter (peak to peak) <sup>3</sup> | Random Jitter (Rj)                         | -    | 84   | 101  | ps                    |
|                     |                                               | Deterministic Jitter (Dj)                  | _    | 80   | 96   | ps                    |
|                     |                                               | Total Jitter @BER 10 <sup>-9</sup>         | _    | 1.09 | 1.31 | bits<br>per<br>second |
| IVDD_LV_LFASTPLL    | V <sub>DD_LV_LFASTPLL</sub> Supply Current    | Normal Mode                                | _    | 6    | 10   | mA                    |
|                     |                                               | Peak                                       | _    | 7    | 11   | mA                    |
|                     |                                               | Power Down                                 | _    | 0.5  | 27   | μA                    |

1. The 640 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 26 MHz reference, the VCO frequency is 624 MHz.

2. The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral bridge clock that is connected to the PLL on the device.

3. Measured at the transmitter output across a 100  $\Omega$  termination resistor on a device evaluation board.

## 7 Analog modules

## 7.1 ADC electrical characteristics

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.



Figure 7. ADC characteristics and error definitions

## 7.1.1 Input equivalent circuit



#### Figure 8. Input equivalent circuit

| Table 25. | ADC conversion characteristics |
|-----------|--------------------------------|
|-----------|--------------------------------|

| Symbol                        | Parameter                                                                                                    | Conditions <sup>1</sup>               | Min  | Тур | Max  | Unit |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|------|-----|------|------|
| f <sub>CK</sub>               | ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK <sup>2</sup> frequency.) | —                                     | 20   | 80  | 80   | MHz  |
| f <sub>s</sub>                | Sampling frequency                                                                                           | —                                     | _    | —   | 1.00 | MHz  |
| t <sub>sample</sub>           | Sample time <sup>3</sup>                                                                                     | 80 MHz@ 200 ohm source impedance      | 275  | —   | —    | ns   |
| t <sub>sampleC</sub>          | SAR selftest C-algorithm sample time                                                                         | —                                     | 300  | —   | _    | ns   |
| T <sub>sampleS</sub>          | SAR selftest S-algorithm sample time                                                                         | —                                     | 1    | —   | _    | μs   |
| T <sub>sampleBG</sub>         | Bandgap sample time                                                                                          | —                                     | 1.87 | _   | —    | μs   |
| T <sub>sampleTS</sub>         | Temperature sensor sample time                                                                               | —                                     | 3.18 | —   | _    | μs   |
| t <sub>conv</sub>             | Conversion time <sup>4</sup>                                                                                 | 80 MHz                                | 650  | —   | _    | ns   |
| C <sub>S</sub> , 5            | ADC input sampling capacitance                                                                               | —                                     | _    | 3   | 5    | pF   |
| C <sub>P1</sub> <sup>5</sup>  | ADC input pin capacitance 1                                                                                  | —                                     | _    | _   | 5    | pF   |
| C <sub>P2</sub> <sup>5</sup>  | ADC input pin capacitance 2                                                                                  | —                                     | -    | —   | 0.8  | pF   |
| R <sub>SW1</sub> <sup>5</sup> | Internal resistance of analog source                                                                         | V <sub>REF</sub> range = 3.0 to 3.6 V | _    | —   | 875  | Ω    |
| R <sub>AD</sub> <sup>5</sup>  | Internal resistance of analog source                                                                         | —                                     | _    | _   | 825  | Ω    |
| INL                           | Integral non-linearity                                                                                       | —                                     | -2   | —   | 2    | LSB  |
| DNL                           | Differential non-linearity <sup>6</sup>                                                                      | —                                     | -1   | —   | 1    | LSB  |
| OFS                           | Offset error                                                                                                 | -                                     | -4   | —   | 4    | LSB  |
| GNE                           | Gain error                                                                                                   | —                                     | -4   | —   | 4    | LSB  |

Table continues on the next page ...

| Symbol                  | Parameter                                    | Conditions <sup>1</sup>       | Min                | Тур | Max            | Unit |
|-------------------------|----------------------------------------------|-------------------------------|--------------------|-----|----------------|------|
| TUE <sub>IS1WINJ</sub>  | Total unadjusted error for IS1WINJ           |                               | -6                 | —   | 6              | LSB  |
| TUE <sub>IS1WWINJ</sub> | Total unadjusted error for IS1WWINJ          |                               | -6                 | _   | 6              | LSB  |
| IS1WINJ (pad            | (single ADC channel)                         |                               |                    |     |                |      |
| going to one<br>ADC)    | Max leakage                                  | 150 °C                        | —                  | _   | 250            | nA   |
|                         | Max positive/negative injection              |                               | -3                 | _   | 3 <sup>8</sup> | mA   |
| IS1WWINJ                | (double ADC channel)                         |                               |                    |     |                |      |
| (pad going to two ADCs) | Max leakage                                  | 150 °C                        | —                  | _   | 300            | nA   |
|                         | Max positive/negative injection <sup>7</sup> | Vref_ad0 - Vref_ad1  < 150 mV | -3.6               | _   | 3.6            | mA   |
| SNR                     | Signal-to-noise ratio                        | 3.3 V reference voltage       | 67                 |     | _              | dB   |
| THD                     | Total harmonic distortion                    | @ 50 KHz                      | 65                 | _   | _              | dB   |
| SINAD                   | Signal-to-noise and distortion               | Fin < 50 KHz                  | 6.02 x ENOB + 1.76 |     | + 1.76         | dB   |
| ENOB                    | Effective number of bits                     | Fin < 50 KHz                  | 10.5               |     | _              | bits |

#### Table 25. ADC conversion characteristics (continued)

1.  $V_{DD_HV_ADC} = 3.3 \text{ V} -5\%, +10\%, T_J = -40 \text{ to } +150^{\circ}\text{C}$ , unless otherwise specified and analog input voltage from  $V_{AGND}$  to  $V_{DD_HV_ADCREFx}$ .

2. AD\_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.

During the sample time the input capacitance C<sub>S</sub> can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within t<sub>sample</sub>. After the end of the
sample time t<sub>sample</sub>, changes of the analog input voltage have no effect on the conversion result. Values for the sample
clock t<sub>sample</sub> depend on programming.

4. This parameter does not include the sample time t<sub>sample</sub>, but only the time for determining the digital result and the time to load the result register with the conversion result.

- 5. SeeInput equivalent circuit figure.
- 6. No missing codes.

7. ADC specifications are met only if injection is within these specified limits

8. Max injection current for all ADC IOs is  $\pm$  10 mA

#### NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel. Aurora interface along with SAR-ADC would degrade SAR-ADC performance. General Purpose Input (GPI) functionality should not be used on any of the SAR-ADC channels when SARADC is functional.



## 7.2 Sigma Delta ADC electrical characteristics



| Symbol                       | Parameter     | Condition                                                                                                                                                                                                                                     | Min | Тур | Max | Unit |
|------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| SPS <sub>SDA</sub>           | Sample Rate   | After Decimation Filtering                                                                                                                                                                                                                    | —   | 10  | 10  | MS/S |
| L <sub>SDA</sub>             | Latency       | @ 10 MS/s, full step input to 50% output.<br>Decimation filter delay not included                                                                                                                                                             | _   | —   | 0.1 | μs   |
| RT <sub>SDA</sub>            | Recovery Time | After overload condition                                                                                                                                                                                                                      | _   | _   | 0.5 | μs   |
| SNR <sub>SDA_MM_ON</sub> , 1 |               | Input Frequency Range and integration<br>bandwidth are from 20 KHz to 5 MHz (using<br>full-bandwidth decimation filter coefficients).<br>Production test frequencies 449 KHz and 4<br>MHz. Production test amplitude is -6 dBFS =<br>0.6 Vpp. | 63  | 67  | _   | dBFS |

#### Table 26. Sigma Delta ADC Parameters

Table continues on the next page ...

#### S32R274 Data Sheet, Rev. 4, 05/2018

| Symbol                                          | Parameter                                                       | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min | Тур | Max | Unit |
|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
|                                                 |                                                                 | <ul> <li>Characterized under the following conditions:</li> <li>0.6 Vpp (i.e6 dBFS) input signals applied at the following frequencies one at a time: 20.77 KHz, 317.7 KHz, 857.7 KHz, 1.411 MHz, 2.95 MHz, 3.897 MHz, and 4.997 MHz and the SNR in dBFS is then calculated.</li> <li>SNR at 5 MHz will be reduced by 5 dB due to decimation filter roll off.</li> <li>The SNR is specified to be 67 dBFS typical for input frequencies between 20 KHz and 4 MHz. Mismatch shaper on.</li> </ul>                                                                                                                                                                                                                                                                                                                |     |     |     |      |
| SNR <sub>SDA_MM_OFF</sub> 1                     | Signal-to-Noise Ratio<br>Mismatch Shaper off                    | <ul> <li>Input Frequency Range and integration<br/>bandwidth are from 20 KHz to 5 MHz. (using<br/>full-bandwidth decimation filter coefficients).</li> <li>Production test frequencies 449 KHz and 4<br/>MHz. Production test amplitude is -6 dBFS =<br/>0.6 Vpp.</li> <li>Characterized under the following conditions: <ul> <li>0.6 Vpp (i.e6dBFS) input signals<br/>applied at the following frequencies one<br/>at a time: 20.77 KHz, 317.7 KHz, 857.7<br/>KHz, 1.411 MHz, 2.95 MHz, 3.897<br/>MHz, and 4.997 MHz and the SNR in<br/>dBFS is then calculated.</li> <li>SNR at 5 MHz will be reduced by 5 dB<br/>due to decimation filter roll off.</li> <li>The SNR is specified to be 67 dBFS<br/>typical for input frequencies between 20<br/>KHz and 4 MHz. Mismatch shaper off.</li> </ul> </li> </ul>  | 65  | 67  |     | dBFS |
| SNDR <sub>SDA_MM_ON</sub> 1                     | Signal-to-Noise-and-<br>Distortion Ratio<br>Mismatch Shaper on  | <ul> <li>Input Frequency Range and integration<br/>bandwidth are from 20 KHz to 5 MHz. (using<br/>full-bandwidth decimation filter coefficients).</li> <li>Production test frequencies 449 KHz and 4<br/>MHz. Production test amplitude is -6 dBFS =<br/>0.6 Vpp.</li> <li>Characterized under the following conditions: <ul> <li>0.6 Vpp (i.e6 dBFS) input signals<br/>applied at the following frequencies one<br/>at a time: 20.77 KHz, 317.7 KHz, 857.7<br/>KHz, 1.411 MHz, 2.95 MHz, 3.897<br/>MHz, and 4.997 MHz and the SNDR in<br/>dBFS is then calculated.</li> <li>SNR at 5 MHz will be reduced by 5 dB<br/>due to decimation filter roll off.</li> <li>The SNR is specified to be 64 dBFS<br/>typical for input frequencies between 20<br/>KHz and 4 MHz. Mismatch shaper on.</li> </ul> </li> </ul> | 62  | 64  |     | dBFS |
| ${\rm SNDR}_{{\rm SDA}_{\rm MM}_{\rm OFF}}^{1}$ | Signal-to-Noise-and-<br>Distortion Ratio<br>Mismatch Shaper off | Input Frequency Range and integration<br>bandwidth are from 20 KHz to 5 MHz. (using<br>full-bandwidth decimation filter coefficients)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60  | 62  | -   | dBFS |

Table continues on the next page...

#### Analog modules

| Symbol                    | Parameter                                            | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min  | Тур | Max | Unit |
|---------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|------|
|                           |                                                      | <ul> <li>Production test frequencies 449 KHz and 4</li> <li>MHz. Production test amplitude is -6 dBFS = 0.6Vpp.</li> <li>Characterized under the following conditions: <ul> <li>0.6 Vpp (i.e6 dBFS) input signals applied at the following frequencies applied one at a time: 20.77 KHz, 317.7 KHz, 857.7 KHz, 1.411 MHz, 2.95 MHz, 3.897 MHz, and 4.997 MHz and the SNDR in dBFS is then calculated.</li> <li>SNR at 5 MHz will be reduced by 5 dB due to decimation filter roll off.</li> <li>The SNR is specified to be 62 dBFS typical for input frequencies between 20 KHz and 4 MHz. Mismatch shaper off.</li> </ul> </li> </ul>                |      |     |     |      |
| IFDR <sub>SDA</sub>       | Interference Free<br>Dynamic Range                   | 20 ms integration, ADC inputs tied together at<br>the package pin. One side of the AC coupling<br>capacitors associated with each input should<br>remain connected to the ADC input and the<br>other side of the capacitor should connected<br>to ground.                                                                                                                                                                                                                                                                                                                                                                                             | 90   |     | —   | dBFS |
| IMD <sub>SDA_MM_ON</sub>  | Intermodulation<br>Distortion Mismatch<br>Shaper on  | <ul> <li>Input Frequency Range and integration<br/>bandwidth are from 20 KHz to 5 MHz (using<br/>full-bandwidth decimation filter coefficients).</li> <li>Characterized under the following conditions: <ul> <li>Two distinct sets of signal pairs at the<br/>specified frequencies and at an<br/>amplitude of -8 dBFs (i.e. 0.23886<br/>Vpeak = 0.47772 Vpp differential) are<br/>applied one signal pair at a time.</li> <li>Signal pair #1 is f1 = 1 MHz and f2 =<br/>1.1 MHz and signal pair #2 is f1 =<br/>390.625 KHz and f2 = 546.875 KHz.</li> <li>All inter modulation products are<br/>checked. Mismatch Shaper on.</li> </ul> </li> </ul>  | 62   |     |     | dBc  |
| IMD <sub>SDA_MM_OFF</sub> | Intermodulation<br>Distortion Mismatch<br>Shaper off | <ul> <li>Input Frequency Range and integration<br/>bandwidth are from 20 KHz to 5 MHz (using<br/>full-bandwidth decimation filter coefficients).</li> <li>Characterized under the following conditions: <ul> <li>Two distinct sets of signal pairs at the<br/>specified frequencies and at an<br/>amplitude of -8 dBFs (i.e. 0.23886<br/>Vpeak = 0.47772 Vpp differential) are<br/>applied one signal pair at a time.</li> <li>Signal pair #1 is f1 = 1 MHz and f2 =<br/>1.1 MHz and signal pair #2 is f1 =<br/>390.625 KHz and f2 = 546.875 KHz.</li> <li>All inter modulation products are<br/>checked. Mismatch Shaper off.</li> </ul> </li> </ul> | 55   |     |     | dBc  |
|                           | 1                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     | 1   |      |
| GM                        | Gain Mismatching                                     | (ADCx to ADCy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.5 |     | 3.5 | %    |

#### Table 26. Sigma Delta ADC Parameters (continued)

Table continues on the next page...

| Symbol                    | Parameter                                                                                       | Condition                                                                                                                                                   | Min   | Тур               | Max   | Unit |
|---------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|-------|------|
| OEV                       | Offset Variation                                                                                | t = 50 ms, T = constant, data averaged in 1<br>ms increments                                                                                                | -0.07 | _                 | 0.07  | mV   |
| V <sub>cm</sub>           | Common Mode<br>Voltage <sup>2</sup>                                                             | SDADC switched on                                                                                                                                           | -     | vdda/2 –<br>30 mV | -     | V    |
| xtalk                     | Crosstalk (from any<br>ADC to the other<br>ADCs)                                                | Processing a full scale signal.                                                                                                                             | _     | _                 | -40   | dB   |
| Zin                       | Input Impedance                                                                                 | Maximum input impedance occurs for input<br>signals at 20 KHz and minimum input<br>impedance occurs at input frequencies<br>greater than 1 MHz <sup>3</sup> | 7.3   | _                 | 33.5  | kΩ   |
| R <sub>cm</sub>           | Resistance from<br>each SDADC input to<br>V <sub>cm</sub> (see Figure 9)                        | -                                                                                                                                                           | 27.3  | 32.2              | 37.0  | kΩ   |
| R_SDADC                   | Resistance from<br>each SDADC input<br>pin to differential<br>amplifier input (see<br>Figure 9) | -                                                                                                                                                           | 9.0   | 10.75             | 12.5  | kΩ   |
| C_SDADC                   | SDADC integrator<br>capacitors (see<br>Figure 9)                                                | -                                                                                                                                                           | 0.636 | 0.684             | 0.732 | pF   |
| C <sub>in</sub> parasitic | parasitic input<br>capacitance from<br>ADC input to ground                                      | -                                                                                                                                                           | 2.0   | 3.9               | 4.9   | pF   |
| DT                        | Analog Delay<br>Variation                                                                       | (ADCx to ADCy)                                                                                                                                              |       | _                 | 1     | ns   |
| AA                        | Alias Suppression                                                                               | ADC input frequency between 315 and 325<br>MHz                                                                                                              | 50    | _                 | —     | dB   |
| STFoob                    | ADC out of band<br>Signal Transfer<br>Function peaking                                          | Out of band Signal Transfer function peaking from 20 MHz to 40 MHz                                                                                          | 0     | 2                 | 3     | dB   |
| PR                        | passband ripple                                                                                 | From 20 KHz to 4 MHz (default decimation filter coefficients must be used)                                                                                  | -0.5  | 0.0               | 0.5   | dB   |
| OOBA <sup>4</sup>         | Out Of Band<br>Attenuation                                                                      | Default decimation filter coefficients must be<br>used                                                                                                      | -4.5  | _                 | -     | dB   |
|                           |                                                                                                 | 5 MHz                                                                                                                                                       | -10   |                   |       |      |
|                           |                                                                                                 | 6 MHz                                                                                                                                                       | -20   |                   |       |      |
|                           |                                                                                                 | 7 MHz                                                                                                                                                       | -40   |                   |       |      |
|                           |                                                                                                 | 10 MHz                                                                                                                                                      | -60   |                   |       |      |
|                           |                                                                                                 | 15 MHz                                                                                                                                                      |       |                   |       |      |

| Table 26. | Sigma Delta ADC Parameters ( | (continued) | ) |
|-----------|------------------------------|-------------|---|
|           |                              |             | , |

1. Derate specification by 2 dBFS for  $T_i$  less than 0°C.

2. vdda is an internally regulated and trimmed  $1.45V \pm 10mV$  voltage.

- 3. The input structure of the ADC is an active RC integrator which has a frequency dependent input impedance as indicated in ADC input equivalent circuit.
- 4. All attenuation values are relative to 0 dB in the ADC passband.
### 7.3 DAC electrical specifications

#### NOTE

- All data is measured in single ended mode. Differential mode is guaranteed by design.
- Specifications guaranteed only if factory trims are not overridden.

| Symbol             | Parameter                                 | Condition                                                                                      | Min | Тур                   | Max                   | Unit                |
|--------------------|-------------------------------------------|------------------------------------------------------------------------------------------------|-----|-----------------------|-----------------------|---------------------|
| N <sub>BIT</sub>   | Bits                                      | Base bits                                                                                      | _   | 12                    | _                     | Bits                |
|                    |                                           | PWM bits                                                                                       |     | 4<br>(extra<br>Isb's) |                       |                     |
| SPS <sub>DAC</sub> | Sample rate                               | -                                                                                              | _   | 10                    | _                     | MSam<br>ples/s      |
| DNL                | Linearity <sup>1</sup>                    | —                                                                                              | -24 |                       | 4                     | LSB                 |
| V <sub>out</sub>   | Output Voltage <sup>1, 2, 3</sup>         | Single-Ended, RI = 300 $\Omega$                                                                | 1.2 | —                     | 1.35                  | V                   |
| l <sub>out</sub>   | Full-Scale Output Current                 | DAC full-scale adjust bits set to 01 or 10                                                     | 4.0 | _                     | 4.5                   | mA                  |
| N <sub>DAC</sub>   | DAC output noise <sup>1, 4</sup>          | @250 kHz<br>@100 kHz<br>@10 kHz<br>@1 kHz                                                      |     | _                     | 20<br>30<br>65<br>170 | nV/<br>sqrt(Hz<br>) |
| SOE                | Static Offset Error <sup>1, 2</sup>       | Single-Ended                                                                                   | 60  | 75                    | 100                   | mV                  |
|                    |                                           | Differential with the full-scale adjust bits set to either 01 or 10                            | -30 | 0                     | 30                    |                     |
| TOE                | Transient Offset Error <sup>1, 2, 5</sup> | After low-pass filter and averaging                                                            | _   | _                     | 0.05                  | LSB                 |
| t <sub>DV</sub>    | Transient Time Delay Variation 1, 2, 6    | LSB step                                                                                       |     | _                     | 1                     | ns                  |
|                    |                                           | MSB step                                                                                       |     |                       | 10                    |                     |
| Oc                 | Output compliance                         | single-ended, only the DNL<br>specification is guaranteed. The<br>TOE and Tdv may be degraded. | 0   | -                     | 1.35                  | V                   |
| tempco             | Temperature coefficient                   | _                                                                                              | -1  | -                     | 1.0                   | LSB/K               |
| PSRR               | Power Supply Rejection Ratio <sup>7</sup> | Freq < 250 KHz                                                                                 | 30  | -                     | _                     | dB                  |

#### Table 27. DAC parameters

- DAC linearity, output swing, noise, TOE, and Tdv specifications are all based upon a 300 Ω DAC output load resistor and assume that the full-scale adjust bits are set to either 01 or 10. These specifications will NOT be met for other DAC output load resistor values.
- 2. Once all of the LVDs have cleared and the DAC is powered on, a one-time wait time of 300 ms is required before the DAC output signal is valid.
- 3. The full-scale DAC output is trimmed to 1.30 V ±10 mV with all DAC inputs set to 1 including both full-scale adjust bits.
- 4. RI = 300  $\Omega$ , 10uF capacitor between Vdd\_HV\_DAC and DAC\_C, ideal supply
- 5. Difference between ideal and real (Va+Vb/2), for all base and PWM LSBs
- 6. Falling edge to falling edge or rising edge to rising edge. Any transition DACn -> DACn + 1

7. DAC PSRR is 30 dB minimum for DAC output levels of 1/3 of full-scale or less. DAC PSRR is 24 dB minimum with the DAC output at full-scale.

## 8 Memory modules

# 8.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 28 shows the estimated Program/Erase times.

| Symbol               | Characteristic <sup>1</sup>        | Typ <sup>2</sup> |                               | tory<br>nming <sup>3, 4</sup>   | F                                      | ield Upda         | te                  | Unit |
|----------------------|------------------------------------|------------------|-------------------------------|---------------------------------|----------------------------------------|-------------------|---------------------|------|
|                      |                                    |                  | Initial<br>Max                | Initial<br>Max, Full<br>Temp    | Typical<br>End of<br>Life <sup>5</sup> | Lifeti            | me Max <sup>6</sup> |      |
|                      |                                    |                  | 20°C ≤T <sub>A</sub><br>≤30°C | -40°C ≤T <sub>J</sub><br>≤150°C | -40°C ≤T <sub>J</sub><br>≤150°C        | ≤ 1,000<br>cycles | ≤ 250,000<br>cycles |      |
| t <sub>dwpgm</sub>   | Doubleword (64 bits) program time  | 43               | 100                           | 150                             | 55                                     | 500               | -                   | μs   |
| t <sub>ppgm</sub>    | Page (256 bits) program time       | 73               | 200                           | 300                             | 108                                    | 500               |                     | μs   |
| t <sub>qppgm</sub>   | Quad-page (1024 bits) program time | 268              | 800                           | 1,200                           | 396                                    | 2,000             |                     | μs   |
| t <sub>16kers</sub>  | 16 KB Block erase time             | 168              | 290                           | 320                             | 250                                    | 1,000             |                     | ms   |
| t <sub>16kpgm</sub>  | 16 KB Block program time           | 34               | 45                            | 50                              | 40                                     | 1,000             |                     | ms   |
| t <sub>32kers</sub>  | 32 KB Block erase time             | 217              | 360                           | 390                             | 310                                    | 1,200             |                     | ms   |
| t <sub>32kpgm</sub>  | 32 KB Block program time           | 69               | 100                           | 110                             | 90                                     | 1,200             |                     | ms   |
| t <sub>64kers</sub>  | 64 KB Block erase time             | 315              | 490                           | 590                             | 420                                    | 1,600             |                     | ms   |
| t <sub>64kpgm</sub>  | 64 KB Block program time           | 138              | 180                           | 210                             | 170                                    | 1,600             |                     | ms   |
| t <sub>256kers</sub> | 256 KB Block erase time            | 884              | 1,520                         | 2,030                           | 1,080                                  | 4,000             | —                   | ms   |
| t <sub>256kpgm</sub> | 256 KB Block program time          | 552              | 720                           | 880                             | 650                                    | 4,000             | _                   | ms   |

#### Table 28. Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions:  $\leq$  150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions:  $-40^{\circ}C \le T_J \le 150^{\circ}C$ , full spec voltage.

# 8.2 Flash memory Array Integrity and Margin Read specifications

Symbol Characteristic Min Typical Max<sup>1</sup> Units 2 Array Integrity time for sequential sequence on 16 KB block. 512 x t<sub>ai16kseq</sub> Tperiod x Nread Array Integrity time for sequential sequence on 32 KB block. 1024 x t<sub>ai32kseq</sub> Tperiod x Nread Array Integrity time for sequential sequence on 64 KB block. 2048 x \_ t<sub>ai64ksea</sub> Tperiod x Nread Array Integrity time for sequential sequence on 256 KB block. 8192 x tai256kseq Tperiod x Nread Margin Read time for sequential sequence on 16 KB block. 73.81 110.7 tmr16kseq μs Margin Read time for sequential sequence on 32 KB block. 128.43 192.6 t<sub>mr32kseq</sub> μs Margin Read time for sequential sequence on 64 KB block. 237.65 356.5 t<sub>mr64kseq</sub> μs Margin Read time for sequential sequence on 256 KB block. 893.01 1,339.5 μs t<sub>mr256ksea</sub>

 Table 29. Flash memory Array Integrity and Margin Read specifications

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
  equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
  Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
  6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
  address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

### 8.3 Flash memory module life specifications

| Symbol              | Characteristic                                                                              | Conditions                        | Min     | Typical | Units         |
|---------------------|---------------------------------------------------------------------------------------------|-----------------------------------|---------|---------|---------------|
| Array P/E<br>cycles | Number of program/erase cycles per block<br>for 16 KB, 32 KB and 64 KB blocks. <sup>1</sup> | —                                 | 250,000 | _       | P/E<br>cycles |
|                     | Number of program/erase cycles per block for 256 KB blocks. <sup>2</sup>                    | —                                 | 1,000   | 250,000 | P/E<br>cycles |
| Data<br>retention   | Minimum data retention.                                                                     | Blocks with 0 - 1,000 P/E cycles. | 50      | _       | Years         |
|                     |                                                                                             | Blocks with 100,000 P/E cycles.   | 20      | _       | Years         |
|                     |                                                                                             | Blocks with 250,000 P/E cycles.   | 10      | _       | Years         |

#### Table 30. Flash memory module life specifications

- 1. Program and erase supported across standard temperature specs.
- 2. Program and erase supported across standard temperature specs.

### 8.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.



## 8.5 Flash memory AC timing specifications

Table 31. Flash memory AC timing specifications

| Symbol            | Characteristic                                                       | Min | Typical                                        | Max                                             | Units |
|-------------------|----------------------------------------------------------------------|-----|------------------------------------------------|-------------------------------------------------|-------|
| t <sub>psus</sub> | Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1. | _   | 9.4<br>plus four<br>system<br>clock<br>periods | 11.5<br>plus four<br>system<br>clock<br>periods | μs    |
| t <sub>esus</sub> | Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1. | _   | 16<br>plus four<br>system<br>clock<br>periods  | 20.8<br>plus four<br>system<br>clock<br>periods | μs    |

Table continues on the next page ...

| Symbol               | Characteristic                                                                                                                                                                                                                        | Min                                              | Typical                                       | Max                                              | Units |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------|
| t <sub>res</sub>     | Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.                                                                                                                                                         | _                                                | —                                             | 100                                              | ns    |
| t <sub>done</sub>    | Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.                                                                                                                          |                                                  | —                                             | 5                                                | ns    |
| t <sub>dones</sub>   | Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.                                                                                                                         |                                                  | 16<br>plus four<br>system<br>clock<br>periods | 20.8<br>plus four<br>system<br>clock<br>periods  | μs    |
| t <sub>drcv</sub>    | Time to recover once exiting low power mode.                                                                                                                                                                                          | 16<br>plus seven<br>system<br>clock<br>periods.  | _                                             | 45<br>plus seven<br>system<br>clock<br>periods   | μs    |
| t <sub>aistart</sub> | Time from 0 to 1 transition of UT0-AIE initiating a Margin Read<br>or Array Integrity until the UT0-AID bit is cleared. This time also<br>applies to the resuming from a suspend or breakpoint by<br>clearing AISUS or clearing NAIBP | _                                                | _                                             | 5                                                | ns    |
| t <sub>aistop</sub>  | Time from 1 to 0 transition of UT0-AIE initiating an Array<br>Integrity abort until the UT0-AID bit is set. This time also applies<br>to the UT0-AISUS to UT0-AID setting in the event of a Array<br>Integrity suspend request.       | _                                                | _                                             | 80<br>plus fifteen<br>system<br>clock<br>periods | ns    |
| t <sub>mrstop</sub>  | Time from 1 to 0 transition of UT0-AIE initiating a Margin Read<br>abort until the UT0-AID bit is set. This time also applies to the<br>UT0-AISUS to UT0-AID setting in the event of a Margin Read<br>suspend request.                | 10.36<br>plus four<br>system<br>clock<br>periods |                                               | 20.42<br>plus four<br>system<br>clock<br>periods | μs    |

#### Table 31. Flash memory AC timing specifications (continued)

# 8.6 Flash memory read wait-state and address-pipeline control settings

The following table describes the recommended settings of the Flash Memory Controller's PFCR1,2,3[RWSC] and PCRC1,2,3[APC] fields at various operating frequencies, based on specified intrinsic flash memory access timed of the Flash memory.

| Table 32. Flash read wait state and address pipeline control guide | lines |
|--------------------------------------------------------------------|-------|
|--------------------------------------------------------------------|-------|

| Operating Frequency (fsys = SYS_CLK) | RWSC | APC | Flash read latency on<br>min-cache miss (# of<br>fcpu clock periods) | Flash read latency<br>on mini-cache hit (#<br>of fcpu clock<br>periods) |
|--------------------------------------|------|-----|----------------------------------------------------------------------|-------------------------------------------------------------------------|
| 0 MHz < fsys <= 33 MHz               | 0    | 0   | 3                                                                    | 1                                                                       |

Table continues on the next page...

| Operating Frequency (fsys = SYS_CLK) | RWSC | APC | Flash read latency on<br>min-cache miss (# of<br>fcpu clock periods) | Flash read latency<br>on mini-cache hit (#<br>of fcpu clock<br>periods) |
|--------------------------------------|------|-----|----------------------------------------------------------------------|-------------------------------------------------------------------------|
| 33 MHz < fsys <= 100 MHz             | 2    | 1   | 5                                                                    | 1                                                                       |
| 100 MHz < fsys <= 120 MHz            | 3    | 1   | 6                                                                    | 1                                                                       |

#### Table 32. Flash read wait state and address pipeline control guidelines (continued)

# 9 Communication modules

### 9.1 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

### 9.1.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

• Measurements are with input transition of 1 ns and output load of 25 pF.

| Symbol | Description                           | Min. | Max. | Unit   |
|--------|---------------------------------------|------|------|--------|
| _      | RXCLK frequency                       | —    | 25   | MHz    |
| MII1   | RXCLK pulse width high                | 35%  | 65%  | RXCLK  |
|        |                                       |      |      | period |
| MII2   | RXCLK pulse width low                 | 35%  | 65%  | RXCLK  |
|        |                                       |      |      | period |
| MII3   | RXD[3:0], RXDV, RXER to RXCLK setup   | 5    | _    | ns     |
| MII4   | RXCLK to RXD[3:0], RXDV, RXER hold    | 5    | —    | ns     |
|        | TXCLK frequency                       | —    | 25   | MHz    |
| MII5   | TXCLK pulse width high                | 35%  | 65%  | TXCLK  |
|        |                                       |      |      | period |
| MII6   | TXCLK pulse width low                 | 35%  | 65%  | TXCLK  |
|        |                                       |      |      | period |
| MII7   | TXCLK to TXD[3:0], TXEN, TXER invalid | 2    | —    | ns     |
| MII8   | TXCLK to TXD[3:0], TXEN, TXER valid   | —    | 25   | ns     |

 Table 33. MII signal switching specifications







Figure 11. MII receive signal timing diagram

#### 9.1.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

• Measurements are with input transition of 1 ns and output load of 25 pF.

| Num   | Description                                 | Min. | Max. | Unit               |
|-------|---------------------------------------------|------|------|--------------------|
| _     | EXTAL frequency (RMII input clock RMII_CLK) | —    | 50   | MHz                |
| RMII1 | RMII_CLK pulse width high                   | 35%  | 65%  | RMII_CLK<br>period |
| RMII2 | RMII_CLK pulse width low                    | 35%  | 65%  | RMII_CLK<br>period |
| RMII3 | RXD[1:0], CRS_DV, RXER to RMII_CLK setup    | 4    | —    | ns                 |
| RMII4 | RMII_CLK to RXD[1:0], CRS_DV, RXER hold     | 2    | —    | ns                 |
| RMII7 | RMII_CLK to TXD[1:0], TXEN invalid          | 4    |      | ns                 |

Table continues on the next page...

| Num   | Description                      | Min. | Max. | Unit |
|-------|----------------------------------|------|------|------|
| RMII8 | RMII_CLK to TXD[1:0], TXEN valid | —    | 15   | ns   |





#### Figure 12. RMII transmit signal timing diagram



Figure 13. RMII receive signal timing diagram

### 9.1.3 RGMII signal switching specifications

The RGMII interface works at 3.3 V compatible levels as mentioned in RGMII pad DC electrical characteristics.

The following timing specs meet the requirements for RGMII style interfaces for a range of transceiver devices.

• Measurements are with input transition of 0.750 ns and output load of 10 pF.

| Symbol | Description                                | Min  | Тур | Max | Unit | Notes |
|--------|--------------------------------------------|------|-----|-----|------|-------|
| _      | Input Duty cycle (Clock from external PHY) | 48   | —   | 52  | %    |       |
| Тсус   | Clock cycle duration                       | 7.2  | 8.0 | 8.8 | ns   | 1     |
| TskewT | Data to clock output skew at transmitter   | -500 | 0   | 500 | ps   | 2     |
| TskewR | Data to clock input skew at receiver       | 1    | 1.8 | 2.6 | ns   | 2     |

Table 35. RGMII signal switching specifications

Table continues on the next page...

# Table 35. RGMII signal switching specifications (continued)

| Symbol | Description             | Min | Тур | Max | Unit | Notes |
|--------|-------------------------|-----|-----|-----|------|-------|
| Duty_G | Duty cycle for Gigabit  | 45  | 50  | 55  | %    | 3     |
| Duty_T | Duty cycle for 10/100T  | 40  | 50  | 60  | %    | 3     |
| Tr/Tf  | Rise/fall time (20–80%) | _   | —   | 1.5 | ns   |       |

- 1. For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
- 2. For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100 the Max value is unspecified.
- 3. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.



#### Figure 14. RGMII transmit signal timing diagram



#### Figure 15. RGMII receive signal timing diagram

### 9.1.4 MII/RMII Serial Management channel timing (MDC/MDIO)

The MDC/MDIO interface works at 3.3V compatible levels as mentioned in CMOS input (vih/vil/voh/vol/)values in I/O pad DC electrical characteristics .

Ethernet works with maximum frequency of MDC at 2.5 MHz. Output pads configured with SRC=11. MDIO pin must have external pull-up. Measurements are with input transition of 1.0 ns and output load of 50 pF.

| Num   | Description                                                               | Min.                                                                    | Max.                                                               | Unit       |
|-------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|------------|
| MDC00 | MDC clock frequency                                                       | —                                                                       | 2.5                                                                | MHz        |
| MDC10 | MDC falling edge to MDIO<br>output invalid (minimum<br>propagation delay) | (-0.8 +<br>(ENET_MSCR[HOLDTIME]<br>+1)*(PBRIDGE_n_CLK period in<br>ns)) |                                                                    | ns         |
| MDC11 | MDC falling edge to MDIO<br>output valid (maximum<br>propagation delay)   | _                                                                       | (13 + (ENET_MSCR[HOLDTIME]<br>+1)*(PBRIDGE_n_CLK period in<br>ns)) | ns         |
| MDC12 | MDIO (input) to MDC rising edge setup                                     | 13                                                                      | _                                                                  | ns         |
| MDC13 | MDIO (input) to MDC rising edge hold                                      | 0                                                                       | _                                                                  | ns         |
| MDC14 | MDC pulse width high                                                      | 40%                                                                     | 60%                                                                | MDC Period |
| MDC15 | MDC pulse width low                                                       | 40%                                                                     | 60%                                                                | MDC Period |

| Table 36. | Ethernet MDIO | timing table |
|-----------|---------------|--------------|
|           |               | uning table  |



Figure 16. RMII/MII serial management channel timing diagram

### 9.2 FlexRay timing parameters

This section provides the FlexRay interface timing characteristics for the input and output signals. These numbers are recommended per the FlexRay Electrical Physical Layer Specification, Version 3.0.1, and subject to change per the final timing analysis of the device.

#### 9.2.1 TxEN



Figure 17. FlexRay TxEN signal

| Name                      | Description                                                                            | Min | Max | Unit |
|---------------------------|----------------------------------------------------------------------------------------|-----|-----|------|
| dCCTxEN <sub>RISE25</sub> | Rise time of TxEN signal at CC                                                         | —   | 9   | ns   |
| dCCTxEN <sub>FALL25</sub> | Fall time of TxEN signal at CC                                                         | _   | 9   | ns   |
| dCCTxEN <sub>01</sub>     | Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge  | _   | 25  | ns   |
| dCCTxEN <sub>10</sub>     | Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge | _   | 25  | ns   |

1. All parameters specified for  $V_{DD_HV_IOx}$  = 3.3 V -5%, +10%,  $T_J$  = -40 °C / 150 °C, TxEN pin load maximum 25 pF.



Figure 18. FlexRay TxEN signal propagation delays

9.2.2 TxD



#### Figure 19. FlexRay TxD signal

• Measurements are with output load of 25 pF and pad configured as SRE =11.

 Table 38.
 TxD output characteristics

|   | Name                             | Description <sup>1</sup>             | Min   | Max  | Unit |  |  |
|---|----------------------------------|--------------------------------------|-------|------|------|--|--|
| Ī | dCCT <sub>xAsym</sub>            | Asymmetry of sending CC @ 25 pF load | -2.45 | 2.45 | ns   |  |  |
|   | Table continues on the part news |                                      |       |      |      |  |  |

Table continues on the next page...

| Name                                                   | Description <sup>1</sup>                                                               | Min | Max | Unit |
|--------------------------------------------------------|----------------------------------------------------------------------------------------|-----|-----|------|
|                                                        | (=dCCTxD <sub>50%</sub> - 100 ns)                                                      |     |     |      |
| dCCTxD <sub>RISE25</sub> +dCCTx<br>D <sub>FALL25</sub> | Sum of Rise and Fall time of TxD signal at the output                                  |     | 9   | ns   |
| dCCTxD <sub>01</sub>                                   | Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge  | _   | 25  | ns   |
| dCCTxD <sub>10</sub>                                   | Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge |     | 25  | ns   |

1. All parameters specified for  $V_{DD_HV_IOx}$  = 3.3 V -5%, +10%,  $T_J$  = -40 °C / 150°C, TxD pin load maximum 25 pF



\*FlexRay Protocol Engine Clock

#### Figure 20. FlexRay TxD signal propagation delays

### 9.2.3 RxD

| Table 39. | RxD | input | characteristic |
|-----------|-----|-------|----------------|
|-----------|-----|-------|----------------|

| Name                 | Description <sup>1</sup>                                                    | Min | Max | Unit |
|----------------------|-----------------------------------------------------------------------------|-----|-----|------|
| C_CCRxD              | Input capacitance on RxD pin                                                | —   | 7   | pF   |
| uCCLogic_1           | Threshold for detecting logic high                                          | 35  | 70  | %    |
| uCCLogic_0           | Threshold for detecting logic low                                           | 30  | 65  | %    |
| dCCRxD <sub>01</sub> | Sum of delay from actual input to the D input of the first FF, rising edge  |     | 10  | ns   |
| dCCRxD <sub>10</sub> | Sum of delay from actual input to the D input of the first FF, falling edge |     | 10  | ns   |

1. All parameters specified for  $V_{DD\_HV\_IOx}$  = 3.3 V -5%, +10%,  $T_{J}$  = –40 / 150  $^{\circ}C$ 

### 9.2.4 Receiver asymmetry

Table 40. Receiver asymmetry

| Name                          | Description                                                 | Min   | Max   | Unit |
|-------------------------------|-------------------------------------------------------------|-------|-------|------|
| dCCRxAsymAccept <sub>15</sub> | Acceptance of asymmetry at receiving CC with 15 pF load (*) | -31.5 | +44.0 | ns   |
| dCCRxAsymAccept <sub>25</sub> | Acceptance of asymmetry at receiving CC with 25 pF load (*) | -30.5 | +43.0 | ns   |

# 9.3 LVDS Fast Asynchronous Transmission (LFAST) electrical characteristics

The following table provides output driver characteristics for LFAST I/Os.

| Table 41. LFAST output buffer | electrical characteristics |
|-------------------------------|----------------------------|
|-------------------------------|----------------------------|

| Symbol               | Parameter                                                         | Conditions <sup>1</sup> | Value |     |      | Unit |
|----------------------|-------------------------------------------------------------------|-------------------------|-------|-----|------|------|
|                      |                                                                   |                         | Min   | Тур | Max  |      |
| ΙΔ <sub>VO_L</sub> Ι | Absolute value for differential output voltage swing (terminated) | _                       | 100   | 200 | 285  | mV   |
| V <sub>ICOM_L</sub>  | Common mode voltage                                               | _                       | 1.08  | 1.2 | 1.32 | V    |
| T <sub>tr_L</sub>    | Transition time output pin LVDS configuration                     | _                       | 0.2   | _   | 1.5  | ns   |

1.  $V_{DD \ HV \ IOx} = 3.3 \ V \ (-5\%, +10\%), \ T_J = -40 \ / \ 150 \ ^\circ C$ , unless otherwise specified.

#### NOTE

Fast IOs must be specified only as fast (and not as high current). See GPIO DC electrical specification.

### 9.3.1 LFAST interface timing diagrams



Figure 21. LFAST timing definition





Figure 23. Rise/fall time

### 9.3.2 LFAST interface electrical characteristics

#### NOTE

While LFAST is operating and 'Ready' (nex\_rdy\_b) signal is used by the debugger on PAD\_132, the recommended SRE settings are '00' and '01'. TCK should be used with low frequency (preferably less than 10 MHz).

| Symbol                 | Parameter                      | Conditions <sup>1</sup> | Value |         |          | Unit |  |  |
|------------------------|--------------------------------|-------------------------|-------|---------|----------|------|--|--|
|                        |                                |                         | Min   | Тур     | Max      |      |  |  |
| Data Rate              |                                |                         |       |         |          |      |  |  |
| DATARATE               | Data rate                      | _                       | —     | 312/320 | Typ+0.1% | Mbps |  |  |
|                        | STARTUP                        |                         |       |         |          |      |  |  |
| T <sub>STRT_BIAS</sub> | Bias startup time <sup>2</sup> | _                       | —     | 0.5     | 3        | μs   |  |  |

| Table 42. | LFAST | electrical | characteristics |
|-----------|-------|------------|-----------------|
|-----------|-------|------------|-----------------|

Table continues on the next page ...

# Table 42. LFAST electrical characteristics (continued)

| Symbol                | Parameter                                                               | Conditions <sup>1</sup> |                   | Value    |                  | Unit |  |
|-----------------------|-------------------------------------------------------------------------|-------------------------|-------------------|----------|------------------|------|--|
|                       |                                                                         |                         | Min               | Min Typ  |                  | 1    |  |
| T <sub>PD2NM_TX</sub> | Transmitter startup time<br>(power down to normal<br>mode) <sup>3</sup> | _                       | _                 | 0.2      | 2                | μs   |  |
| T <sub>SM2NM_TX</sub> | Transmitter startup time<br>(sleep mode to normal<br>mode) <sup>4</sup> | —                       | _                 | 0.2      | 0.5              | μs   |  |
| T <sub>PD2NM_RX</sub> | Receiver startup time <sup>5</sup><br>(Power down to Normal<br>mode)    | _                       | _                 | 20       | 40               | ns   |  |
| T <sub>PD2SM_RX</sub> | ,                                                                       |                         |                   | 20       | 50               | ns   |  |
|                       | · · · · ·                                                               | TRANSMITTE              | ĒR                | •        | •                | •    |  |
| V <sub>OS_DRF</sub>   | Common mode voltage                                                     | _                       | 1.08              | _        | 1.32             | V    |  |
| $ \Delta_{VOD_DRF} $  |                                                                         |                         | ±100              | ±200     | ± 285            | mV   |  |
| T <sub>TR_DRF</sub>   | Rise/Fall time (10% - 90% of swing)                                     |                         | 0.26              | -        | 1.5              | ns   |  |
| R <sub>OUT_DRF</sub>  | Terminating resistance                                                  |                         | 67                | _        | 198              | Ω    |  |
| C <sub>OUT_DRF</sub>  | Capacitance <sup>6</sup>                                                | _                       | -                 | —        | 5                | pF   |  |
|                       |                                                                         | RECEIVER                |                   |          |                  | ·    |  |
| VICOM_DRF             | Common mode voltage                                                     | _                       | 0.15 <sup>7</sup> | _        | 1.6 <sup>8</sup> | V    |  |
| D <sub>VI_DRF</sub>   | Differential input voltage                                              | _                       | 100               | _        | _                | mV   |  |
| V <sub>HYS_DRF</sub>  | Input hysteresis                                                        | _                       | 25                | _        | _                | mV   |  |
| R <sub>IN_DRF</sub>   | Terminating resistance                                                  |                         | 80                | 115      | 150              | Ω    |  |
| C <sub>IN_DRF</sub>   | Capacitance <sup>9</sup>                                                | _                       | -                 | 3.5      | 6                | pF   |  |
| L <sub>IN_DRF</sub>   | Parasitic Inductance <sup>10</sup>                                      | _                       | -                 | 5        | 10               | nH   |  |
|                       | TRANSMISSI                                                              | ON LINE CHARACT         | ERISTICS (PCE     | 3 Track) |                  |      |  |
| Z <sub>0</sub>        | Transmission line<br>characteristic impedance                           |                         | 47.5              | 50       | 52.5             | Ω    |  |
| Z <sub>DIFF</sub>     | Transmission line differential impedance                                | _                       | 95                | 100      | 105              | Ω    |  |

1.  $V_{DD_VH_IOx} = 3.3 \text{ V} - 5\%, +10\%, T_J = -40 / 150 \text{ °C}$ , unless otherwise specified

- 2. Startup time is defined as the time taken by LFAST current reference block for settling bias current after its pwr\_down (power down) has been deasserted. LFAST functionality is guaranteed only after the startup time.
- Startup time is defined as the time taken by LFAST transmitter for settling after its pwr\_down (power down) has been deasserted. Here it is assumed that current reference is already stable. LFAST functionality is guaranteed only after the startup time.
- 4. Startup time is defined as the time taken by LFAST transmitter for settling after its pwr\_down (power down) has been deasserted. Here it is assumed that current reference is already stable. LFAST functionality is guaranteed only after the startup time.
- Startup time is defined as the time taken by LFAST receiver for settling after its pwr\_down (power down) has been deasserted. Here it is assumed that current reference is already stable. LFAST functionality is guaranteed only after the startup time.

#### **Communication modules**

- 6. Total lumped capacitance including silicon, package pin and bond wire. Application board simulation is needed to verify LFAST template compliancy.
- 7. Absolute min = 0.15 V (285 mV / 2) = 0 V
- 8. Absolute max = 1.6 V + (285 mV / 2) = 1.743 V
- 9. Total capacitance including silicon, package pin and bond wire
- 10. Total inductance including silicon, package pin and bond wire

### 9.4 Serial Peripheral Interface (SPI) timing specifications

The following table describes the SPI electrical characteristics.

MTEF=1 Mode timing values given below are only applicable when external SPI is in classic mode. Slave mode timing values given below are applicable when device is in MTFE=0.

• Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured as SRE = 11.

| No. | Symbol                            | Parameter                  | Conditions                               | Min                                             | Max                     | Unit |
|-----|-----------------------------------|----------------------------|------------------------------------------|-------------------------------------------------|-------------------------|------|
| 1   | t <sub>scк</sub>                  | SPI cycle time             | Master (MTFE = 0)                        | 50                                              |                         | ns   |
|     |                                   |                            | Master (MTFE = 1)                        | 50                                              | _                       |      |
|     |                                   |                            | Slave (MTFE = 0)                         | 50                                              |                         | 1    |
|     |                                   |                            | Slave Receive Only mode <sup>1</sup>     | 16                                              | _                       |      |
| 2   | t <sub>CSC</sub>                  | PCS to SCK delay           | Master                                   | 63.8 <sup>2</sup>                               | —                       | ns   |
| 3   | t <sub>ASC</sub>                  | After SCK delay            | Master                                   | 68.8 <sup>3</sup>                               | _                       | ns   |
| 4   | 4 t <sub>SDC</sub> SCK duty cycle |                            | Master <sup>4</sup>                      | t <sub>SCK</sub> /2 – 1                         | t <sub>SCK</sub> /2 + 1 | ns   |
|     |                                   |                            | Slave <sup>5</sup>                       | _                                               | _                       | ns   |
|     |                                   |                            | Slave Receive only mode <sup>6</sup>     | tSCK/2 –<br>0.750                               | tSCK/2 +<br>0.750       | ns   |
| 5   | t <sub>A</sub>                    | Slave access time          | SS active to SOUT valid                  | _                                               | 25                      | ns   |
| 6   | t <sub>DIS</sub>                  | Slave SOUT disable time    | SS inactive to SOUT High-Z or invalid    | _                                               | 25                      | ns   |
| 7   | t <sub>PCSC</sub>                 | PCSx to PCSS time          | _                                        | 13 <sup>7</sup>                                 | _                       | ns   |
| 8   | t <sub>PASC</sub>                 | PCSS to PCSx time          |                                          | 13 <sup>8</sup>                                 | _                       | ns   |
| 9   | t <sub>SUI</sub>                  | Data setup time for inputs | Master (MTFE = 0)                        | 15                                              | _                       | ns   |
|     |                                   |                            | Slave                                    | 2                                               | —                       |      |
|     |                                   |                            | Slave Receive Mode                       | 2                                               | _                       |      |
|     |                                   |                            | Master (MTFE = 1, CPHA = 0) <sup>9</sup> | 15-N x SPI<br>IPG clock<br>period <sup>10</sup> | _                       |      |
|     |                                   |                            | Master (MTFE = 1, CPHA = 1)              | 15                                              | _                       | 1    |
| 10  | t <sub>HI</sub>                   | Data hold time for inputs  | Master (MTFE = 0)                        | -2                                              | _                       | ns   |
|     |                                   |                            | Slave                                    | 4                                               | —                       | ]    |
|     |                                   |                            | Slave Receive Mode                       | 4                                               | _                       | ]    |

#### Table 43. SPI timing

Table continues on the next page ...

**Communication modules** 

| No. | Symbol           | Parameter                   | Conditions                                   | Min                                               | Max                         | Unit |
|-----|------------------|-----------------------------|----------------------------------------------|---------------------------------------------------|-----------------------------|------|
|     |                  |                             | Master (MTFE = 1, CPHA = 0) <sup>9</sup>     | -2 + N x SPI<br>IPG clock<br>period <sup>10</sup> | _                           |      |
|     |                  |                             | Master (MTFE = 1, CPHA = 1)                  | -2                                                | _                           |      |
| 11  | t <sub>SUO</sub> | Data valid (after SCK edge) | Master (MTFE = 0)                            | —                                                 | 7 <sup>11</sup>             | ns   |
|     |                  |                             | Slave                                        | —                                                 | 23                          |      |
|     |                  |                             | Master (MTFE = 1, CPHA = $0$ ) <sup>12</sup> | -                                                 | 7 + SPI IPG<br>Clock Period |      |
|     |                  |                             | Master (MTFE = 1, CPHA = 1)                  | —                                                 | 7                           |      |
| 12  | t <sub>HO</sub>  | Data hold time for outputs  | Master (MTFE = 0)                            | -4 <sup>11</sup>                                  |                             | ns   |
|     |                  |                             | Slave                                        | 3.8                                               | _                           |      |
|     |                  |                             | Master (MTFE = 1, CPHA = 0) <sup>12</sup>    | -4 + SPI IPG<br>Clock Period                      | —                           |      |
|     |                  |                             | Master (MTFE = 1, CPHA = 1)                  | -4                                                |                             |      |

#### Table 43. SPI timing (continued)

- 1. Slave Receive Only mode can operate at a maximum frequency of 60 MHz. In this mode, the SPI can receive data on SIN, but no valid data is transmitted on SOUT.
- For SPI\_CTARn[PCSSCK] 'PCS to SCK Delay Prescaler' configuration is '3' (01h) and SPI\_CTARn[CSSCK] 'PCS to SCK Delay Scaler' configuration is '2' (0000h).
- For SPI\_CTARn[PASC] 'After SCK Delay Prescaler' configuration is '3' (01h) and SPI\_CTARn[ASC] 'After SCK Delay Scaler' configuration is '2' (0000h).
- 4. The numbers are valid when SPI is configured for 50/50. Refer the Reference manual for the mapping of the duty cycle to each configuration. A change in duty cycle changes the parameter here. For example, a configuration providing duty cycle of 33/66 at SPI translates to min tSCK/3 1.5 ns and max tSCK/3 + 1.5 ns.
- 5. The slave mode parameters (t<sub>SUI</sub>, t<sub>H</sub>I, t<sub>SUO</sub> and t<sub>HO</sub>) assume 50% duty cycle on SCK input. Any change in SCK duty cycle input must be taken care during the board design or by the master timing.
- 6. The slave receive only mode parameters ( $t_{SUI}$  and  $t_{HI}$ ) assume 50% duty cycle on SCK input. Any change in SCK duty cycle input must be taken care during the board design or by the master timing. However, there is additional restriction in the slave receive only mode that the duty cycle at the slave input should not go below  $t_{sdc}(min)$  corresponding to the  $t_{sdc}(min)$  for the slave receive mode.
- 7. In the master mode, this is governed by t<sub>PCSSCK</sub>. Refer the SPI chapter in the Reference Manual for details. The minimum spec is valid only for SPI\_CTARn[PCSSCK]= '0b01' (PCS to SCK delay prescalar of 3) or higher.
- In the master mode, this is governed by t<sub>PASC</sub>. Refer the SPI chapter in the Reference Manual for details. The minimum spec is valid only for SPI\_CTARn[PASC]= '0b01' (after SCK delay prescalar of 3) or higher.
- 9. For SPI\_CTARn[BR] 'Baud Rate Scaler' configuration is >= 4.
- 10. N = Configured sampling point value in MTFE=1 Mode.
- 11. Same value is applicable for PCS timing in continuous SCK mode.
- 12. SPI\_MCR[SMPL\_PT] should be set to 1.

#### NOTE

For numbers shown in the following figures, see Table 43.



Figure 24. SPI classic SPI timing — master, CPHA = 0



Figure 25. SPI classic SPI timing — master, CPHA = 1



Figure 26. SPI classic SPI timing — slave, CPHA = 0



Figure 27. SPI classic SPI timing — slave, CPHA = 1



Figure 28. SPI modified transfer format timing — master, CPHA = 0



Figure 29. SPI modified transfer format timing — master, CPHA = 1



Figure 30. SPI PCS strobe (PCSS) timing

### 9.5 LINFlexD timing specifications

The maximum bit rate is 1.875 MBit/s.

## 9.6 I<sup>2</sup>C timing

Table 44. I<sup>2</sup>C SCL and SDA input timing specifications

| Number | Symbol     | Parameter                                                      | Value |     | Unit             |
|--------|------------|----------------------------------------------------------------|-------|-----|------------------|
|        |            |                                                                | Min   | Мах |                  |
| 1      | I_tHD:STA  | Start Condition hold time                                      | 2     | -   |                  |
| 2      | I_t_LOW    | Clock low time                                                 | 8     | -   | Peripheral clock |
| 3      | I_tHD:DAT  | Data hold time                                                 | 2     | -   |                  |
| 4      | I_tHIGH    | Clock high time                                                | 4     | -   |                  |
| 5      | I_tSU:DAT  | Data setup time                                                | 4     | -   |                  |
| 6      | I_tSU:STA  | Start condition setup time (for repeated start condition only) | 2     | -   |                  |
| 7      | I_tSU:STOP | Stop condition setup time                                      | 2     | -   |                  |

#### Table 45. I<sup>2</sup>C SCL and SDA output timing specifications

| Number | Symbol     | Parameter                                                                   | V   | alue | Unit             |
|--------|------------|-----------------------------------------------------------------------------|-----|------|------------------|
|        |            |                                                                             | Min | Max  |                  |
| 1      | O_tHD:STA  | Start condition hold time <sup>1</sup>                                      | 6   | -    |                  |
| 2      | O_t_LOW    | Clock low time <sup>1</sup>                                                 | 10  | -    |                  |
| 3      | O_tHD:DAT  | Data hold time <sup>1</sup>                                                 | 7   | -    | Peripheral clock |
| 4      | O_t_HIGH   | Clock high time <sup>1</sup>                                                | 10  | -    |                  |
| 5      | O_tSU:DAT  | Data setup time <sup>1</sup>                                                | 2   | -    |                  |
| 6      | O_tSU:STA  | Start condition setup time (for repeated start condition only) <sup>1</sup> | 20  | -    |                  |
| 7      | O_tSU:STOP | Stop condition setup time <sup>1</sup>                                      | 10  | -    |                  |
| 8      | O_tr       | SCL/SDA rise time <sup>2</sup>                                              | -   | 99.6 | ns               |
| 9      | O_tf       | SCL/SDA fall time <sup>1</sup>                                              | -   | 99.6 |                  |

- 1. Programming IBFD (I<sup>2</sup>C Bus Frequency Divider Register) with the maximum frequency results in the minimum output timings listed. The I<sup>2</sup>C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IBDR (I<sup>2</sup>C Bus Data I/O Register).
- 2. Serial data (SDA) and Serial clock (SCL) reaches peak level depending upon the external signal capacitance and pull up resistor values as SDA and SCL are open-drain type outputs which are only actively driven low by the I<sup>2</sup>C module.



Figure 31. I<sup>2</sup>C input/output timing

## 10 Debug modules

### **10.1 JTAG/CJTAG interface timing**

The following table lists JTAGC/CJTAG electrical characteristics.

• Measurements are with input transition of 1 ns, output load of 50 pF and pads configured with SRE=11.

 Table 46. JTAG/CJTAG pin AC electrical characteristics <sup>1</sup>

| #  | Symbol                                | Characteristic                                            | Min | Max              | Unit |
|----|---------------------------------------|-----------------------------------------------------------|-----|------------------|------|
| 1  | t <sub>JCYC</sub> <sup>2</sup>        | TCK Cycle Time (JTAG)                                     | 36  | —                | ns   |
|    |                                       | TCK Cycle Time (CJTAG)                                    | 50  |                  |      |
| 2  | t <sub>JDC</sub>                      | TCK Clock Pulse Width                                     | 40  | 60               | %    |
| 3  | t <sub>TCKRISE</sub>                  | t <sub>TCKRISE</sub> TCK Rise and Fall Times (40% - 70%)  |     | 3                | ns   |
| 4  | t <sub>TMSS</sub> , t <sub>TDIS</sub> | TMS, TDI Data Setup Time                                  | 5   | —                | ns   |
| 5  | t <sub>TMSH</sub> , t <sub>TDIH</sub> | TMS, TDI Data Hold Time                                   | 5   | —                | ns   |
| 6  | t <sub>TDOV</sub>                     | TCK Low to TDO/TMS Data Valid <sup>3</sup>                | _   | 15 <sup>4</sup>  | ns   |
| 7  | t <sub>TDOI</sub>                     | TCK Low to TDO/TMS Data Invalid <sup>3</sup>              | 0   | —                | ns   |
| 8  | t <sub>TDOHZ</sub>                    | TCK Low to TDO/TMS High Impedance <sup>3</sup>            | —   | 22               | ns   |
| 9  | t <sub>JCMPPW</sub>                   | JCOMP Assertion Time                                      | 100 | —                | ns   |
| 10 | t <sub>JCMPS</sub>                    | JCOMP Setup Time to TCK Low                               | 40  | —                | ns   |
| 11 | t <sub>BSDV</sub>                     | TCK Falling Edge to Output Valid                          | —   | 600 <sup>5</sup> | ns   |
| 12 | t <sub>BSDVZ</sub>                    | TCK Falling Edge to Output Valid out of High<br>Impedance | -   | 600              | ns   |
| 13 | t <sub>BSDHZ</sub>                    | TCK Falling Edge to Output High Impedance                 | —   | 600              | ns   |
| 14 | t <sub>BSDST</sub>                    | Boundary Scan Input Valid to TCK Rising Edge              | 15  | —                | ns   |

Table continues on the next page...

#### Table 46. JTAG/CJTAG pin AC electrical characteristics <sup>1</sup> (continued)

| #  | Symbol             | Characteristic                                 | Min | Мах | Unit |
|----|--------------------|------------------------------------------------|-----|-----|------|
| 15 | t <sub>BSDHT</sub> | TCK Rising Edge to Boundary Scan Input Invalid | 15  | —   | ns   |

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency.
- 3. TMS timing is applicable only in CJTAG mode
- 4. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 5. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.



Figure 32. JTAG test clock input timing



Figure 33. JTAG test access port timing



Figure 34. JTAG JCOMP timing



Figure 35. JTAG boundary scan timing

## **10.2** Nexus Aurora debug port timing

Table 47. Nexus Aurora debug port timing

| #  | Symbol                 | Characteristic                     | Min | Max               | Unit              |
|----|------------------------|------------------------------------|-----|-------------------|-------------------|
| 1  | t <sub>REFCLK</sub>    | Reference clock frequency          | 625 | 1250              | MHz               |
| 1a | t <sub>MCYC</sub>      | Reference Clock rise/fall time     | —   | 400               | ps                |
| 2  | t <sub>RCDC</sub>      | Reference Clock Duty Cycle         | 45  | 55                | %                 |
| 3  | J <sub>RC</sub>        | Reference Clock jitter             | —   | 40                | ps                |
| 4  | t <sub>STABILITY</sub> | Reference Clock Stability          | 50  | —                 | PPM               |
| 5  | BER                    | Bit Error Rate                     | —   | 10 <sup>-12</sup> | —                 |
| 6  | t <sub>EVTIPW</sub>    | EVTI Pulse Width                   | 4.0 | —                 | t <sub>TCYC</sub> |
| 7  | J <sub>D</sub>         | Transmit lane Deterministic Jitter | —   | 0.17              | OUI               |
| 8  | J <sub>T</sub>         | Transmit Iane Total Jitter         |     | 0.35              | OUI               |

Table continues on the next page ...

| #  | Symbol          | Characteristic            | Min | Max  | Unit |
|----|-----------------|---------------------------|-----|------|------|
| 9  | S <sub>O</sub>  | Differential output skew  | —   | 20   | ps   |
| 10 | S <sub>MO</sub> | Lane to lane output skew  | _   | 1000 | ps   |
| 11 | OUI             | Aurora lane Unit Interval | 800 | 800  | ps   |

 Table 47. Nexus Aurora debug port timing (continued)



Figure 36. Nexus Aurora timings

#### 11 WKUP/NMI timing specifications Table 48. WKUP/NMI glitch filter

| Symbol             | Parameter                        | Min | Тур | Max | Unit |
|--------------------|----------------------------------|-----|-----|-----|------|
| W <sub>FNMI</sub>  | NMI pulse width that is rejected | —   | —   | 20  | ns   |
| W <sub>NFNMI</sub> | NMI pulse width that is passed   | 400 |     |     | ns   |

# 12 External interrupt timing (IRQ pin)

Table 49. External interrupt timing

| No. | Symbol            | Parameter                          | Conditions | Min | Мах | Unit             |
|-----|-------------------|------------------------------------|------------|-----|-----|------------------|
| 1   | t <sub>IPWL</sub> | IRQ pulse width low                | —          | 3   | —   | t <sub>CYC</sub> |
| 2   | t <sub>IPWH</sub> | IRQ pulse width high               |            | 3   |     | t <sub>CYC</sub> |
| 3   | t <sub>ICYC</sub> | IRQ edge to edge time <sup>1</sup> | _          | 6   | —   | t <sub>CYC</sub> |

1. Applies when IRQ pins are configured for rising edge or falling edge events, but not both

#### NOTE

tCYC is equivalent to TCK (prescaled filter clock period) which is the IRC clock prescaled to the Interrupt Filter Clock Prescaler (IFCP) value. TCK =  $T(IRC) \times (IFCP + 1)$  where T(IRC) is the internal oscillator period. Refer SIUL2 chapter of the device reference manual for details.



Figure 37. External interrupt timing

### **13** Temperature sensor electrical characteristics

The following table describes the temperature sensor electrical characteristics.

#### Table 50. Temperature sensor electrical characteristics

| Symbol            | Parameter                    | Conditions                    | Min | Тур  | Max | Unit  |
|-------------------|------------------------------|-------------------------------|-----|------|-----|-------|
| —                 | Temperature monitoring range |                               | -40 | —    | 150 | °C    |
| T <sub>SENS</sub> | Sensitivity                  |                               |     | 5.18 | —   | mV/°C |
| T <sub>ACC</sub>  | Accuracy                     | T <sub>J</sub> = -40 to 150°C | 5   | —    | 5   | °C    |

## 14 Radar module

### 14.1 MIPICSI2 D-PHY electrical and timing specifications

This section describes MIPICSI2<sup>1</sup> D-PHY electrical specifications, compliant with MIPICSI2 version 1.1, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes).



Figure 38. MIPICSI2 circuit

Table 51. Calibrator specifications

| Symbol           | Parameters                                                                 | Min | Тур | Max | Unit |
|------------------|----------------------------------------------------------------------------|-----|-----|-----|------|
| R <sub>EXT</sub> | External reference resistor, 1% accuracy (or better), for auto calibration | -   | 15  | -   | kΩ   |
| T <sub>cal</sub> | Time from when PD signal goes low to when CALCOMPL goes high               | -   | 2   | 2.5 | μs   |

### 14.1.1 Electrical and timing information

Table 52. Electrical and timing information

| Symbol               | Parameters                                       | Min              | Тур | Max | Unit |
|----------------------|--------------------------------------------------|------------------|-----|-----|------|
|                      | HS Line Receiver                                 | DC Specification | ons |     |      |
| V <sub>IDTH</sub>    | Differential input high voltage threshold        | -                | -   | 70  | mV   |
| V <sub>IDTL</sub>    | Differential input low voltage threshold         | -70              | -   | -   | mV   |
| V <sub>IHHS</sub>    | Single ended input high voltage                  | -                | -   | 460 | mV   |
| V <sub>ILHS</sub>    | Single ended input low voltage                   | -40              | -   | -   | mV   |
| V <sub>CMRXDC</sub>  | Input common mode voltage                        | 70               | -   | 330 | mV   |
| V <sub>TERM-EN</sub> | Single-ended threshold for HS termination enable | -                | -   | 450 | mV   |
| Z <sub>ID</sub>      | Differential input impedance                     | 80               | -   | 125 | ohm  |
|                      | LP Line Receiver                                 | DC Specification | ons | 1   |      |
| V <sub>ILLP</sub>    | Input low voltage                                | -                | -   | 550 | mV   |

Table continues on the next page...

All rights reserved. This material is reprinted with the permission of the MIPI Alliance, Inc. No part(s) of this document may be disclosed, reproduced or used for any purpose other than as needed to support the use of the products of NXP Semiconductors.

Radar module

| Symbol            | Parameters         | Min | Тур | Мах | Unit |
|-------------------|--------------------|-----|-----|-----|------|
| V <sub>IHLP</sub> | Input high voltage | 880 | -   | -   | mV   |
| V <sub>HYST</sub> | Input hysteresis   | 25  | -   | -   | mV   |

Table 52. Electrical and timing information (continued)

### 14.1.2 D-PHY signaling levels

The signal levels are different for differential HS mode and single-ended LP mode. The figure below shows both the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.



Figure 39. D-PHY signaling levels

#### 14.1.3 D-PHY switching characteristics Table 53. D-PHY switching characteristics

| Symbol                             | Parameter | Conditions                                   | Min | Тур | Max  | Unit |
|------------------------------------|-----------|----------------------------------------------|-----|-----|------|------|
| HS Line Receiver AC Specifications |           |                                              |     |     |      |      |
| -                                  |           | On DATAP/N inputs. 80<br>Ohm<= RL <= 125 Ohm | 80  | -   | 1000 | Mbps |

Table continues on the next page ...

| Symbol             | Parameter                                           | Conditions             | Min | Тур | Max | Unit |
|--------------------|-----------------------------------------------------|------------------------|-----|-----|-----|------|
| ΔVCMRX(HF)         | Common mode interference beyond 450 MHz             |                        | -   | -   | 100 | mVpp |
| ΔVCMRX(LF)         | Common mode interference between 50 MHz and 450 MHz |                        | -50 | -   | 50  | mVpp |
| ССМ                | Common mode termination                             |                        | -   | -   | 60  | pF   |
|                    | LP Line Rece                                        | eiver AC Specification |     |     |     |      |
| e <sub>SPIKE</sub> | Input pulse rejection                               |                        | -   | -   | 300 | Vps  |
| T <sub>MIN</sub>   | Minimum pulse response                              |                        | 20  | -   | -   | ns   |
| V <sub>INT</sub>   | Pk-to-Pk interference voltage                       |                        | -   | -   | 200 | mV   |
| f <sub>INT</sub>   | Interference frequency                              |                        | 450 | -   | -   | MHz  |

#### Table 53. D-PHY switching characteristics (continued)

### 14.1.4 Low-power receiver timing



#### Figure 40. Input Glitch Rejection of Low-Power Receivers

#### 14.1.5 Data to clock timing



#### Figure 41. Definition

 Table 54.
 Data to clock timing specifications

| Symbol             | Parameter                | Min  | Тур | Max  | Unit   |
|--------------------|--------------------------|------|-----|------|--------|
| T <sub>CLKP</sub>  | Clock Period             | 40   | -   | 500  | MHz    |
| UI <sub>INST</sub> | UI Instantaneuous        | 1    | -   | 12.5 | ns     |
| T <sub>SETUP</sub> | Data to Clock Setup Time | 0.15 | -   | -    | UIINST |
| T <sub>HOLD</sub>  | Clock to Data Hold Time  | 0.15 | -   | -    | UIINST |

### 14.2 MIPICSI2 Disclaimer

The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or developers of this material or MIPI®. The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence.

#### Radar module

All materials contained herein are protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, trade names, and other intellectual property are the exclusive property of MIPI Alliance and cannot be used without its express prior written permission.

ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document; and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance with the contents of this Document of the contents of this Document may involve or require the use of intellectual property rights ("IPR") including (but not limited to) patents, patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any IPR or claims of IPR as respects the contents of this Document or otherwise.

# **15 Thermal Specifications**

### 15.1 Thermal characteristics

#### Table 55. 257MAPBGA package thermal characteristics

| Symbol            | Parameter                                               | Conditions                           | 257MAPBGA | Unit |
|-------------------|---------------------------------------------------------|--------------------------------------|-----------|------|
| R <sub>0JA</sub>  | Thermal resistance, junction-to-ambient natural         | Single layer board - 1s              | 41.8      | °C/W |
|                   | convection <sup>1, 2</sup>                              | Four layer board - 2s2p <sup>3</sup> | 22.3      | ]    |
| R <sub>0JMA</sub> | Thermal resistance, junction-to-ambient forced          | Single layer board - 1s              | 29.8      | °C/W |
|                   | convection at 200 ft/min <sup>1, 3</sup>                | Four layer board - 2s2p              | 17.7      | 1    |
| R <sub>θJB</sub>  | Thermal resistance junction-to-board <sup>4</sup>       | —                                    | 7.6       | °C/W |
| R <sub>θJC</sub>  | Thermal resistance junction-to-case <sup>5</sup>        | _                                    | 5.2       | °C/W |
| Ψ <sub>JT</sub>   | Junction-to-package-top natural convection <sup>6</sup> | _                                    | 0.2       | °C/W |

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

# 15.1.1 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T<sub>J</sub>, can be obtained from this equation:

 $T_{\rm J} = T_{\rm A} + (R_{\rm \theta JA} \times P_{\rm D})$ 

 $T_{J} = T_{BRD} + (R_{\theta JB} \times P_{D})$ 

where:

- $T_A$  = ambient temperature for the package (°C)
- $R_{\theta JA}$  = junction to ambient thermal resistance (°C/W)
- $R_{\Theta IB}$  = junction to board thermal resistance (°C/W)
- $T_{\theta BRD}$  = average board temperature just outside the package periphery (°C)
- $P_D$  = power dissipation in the package (W)

#### Thermal Specifications

The junction to ambient thermal resistance is an industry standard parameter that provides a quick and easy estimation of thermal performance. However, junction to board thermal resistance is more appropriate for tight enclosure spaces where board temperature should be used as reference temperature. Using 2s2p board with natural convection conditions, junction temperature is found to be less than 150°C. There are two parameters in common usage: the value determined on a single layer board and the value obtained on a board with two inner planes. For packages such as PBGA, these values can significantly differ. For customer board design with different number of layers and copper percentage content, these values must be appropriately interpolated in order to evaluate junction temperature. In general, the value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ 

where:

- $R_{\theta JA}$  = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$  = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$  = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$  is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance,  $R_{\theta CA}$ . For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter  $(\Psi_{JT})$  can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$ 

where:

- $T_T$  = thermocouple temperature on top of the package (°C)
- $\Psi_{JT}$  = thermal characterization parameter (°C/W)
- P<sub>D</sub> = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the

package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

#### 15.1.2 References

Semiconductor Equipment and Materials International; 3081 Zanker Road; San Jose, CA 95134 USA; (408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the Web at http://www.jedec.org.

- C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, "Thermal Modeling of a PBGA for Air-Cooled Applications," Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

# 16 Packaging

The S32R274 is offered in the following package types.

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 257-ball MAPBGA                          | 98ASA00081D                   |

#### NOTE

For detailed information regarding package drawings, refer to www.nxp.com.

# 17 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

### 17.1 Reset sequence duration

Table 57 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

| No. | Symbol            | Parameter                                     | T <sub>Reset</sub> |     | Unit             |    |
|-----|-------------------|-----------------------------------------------|--------------------|-----|------------------|----|
|     |                   |                                               | Min                | Тур | Max <sup>1</sup> |    |
| 1   | T <sub>DRB</sub>  | Destructive Reset Sequence, BIST enabled      | 15                 |     | 50 <sup>2</sup>  | ms |
| 2   | T <sub>DR</sub>   | Destructive Reset Sequence, BIST disabled     | 400                |     | 2000             | μs |
| 3   | T <sub>ERLB</sub> | External Reset Sequence Long, BIST enabled    | 15                 |     | 50               | ms |
| 4   | T <sub>FRL</sub>  | Functional Reset Sequence Long, BIST disabled | 400                |     | 2000             | μs |
| 5   | T <sub>FRS</sub>  | Functional Reset Sequence Short <sup>3</sup>  | 1                  |     | 500              | μs |

 Table 57.
 RESET sequences

1. The maximum value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET by an external reset generator.

 Max time is based on STCU BIST configuration execution time + max RESET time (TDR). For default STCU BIST configuration execution time, refer to EB834. Contact your NXP sales representative for details.

3. BIST is not executed on short functional reset

### 17.2 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The doted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 57.

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The SMPS self test is always triggered during Phase3 after a destructive reset so that duration is included into Phase3 below.

In external regulation mode, the VREG\_POR\_B pin should be de-asserted only when all the design supplies are in operating range. Deassertion of VREG\_POR\_B pin triggers the start of reset sequence in internal as well as external regulation modes.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET\_B signal pin.

#### NOTE

RESET\_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET\_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in Table 57 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET\_B asserted low beyond the last Phase3.







Figure 43. Destructive reset sequence, BIST disabled



Figure 44. External reset sequence long, BIST enabled



Figure 45. Functional reset sequence long



Figure 46. Functional reset sequence short

The reset sequences shown in Figure 45 and Figure 46 are triggered by functional reset events. RESET is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET\_B low for the duration of the internal reset sequence. See the RGM\_FBRE register in the device reference manual for more information.

# 18 Power sequencing requirements

The device does not require any specific power sequencing as far as user follows recommendations in this section.

Either ramp  $V_{DD_HV_IO}$  and  $V_{DD_HV_PMU}$  together or ramp  $V_{DD_HV_IO}$  before  $V_{DD_HV_PMU}$  such that the two supplies always maintain 100 mV or less difference, when using internal regulation mode.  $V_{DD_LV_DPHY}$  and  $V_{DD_LV_CORE}$  are to be driven from same source.  $V_{DD_HV_IO}$ ,  $V_{DD_HV_IO_RGMII}$ ,  $V_{DD_HV_IO_PWM}$  and  $V_{DD_HV_IO_LFAST}$  supplies should be treated as a single supply from board perspective.

As mentioned in the previous section, it is expected that the external ASIC which powers up the device in external regulation mode deasserts VREG\_POR\_B pin only when all the power supplies to the design are in operating range. It should be noted that LVD and HVD detectors on VDD supply are disabled by default in external regulation mode for preventing a conflict with external regulator operation but they can be enabled by software once design is powered up.

While designing the system, it is important to ensure that AFE supplies are powered up before data is sent on its input pads.

### **19 Pinouts**

### 19.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

## 20 Revision History

| Revision | Date      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev 4    | May, 2018 | <ul> <li>Removed section "4.1 Introduction".</li> <li>Removed section "3.2 Format".</li> <li>In Fields, removed figure "Commercial product code structure".</li> <li>In Nexus Aurora debug port timing, added t<sub>EVTIPW</sub> row.</li> <li>In Ethernet switching specifications changed the following: <ul> <li>Updated the figure RMII/MII serial management channel timing diagram.</li> <li>In Ethernet MDIO timing table changed MDC10 Min value and MDC11 Max value.</li> </ul> </li> <li>Extensively updated Table 32.</li> <li>In Table 7, changed V<sub>Inxoscclkvih</sub> Max value from 1.2 to 1.23.</li> <li>In Table 25, added rows for the symbols t<sub>sampleC</sub>, t<sub>sampleS</sub>, t<sub>sampleBG</sub>, and t<sub>sampleTS</sub>.</li> <li>In Table 6, changed V<sub>INA</sub> maximum value to 6.0.</li> </ul> <li>Added the following footnotes in Absolute maximum ratings : <ul> <li>The maximum value limits of injection current and input voltage both must be followed together for proper device operation.</li> <li>The maximum value of 10 mA applies to pulse injection only. DC current injection is limited to a maximum of 5 mA.</li> </ul> </li> <li>In Table 7, changed Y<sub>INA</sub> maximum value to V<sub>DD_HV_ADCREFx</sub>.</li> <li>In Table 2: <ul> <li>Changed part from FS32R274KBK2MMM to FS32R274KSK2MMM and changed configuration from "B" to "S"</li> <li>Added "B or S" to Table 3</li> </ul> </li> |

#### Table 58. Revision History

#### How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

Document Number S32R274 Revision 4, 05/2018



