

8.5V-16V Input, 0.75V-5.5V 8A Output POL Converter

Features

- High efficiency, 91% (12Vin, 5Vout@8A)
- Excellent thermal performance
- Monotonic start-up into pre-biased load
- Output trim
- Remote enable control
- UL 60950-1 2nd edition Recognized*

Applications

- Telecom, datacom, networking equipment
- Electronic data processing, servers
- Distributed power architectures

Part Numbering System:

Options

- Negative/Positive enable logic
- Output voltage tracking/Sequence

Series Name	Input Voltage	Output Voltage	Enabling Logic	Output Current	Pin	Electrical Option	Other Option
NBS	1: 8.5 – 16V	000: Adjustable ^{**}	P: Positive N: Negative	08 : 8A	S : SMT	0: No voltage tracking 1: Voltage tracking	5: RoHS6

For example, NBS1000N08S15 denotes an NBS converter having 8.5V-16V input range, variable output in the range of 0.75V to 5.5V, negative enabling logic, voltage tracking, and RoHS6 (lead free).

^{*} UL is a registered trademark of Underwriters Laboratory Inc.

^{**} Consult the factory for semi-custom codes with the output voltage set to a specific value without using an external programing resistor.

Absolute Maximum Ratings

Excessive stresses over these absolute maximum ratings can cause permanent damage to the converter. Operation should be limited to the conditions outlined under the Electrical Specification Section.

Parameter	Symbol	Min	Max	Unit
Input Voltage (continuous)	Vi	-0.5	22	Vdc
Operating Ambient Temperature (See Thermal Consideration section)	То	-40	85*	°C
Storage Temperature	Tstg	-55	125	°C

* Derating curves provided in this datasheet end at 85°C ambient temperature. Operation above 85°C ambient temperature is allowed provided the temperatures of the key components or the baseplate do not exceed the limit stated in the Thermal Considerations section.

Electrical Specifications

These specifications are valid over the converter's full range of input voltage, resistive load, and operating temperature unless noted otherwise.

Input Specifications

Parameter	Symbol	Min	Тур	Max	Unit
Input Voltage	Vi	8.5	12	16	Vdc
Input Current	li,max	-	-	6	A
Quiescent Input Current (Vin = 12, Vo = 3.3V)	li,Qsnt	-	50	80	mA
Standby Input Current	li,stdby	-	2		mA
Input Reflected-ripple Current, Peak-to-peak (5 Hz to 20 MHz, 1 µH source impedance)	-	-	20	-	mAp-p
Input Ripple Rejection (120 Hz)	-		30	-	dB
Input Turn-on Voltage Threshold	-		8.4		V

Output Specifications

Parameter	Symbol	Min	Тур	Max	Unit
Output Voltage Set Point Tolerance		-2.0	_	2.0	%
(Vi = 12 V; lo = lo_max; Ta = 25°C)	_	-2.0	_	2.0	70
Output Voltage Set Point Tolerance (over all conditions)	-	-2.5	-	3.50	%
Output Regulaton:					
Line Regulation (Vi = $8.5V$ to $16V$, lo = $1/2$ of load)	-	-	0.2		%Vo
Load Regulation (Io = Io,min to Io,max, Vi = 12V)	-	-	0.3		%Vo
Temperature (Ta = -40°C to 85 °C)	-	-	0.2		%Vo
Output Ripple and Noise Voltage (5 Hz to 20 MHz bandwidth, Vin = 12V)	Peak-to-peak -	-	1.5		%Vo
(3 Hz to 20 WHz barlowidth, WH = 12 V)	RMS			1	%Vo
External Load Capacitance	-	-	-	2,000	μF
Output Current	lo	0	-	8	A
Output Current-limit Trip Point	lo,cli	-	200	-	%lo
Output Short-circuit Current, hiccup mode			2		A
Switching frequency	-		300		kHz
Voltage Tracking/Sequencing Slew Rate – Power up				2	V/ms
Voltage Tracking/Sequencing Slew Rate – Power down				1	V/ms

02-08-2014

Output Specifications (continued)

Parameter			Symbol	Min	Тур	Max	Unit
	Vo = 0.75V	lo = 6A	-		71		%
	V0 = 0.75V	lo = 8A			65		70
	Vo = 1V	lo = 6A			76		%
	VO = 1V	lo = 8A			71		70
	Vo = 1.5V	lo = 6A			83		%
Efficiency	v0 = 1.5v	lo = 8A			78		70
Efficiency (Vi = 12V; TA = 25ºC)	Vo = 1.8V	lo = 6A			84		%
$(VI = 12V, IA = 25^{\circ}C)$	V0 = 1.0V	lo = 8A	η		81		70
	Vo = 2.5V	lo = 6A			88		%
	VO = 2.5V	lo = 8A			85		70
	Vo = 3.3V	lo = 6A	-		90		%
		lo = 8A			87		/0
	Vo = 5V	lo = 6A			92		%
		lo = 8A			91		/0
Consult factory for Vo > 5.5	5V						
Dynamic Response (Vi = 12V; Ta = 25°C; Load Load step from 50% to 100 Peak deviat	% of full load:				120		mV
Settling time (to 10% band of Vo deviation) Load step from 100% to 50% of full load					150		μs
Peak deviation Settling time (to 10% band of Vo deviation)					120 150		mV μs

General Specifications

Parameter	Symbol	Min	Тур	Max	Unit
Remote Enable					
Logic Low:					
ION/OFF = 1.0mA	VON/OFF	0		0.5	V
VON/OFF = 0.0V	ION/OFF	-		2.0	mA
Logic High:		-			
ION/OFF = 0.0µA	VON/OFF	-3.5		Vin,max	V
Leakage Current	ION/OFF	-		50	μA
Turn-on Time (Io = full load, Vo within 1% of setpoint)	-	-	4	-	ms
Calculated MTBF (Telecordia SR-332, 2011, Issue 3), full load, 40°C, 60% upper confidence level, typical Vin			13.3		10 ⁶ -hour

Characteristic Curves

Figure 1(a). Efficiency vs. Load Current (25°C, 0.75V output)

Figure 1(c). Efficiency vs. Load Current (25°C, 1.5V output)

Figure 1(e). Efficiency vs. Load Current (25°C, 2.5V output)

Figure 1(b). Efficiency vs. Load Current (25 oC, 1.0V output)

Figure 1(d). Efficiency vs. Load Current (25°C, 1.8V output)

Figure 1(f). Efficiency vs. Load Current (25°C, 3.3V output)

Characteristic Curves (continued)

Figure 1(g). Efficiency vs. Load Current (25°C, 5V output)

Figure 3. Start-Up from Enable Control (Vin =12V, Vo =2.5V, Io=0A)

Figure 5. Start-Up from Application of Input Vin = 12V, Vo = 2.5V, Io = 0A

Figure 2. Input Characteristic (5V output)

Figure 6. Output Tracking Input voltage 12V, Output current 0A, Output voltage 2.5V

Characteristic Curves (continued)

Figure 7. Start-Up with Prebias Vin = 12V, Vo= 2.5V, Io = 0A, Prebias 1.2V

Time: 100 us/div

Figure 9. Transient Load Response. Vo = 5V, Vin = 12V, Io: from 50% to 100% full load, Slew rate $0.1A/\mu s$.

Figure 11. Thermal Image. Vin = 12V, 3.3V/6.5A output, 55°C ambient, 200 LFM

Figure 8. Transient Load Response. Vo = 5V, Vin = 12V, Io: from 100% to 50% full load, Slew rate $0.1A/\mu s$.

Figure 10. Short Circuit Current. Vin = 12V

Figure 12(a). Current Derating Curve for Vo = 1.0V and Vin = 12V

Figure 12(b). Current Derating Curve for Vo = 3.3V and Vin = 12V

Remote SENSE

The remote SENSE pin is used to sense voltage at the load point to accurately regulate the load voltage and eliminate the impact of the voltage drop in the power distribution path.

The SENSE pin should be connected to the point where regulation is desired. The voltage difference between the output pins must not exceed the operating range of this converter shown in the specification table.

When remote sense is not used, the SENSE pin should be connected to the positive output terminals. If the SENSE pins are left floating, the converter will deliver an output voltage slightly higher than its specified typical output voltage.

Because the converter does not have remote sense connection for the return path, it is important to make sure that the trace resistance and voltage drop between GND pin and the load is small.

Feature Descriptions

Remote ON/OFF

The converter can be turned on and off by changing the voltage or resistance between the ON/OFF pin and GND. The NBS converters can be ordered with factory selectable positive logic or negative enabling logic.

For the negative control logic, the converter is ON when the ON/OFF pin is at a logic low level and OFF when the ON/OFF pin is at a logic high level. For the positive control logic, the converter is ON when the ON/OFF pin is at a logic high level and OFF when the ON/OFF pin is at a logic low level. The converter is ON no matter what control logic is when ON/OFF pin is left open (unconnected).

Figure 13 is the recommended ON/Off control circuit for positive logic modules, while Figure 14 is for negative logic modules. Recommended value of the pull up resistor R_{pull_up} is 50K. The maximum allowable leakage current from this pin at logic-high level is 20µA.

The logic-low level is from 0V to 0.5V, and the maximum sink current during logic low is 2mA. The external switch must be capable of maintaining a logic-low level while sinking this current.

Figure 13. Circuit for Positive Logic Control

Figure 14. Circuit for Negative Logic Control

NBS1000x08Sxx

02-08-2014

Leading the Advancement of Power Conversion

Output Voltage Programming and Adjustment

This series of converters are available with variable output voltages. The output voltage is preset to 0.7525V, and can be programmed up to 5.5V using an external trim resistor connected between the Trim pin and GND pin as shown in Figure 15. To trim the voltage lower than the preset voltage, an external voltage higher than 3.018V has to be applied to the Trim pin.

Figure 15. Circuit to Trim Output Voltage

The resistance of the external resistor for trimming up the output voltage can be calculated using the equation below:

$$R_{trim} = (\frac{10.5}{\Delta} - 1)(k\Omega)$$

Where

 $\Delta = V_o - V_{onom}$ For variable output models, $V_{onom} = 0.7525$.

Because NBS converters use GND as the reference for control, Rtrim should be placed as close to GND pin as possible, and the trace connecting GND pin and Rtrim should not carry significant current, to reduce the effect of voltage drop on the GND trace/plain affecting the output voltage accuracy.

Input Under-Voltage Lockout

This feature prevents the converter from turning on until the input voltage reaches 8.3V. However, for converters to output higher than 5.5V, the input under-voltage lockout setpoint is higher and the user should contact the factory for further assistance.

Output Over-Current Protection

As a standard feature, the converter turns off when the load current exceeds the current limit. If the over-current or short circuit condition persists, the converter will operate in a hiccup mode (repeatedly trying to restart) until the over-current condition is cleared.

Thermal Shutdown

The converter utilizes the thermal protection feature of the controller IC to perform over temperature protection. When temperature at TMP1 (shown in Figure. 16) reaches 140°C, the converter will shutdown. The converter will resume operation after the converter cools down. The Thermal shutdown feature should not be considered as a guarantee for survival under over stress conditions beyond its specified operating conditions.

Figure 16. NBS1 Bottom View — Temperature Monitoring Point TMP1 for Thermal Shutdown

Voltage Tracking/Sequencing

An optional voltage tracking/sequencing feature is available with these converters. This feature is compatible with the "Voltage Sequencing" feature (DOSA) or the "Voltage Tracking" feature (POLA) seen in industry standards.

This feature forces the output of the converter to follow (track) the voltage at the SEQ pin on a 1:1 basis. When the voltage at the SEQ pin rises above the set point, the output of the converter will stay at the set point. This feature allows the user to program the output voltage waveform during turn-on and turn-off of the converter by applying a voltage signal of desired shape at the SEQ pin. When using this function, one should pay careful attention to the following aspects:

1). This feature is intended mainly for startup and

shutdown sequencing control. In normal operation, the voltage at SEQ pin should be maintained higher than the output voltage set point;

2). The input voltage should be valid for this feature to work. During startup, it is recommended to have a delay of at least 10 ms between the establishment of a valid input voltage, and the application of a voltage at the SEQ pin;

3). The ON/OFF pin should be in "Enabled" state when this function is effective.

4). The converter's pre-bias startup is affected by this function. The converter will still be able to start under a pre-bias condition, but the output voltage waveform will have a glitch during startup if this feature is selected.

Design Considerations

The stability of the NBS1 converters, as with any DC/DC converter, may be compromised if the source impedance is too high or too inductive. It's desirable to keep the input source AC impedance as low as possible. To reduce switching frequency ripple current getting into the input circuit (especially the ground/return conductor), it is desirable to place some low ESR capacitors at the input of the converter. Due to the existence of some inductance (such as the trace inductance, connector inductance, filter inductance, etc) in the input circuitry, possible oscillation may occur at the input of the converter. Because of the relatively high input current of low input voltage power converters, it may not be practical or economical to have separate damping or soft start circuit in front of POL converters. A combination of ceramic capacitors and Tantalum/Polymer capacitors are recommended to be used at the input, so the relatively higher ERS of Tantalum/Polymer capacitors can help to damp the possible oscillation.

Similarly, although the converter is designed to be stable without external capacitor at the output, some low ESR capacitors at the output are desirable to further reduce the output voltage ripple and improve the transient response. A combination of ceramic capacitors and Tantalum/Polymer capacitors at the output usually yields good results.

Safety Considerations

The NBS1 Series of converters is designed in accordance with EN 60950 Safety of Information Technology Equipment Including Electrical Equipment. The converters are recognized by UL in both USA and Canada to meet the requirements in UL 60950, Safety of Information Technology Equipment and applicable Canadian Safety Requirement, and ULc 60950. Flammability ratings of the PWB and plastic components in the converter meet 94V-0.

The converter's output meets SELV requirements if all of its input meets SELV requirements.

Thermal Considerations

The NBS1 converters can operate in various thermal environments. Due to high efficiency and optimal heat distribution, these converters exhibit excellent thermal performance.

The maximum allowable output power of any power converter is usually determined by the electrical design and the maximum operating temperature of its components. The NBS1 converters have been tested comprehensively under various conditions to generate the derating curves with consideration for long term reliability.

Thermal derating curves are highly influenced by derating guideline, the test conditions and setup, such as test temperatures, the interface method between the converter and the test fixture board, spacing and construction (especially copper weight, holes and openings) of the fixture board and the spacing board, temperature measurement method, and the ambient temperature measurement point. The thermal derating curves in this datasheet are obtained by thermal tests in a wind-tunnel. The converter's power pins are soldered to a 2-layer test fixture board through 18 AWG wires. The space between the test board and a PWB spacing board is 1". Usually, the end system board has more layer count, and has better thermal conductivity than our test fixture board.

Note that the natural convection condition was measured at 0.05 m/s to 0.15 m/s (10ft./min. to 30 ft./min).

02-08-2014

9

Heat Transfer

Convection heat transfer is the primary cooling means for NBS1 converters. Therefore, airflow speed is important and Increasing the airflow over the converter enhances the heat transfer via convection.

Figures 12 (a) and (b) show the current derating curves under typical input voltage 12V for a few output voltages. To maintain long-term reliability, the module should be operated within these curves in steady state.

Proper cooling in the end system can be verified by monitoring the temperature of the key components. Figure 17 shows the recommended temperature monitoring points TMP2. The temperature at this location should not exceed 120 °C continuously.

Figure 17. NBS1 Top View — Temperature Monitoring Point TMP2 for Derating Operation

Mechanical drawing dimensions in mm (inch)

Bottom View

Side View

Notes

1) All dimensions in mm (inches). Tolerances:.

- x <u>+</u> .5 (.xx <u>+</u> 0.02) .xx <u>+</u> .25 (.xxx <u>+</u> 0.010)
- 2) All pins are coated with gold finish
- 3) Weight: 0.25oz(7g) open frame converter
- 4) Workmanship: Meet or exceeds IPC-A-610 Class II