

Click here to ask an associate for production status of specific part numbers.

High Voltage, Low Power Comparator

General Description

MAX40070/MAX40072 is a family of single micropower comparators ideal for a wide variety of battery operated devices in computing, industrial, medical, and IoT applications that have extremely tight board space and power constraints while requiring high levels of precision. These comparators are offered with an open-drain output in a small 8-bump (0.35µm pitch) wafer level package as well as a TDFN package.

The MAX40070/MAX40072 family features a rail-to-rail input voltage range of 0V to +27.5V on IP pin, independent of the supply voltage. It also features internal filtering to provide high EMI immunity.

The MAX40070/MAX40072 uses a high-precision integrated reference voltage (1.6V) as well as a precision internal current source that allows customized comparator threshold and hysteresis by using two external resistors.

These comparators consume only $16\mu A$ (typ) supply current with a propagation delay of $2\mu s$. They all operate over the extended $-40^{\circ}C$ to $+125^{\circ}C$ temperature range.

Applications

- Notebook and Tablet Computers
- Portable Medical Devices
- Industrial Equipment
- IoT

V<u>D</u>D VIN IP VDD VDD RIN1 R3 LDO ĒΝ CTRL GPIO OUT GPIO HYST IM [REF MCU OTP REF GND Τ. \leftrightarrow

Simplified Block Diagram

Benefits and Features

- Low Operating Current of 16µA (typ)
- Input Voltage Range from 0V to 27.5V
- 2µs Propagation Delay
- Internal High-Precision Voltage Reference
- Internal Current Source for Customized Thresholds and Hysteresis with External Resistors
- Open-Drain Output
- Tiny 8-Bump WLP (0.35mm pitch) and TDFN (2mm x 2mm) Packages
- -40°C to 125°C Temperature Range

19-101200, Rev 0, 4/22 © 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2022 Analog Devices, Inc. All rights reserved.

High Voltage, Low Power Comparator

TABL	EOF	CONT	TENTS

General Description	ļ
Applications	l
Benefits and Features	J
Simplified Block Diagram 1	J
Absolute Maximum Ratings 4	ŀ
Package Information	ŀ
WLP	ŀ
TDFN	ŀ
Electrical Characteristics	5
Typical Operating Characteristics	7
Pin Configurations)
WLP)
TDFN)
Pin Description)
Detailed Description	l
Input Stage Circuitry	I
Output Stage Structure	l
Voltage Reference 11	l
Applications Information	2
Internal Hysteresis	2
Adding External Hysteresis And Customized Threshold 12	2
Disabling the Device	
Typical Application Circuits	3
Application Circuit with Internal Hysteresis	3
Application Circuit with Customized External Threshold and Hysteresis	ŀ
Application Circuit with Customized Hysteresis	5
Application Circuit with External Hysteresis and Customized Threshold	3
Customized Hysteresis and Threshold	3
Ordering Information	3
Revision History	,

LIST OF FIGURES

Figure 1. Hyste	eresis Band				12
-----------------	-------------	--	--	--	----

High Voltage, Low Power Comparator

Absolute Maximum Ratings

V _{DD} to GND	0.3V to +40V
IP to GND	
IM, HYST, EN, REF to GND	
OUT to GND	
Continuous current into any pin	0.02A

Continuous Power Dissipation (TDFN-8) (T_A = +70°C, derate 6.2mW/°C above +70°C.)496mW Operating Temperature Range

Reduced performance temperature range-40°C to 125°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

WLP

Package Code	N81B1+1			
Outline Number	<u>21-100566</u>			
Land Pattern Number	Refer to Application Note 1891			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (0 _{JA})	91.72°C/W			
Junction to Case (θ_{JC})	N/A			

TDFN

Package Code	T822C+6C				
Outline Number	<u>21-100514</u>				
Land Pattern Number	<u>90-100183</u>				
Thermal Resistance, Four-Layer Board:	Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ_{JA})	162°C/W				
Junction to Case (θ_{JC})	20°C/W				

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

High Voltage, Low Power Comparator

Electrical Characteristics

 $(V_{DD} = 3.3V, V_{\overline{EN}} = GND, IP = 0V, IM = HYST = REF, OUT connected to 100k\Omega pull-up to V_{DD} (<u>Note 1</u>).)$

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY							1	
Supply Voltage Range	V _{DD}	Guaranteed by PSR	R	2.2		36	V	
Supply Current	IDD	MAX40070/2, No Load	$T_{A} = 25^{\circ}C$ $-40^{\circ}C \le T_{A} \le$ $+125^{\circ}C$		16 16	22 26	μΑ	
Shutdown Supply Current	I _{SHDN}	EN = V _{DD}	-40°C ≤ T ≤ +125°C		400	1,000	nA	
Power Supply Rejection Ratio	PSRR	2.2V ≤ V _{DD} ≤ 36V		56	70		dB	
Turn-On Time	t _{EN}	Turn-on from shutdown	$V_{\overline{EN}}$ = 1.8V to 0V, Measured at 90% of nominal final value		250		μs	
Power-On Time	ton	V _{DD} = 0V to 3.3V, M nominal final value	leasured at 90% of		500		us	
COMPARATOR		- L						
COMPARATOR / INPUT	THRESHOLD							
Current Source	IREF	-40°C ≤ T _A ≤ +85°C		2.94	3	3.07	μA	
		-40°C ≤ T _A ≤ +125°C		2.94	3	3.11		
Input Common Mode	V _{IP}	IP Input		0		27.5		
Range	VIM	IM Input				2.5	V	
Input Divider Resistance	R _{IP}	IP Input			6.6		MΩ	
			T = 25°C		3.3	12		
Input Offset Voltage	V _{OS}	Referred to IP	-40°C ≤ T ≤ +85°C			43	mV	
			-40°C ≤ T ≤ +125°C			50		
Input Hysteresis	V _{HYST}	Referred to IP		45	90		mV	
Input Dice Current	1_	Referred to IP, IP =	17.6V		2.5	5	μA	
Input Bias Current	Ι _Β	Referred to IM			0.1	5	nA	
Input Capacitance	C _{IN}	IP Input			4		pF	
Common Mode Rejection Ratio	CMRR	DC, over the entire common mode input range	IP, 0 ~ 27.5V	43	50		dB	
Output Voltage Swing Low	V _{OL}	Sinks 2mA				0.4	V	
Open Drain Leakage Current	I _{OH}	OUT = 8V			1	12	nA	
Propagation Delay	ta	20mV overdrive, Output L \rightarrow H			3.5		110	
i iopagalion Delay	tP	20mV overdrive, Ou	tput $H \rightarrow L$		2		μs	
Fall Time	t _F	80% to 20%			400		ns	

High Voltage, Low Power Comparator

Electrical Characteristics (continued)

 $(V_{DD} = 3.3V, V_{\overline{EN}} = GND, IP = 0V, IM = HYST = REF, OUT connected to 100k\Omega pull-up to V_{DD} (<u>Note 1</u>).)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INTERNAL REFERENCE	VOLTAGE	1	I			1
Reference Voltage	V _{REF}			1.6		V
Reference Voltage Accuracy			-1.3		1.3	%
Reference Voltage Thermal Drift				15		ppm/°C
Line Regulation					100	ppm/V
Load Regulation		I _{VREF_OUT} = +/-100nA			0.002	mV/nA
Output Current				2		μA
Voltage Noise		0.1Hz to 10Hz		82		μVpp
Voltage Noise Density		C _{REF} = 1nF 10Hz to 6kHz		2.2		µV/√Hz
Capacitive Load Capability				100		pF
ENABLE INPUT DC CHA	RACTERISTICS	5	·			
Input Low Level	VIL				0.55	V
Input High Level	VIH		0.9			V
Input Leakage Current	١L				5	nA

Note 1: Limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

High Voltage, Low Power Comparator

Typical Operating Characteristics

 $(V_{DD} = 3.3V, V_{\overline{EN}} = GND, IP = 0V, IM = HYST = REF, OUT connected to 100k\Omega pullup resistor to V_{DD}.)$

60

110

REFERENCE VOLTAGE vs. TEMPERATURE

tPD-(µs)

0.3

-40

10

TEMPERATURE (°C)

High Voltage, Low Power Comparator

Typical Operating Characteristics (continued)

 $(V_{DD} = 3.3V, V_{\overline{EN}} = GND, IP = 0V, IM = HYST = REF, OUT connected to 100k\Omega pullup resistor to V_{DD}.)$

Pin Configurations

Pin Description

P	PIN		FUNCTION	
WLP	TDFN	NAME	FUNCTION	
A1	1	IP	High-Voltage Non-inverting Input	
A2	2	HYST	Hysteresis Input	
A3	3	IM	Inverting input	
A4	4	REF	Reference Output Voltage	
B4	5	GND	Ground	
B3	6	OUT	Open-Drain Output	
B2	7	EN	Device Enable (Active Low)	
B1	8	VDD	Positive Supply	

Detailed Description

The MAX40070/MAX40072 feature an onboard voltage reference with 1.3% accuracy. The common-mode voltage range of this family can extend beyond the rails, up to 27.5V. The 90mV (IP referred) internal hysteresis ensures clean output switching even with slow moving input signals. The output has an open-drain stage that can be pulled beyond V_{DD} to a maximum of 8V above GND. Multiple comparators with open-drain outputs (OUT) can be connected together in parallel and share a single pullup resistor. This enables the user to detect if there is any fault if at least one comparator is tripped differently from other comparators.

Input Stage Circuitry

The input common-mode voltage range extends from 0 to 27.5V, independent of V_{DD} . Input bias current is typically 2.5uA if the input voltage is between the supply rails.

Output Stage Structure

The devices contain a unique break-before-make output stage capable of rail-to-rail operation with up to ±2mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. In the *Typical Operating Characteristics*, TOC2 shows the minimal supply-current increase as the output switching frequency approaches 1kHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. In battery-powered applications, this characteristic results in a substantial increase in battery life.

Voltage Reference

The MAX40070/MAX40072 come with an internal voltage reference of 1.6V that has an accuracy of 1.3%. The devices' internal reference has a typical temperature coefficient of 15ppm/°C over the full -40°C to +125°C temperature range. The reference is a very-low-power bandgap cell, with a maximum $2k\Omega$ output impedance. REF pin can source and sink up to 100nA to external circuitry. For applications that need increased drive, buffer REF with a low input-bias current op-amp. Most applications do not require a bypass capacitor on the REF pin.

Applications Information

Internal Hysteresis

Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX40070/MAX40072 have internal 90mV hysteresis to counter parasitic effects and noise.

The hysteresis in a comparator creates two trip points: one for upper threshold (V_{TRIP+}) and the other for lower threshold (V_{TRIP-}) for voltage transitions on the input signal (<u>Figure 1</u>). The difference between the trip points is the hysteresis band (V_{HYS}). When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. <u>Figure 1</u> illustrates the case in which IM has a fixed voltage applied, and IP is varied.

Adding External Hysteresis And Customized Threshold

In applications requiring more than the internal 90mV hysteresis of the devices, additional hystereses can be added with an external resistor. Meanwhile, the threshold can be customized as well. See the <u>Typical Application Circuits</u> for detail.

Figure 1. Hysteresis Band

Disabling the Device

MAX40070/40072 can be disabled with \overline{EN} pin to save the power. The IDD can be reduced to 1000nA (max).

Typical Application Circuits

Application Circuit with Internal Hysteresis

Hysteresis is internal 90mV (typ). Threshold is equal to internal REF (1.6V typ).

Typical Application Circuits (continued)

Application Circuit with Customized External Threshold and Hysteresis

Adding external hysteresis to V_{TRIP+} . Total hysteresis is defined by internal hysteresis and R_1 , shown in the following equation:

HYST = 90mV (typ) + $R_1 \times 3\mu A$

Customized External Threshold is defined by R_2 , shown in the following equation:

Threshold = $R_2 \times 3\mu A$

The internal REF is not used and it is floating here.

Typical Application Circuits (continued)

Application Circuit with Customized Hysteresis

Adding external hysteresis to V_{TRIP+} . Total hysteresis is defined by internal hysteresis and R1, as shown in the following equation:

HYST = 90mV (typ) + $R_1 \times 3\mu A$

Threshold is equal to internal REF (1.6V typ).

Typical Application Circuits (continued)

Application Circuit with External Hysteresis and Customized Threshold

Adding external hysteresis to V_{TRIP+} . Total hysteresis is defined by internal hysteresis and R1, as shown in the following equation:

HYST = 90mV (typ) + $R_1 \times 3\mu A$

Threshold is defined by internal REF and R2, as shown in the following equation:

Threshold =
$$1.6V$$
 (typ) + $R_2 \times 3\mu A$

Customized Hysteresis and Threshold

The internal current source (3µA) combined with external resistor R1/R2 generates extra hysteresis and threshold.

For example, if R1 = $3.3k\Omega$ and R2 = $500k\Omega$, there is 10mV extra hysteresis and 1.5V extra threshold.

If the setup is as "Application Circuit with Customized External Threshold and Hysteresis", the total hysteresis is 10mV plus internal value and the threshold is 1.5V.

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE	
MAX40070ANA16+T	-40°C to +125°C	8 WLP	
MAX40072ATA16+T*	-40°C to +125°C	8 TDFN	

+Denotes a lead (Pb)-free/RoHS-compliant package.

T = Tape and reel.

*Future product—contact factory for availability.

High Voltage, Low Power Comparator

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	4/22	Release for Market Intro	—

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.