

Preliminary Datasheet GCMS010A120S7B1

1200V 10 m Ω SiC MOSFETs Half Bridge Module

Package: 62mm x 106mm x 17mm

Features

- Ultra Low Loss with SiC MOSFETs
- Zero Reverse Recovery Current with SiC SBDs
- Zero Turn-off Tail Current
- High-Frequency Operation
- Positive Temperature Coefficient on VDS(on)
- Cu baseplate with Si₃N₄ AMB DBC substrate

Applications

- UPS and SMPS
- Fast DC/DC Converter
- Solar and Wind Inverter
- Induction Heating/Welding

Benefits

- Outstanding performance at high frequency operation
- Low switching losses
- Better EMI noise with low parasitic inductance
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive Tc of RDS_ON
- RoHS Compliant

Absolute Maximum Ratings (Tj=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Specifications	Units
Drain - Source Voltage	V _{DS}		1200	V
Continuous Drain Current		V_{GS} =20V, T_{C} = 25 ^{0}C	240	А
Continuous Drain Current	Ι _D	V_{GS} =20V, T_{C} = 90 ^{0}C	160	А
Gate - Source Voltage	V _{GS}		+25/-10	V
Pulsed Drain Current	I _{DS}	Limited by Tj_max	640	А
	P _D	$T_{c} = 25 \ ^{0}C$	500	W
Maximum Power Dissipation		$T_{\rm C} = 100 {}^{0}{\rm C}$	TBD	W
Operating Junction Temperature	Tj		-55 ~ 150	°C
Storage Temperature	T _{STG}		-55 ~ 125	°C
Solder Temperature	TL	Max for 10 sec	260	°C

Electrical Characteristics of MOSFETs (T_i=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
OFF						
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 1200V, V _{GS} = 0V		30	500	μΑ
Gate-Source Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = 20V$			±1	μA
ON						
Gate-Source Threshold Voltage	V _{GS(TH)}	$V_{DS} = 10V, I_{D} = 10mA, T_{j} = 25 {}^{0}C$	2.4	2.8		V
		$V_{DS} = 10V, I_{D} = 10mA, T_{j} = 150 \ ^{0}C$		2.0		
On State Resistance	R _{DS(ON)}	$V_{GS} = 20V, I_{D} = 160A, T_{j} = 25 \ ^{0}C$		10	13	mΩ
		$V_{GS} = 20V, I_{D} = 160A, T_{j} = 150 {}^{0}C$		21	-	mΩ
Transconductance	g _{fs}	$V_{DS} = 20V, I_{D} = 160A, T_{j} = 25 {}^{0}C$		60		S
		$V_{DS} = 20V, I_{D} = 160A, T_{j} = 150 {}^{0}C$		52		
DYNAMIC						
Input Capacitance	C _{ISS}	$V_{DS} = 600V, V_{GS} = 0V, f = 1 MHz,$	ł	7600		pF
Output Capacitance	C _{OSS}	V _{AC} = 25mV		1050		pF
Reverse Transfer Capacitance	C _{RSS}			44		pF
Internal Gate Resistance	R _{G(INT)}	f = 1 MHz, V _{AC} = 25mV		0.45		Ω
External Gate Resistance	R _{G(EXT)}			TBD		Ω
Module Stray Inductance	L_{σ}	Between terminal 2 and 3		8.2		nH
Module Lead Resistance	R _{mod}			TBD		mΩ
SWITCHING						
Turn-On Delay Time	t _{d(on)}	V_{DD} = 600V, I _D =160A R _G = 2.5Ω, V _{GS} = -5/20V Inductive Load, T _J =25 ⁰ C		21		ns
Rise Time	t _r			52		ns
Turn-Off Delay Time	t _{d(off)}			30		ns
Fall Time	t _f			35		ns
Turn-On Switching Energy Loss	E _{ON}			TBD		mJ
Turn-Off Switching Energy Loss	E _{OFF}			TBD		mJ
Turn-On Delay Time	t _{d(on)}			TBD		ns
Rise Time	t _r	V _{DD} = 600V, I _D =160A		TBD		ns
Turn-Off Delay Time	t _{d(off)}	R_{g} = 2.5 Ω , V_{gs} =-5/20V Inductive Load, T_{J} =150 $^{\circ}C$		TBD		ns
Fall Time	t _f			TBD		ns
Turn-On Switching Energy Loss	E _{ON}			TBD		mJ
Turn-Off Switching Energy Loss	E _{OFF}			TBD		mJ
Total Gate Charge	Q _G	V_{DD} = 600V, I_{D} =160A		460		nC
Gate-Source Charge	Q _{GS}	V _{GS} = -5/20V		120		nC
Gate-Drain Charge	Q _{GD}			148		nC

Maximum Rated Values of SiC Freewheeling SBDs (T_C=25[°]C unless otherwise specified)

Parameter	Symbol	Conditions	Value	Unit
Repetitive Peak Reverse Voltage	V _{RRM}	T _j =25 °C	1200	V
Diode Continuous Forward Current	l _F	T _C =100 °C, T _j =150 °C	160	А
Surge Non-repetitive Forward Current	I _{F,SM}	T _C =100 °C, t _p =8.3 ms sine half wave	600	А

Electrical Characteristics of SiC SBD (T_c=25°C unless otherwise specified)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
DC Blocking Voltage	V _R	I _R =100 uA		1200	\leq		V
Forward Voltage	V _F I _F =160A, V _{GE} = 0V	I _F =160A,	T _J = 25℃		1.8	2.0	V
Torward Voltage		V _{GE} = 0V	T _J = 150℃		2.3		V
Total Capacitive Charge	Q _C	V _R =1200V	T _J = 25℃		518		nC

Thermal Characteristics (T_c=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
MOSFET Thermal Resistance: Junction-To-Case	R _{ejcm}			0.08	0.11	°C/W
Diode Thermal Resistance: Junction- To-Case	Rejcd			0.118	0.13	°C/W

Module Characteristics (T_i=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Mounting Torque	M _d				5	N-m
Clearance		Terminal to terminal		12		mm
Package Weight	W _t			250		g
Isolation Voltage	V _{ISOL}	I _{ISOL} < 1mA, 50/60Hz, t=1 min			2500	V

Internal Circuit:

Preliminary Package Outline (Unit: mm):

Revision History

Date	Revision	Notes
03/04/2016	0.1	Initial release
10/05/2016	0.2	Revised the substrate material and other electrical parameters

Global Power Technologies Group

20692 Prism Place Lake Forest, CA 92630 TEL (949) 207-7500 FAX (949) 613-7600 E-mail: <u>info@gptechgroup.com</u> Web site: www.gptechgroup.com

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.gptechgroup.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemi- cal Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at GPTG Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration.

REACh banned substance information (REACh Article 67) is also available upon request.

- This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.
- To obtain additional technical information or to place an order for this product, please contact us. The information in this datasheet is provided by Global Power Technologies Group. GPTG reserves the right to make changes, corrections, modifications, and improvements of datasheet without notice.