

C51E.pdf Apr. 27,2018

EMI Suppression Filters (for DC)/ Chip Inductors for Automotive

Explanation of category in this catalog

Infotainment

Infotainment

The product for entertainment equipment like car navigations, car audios, and body control equipment like wipers, power windows.

Powertrain, Safety

Powertrain

The product for high reliability applications like powertrain and safety, in addition to infotainment applications.

EU RoHS Compliant

- All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our web page, "Murata's Approach for EU RoHS" (https://www.murata.com/en-eu/support/ compliance/rohs).

Because of the difference of measurement condition, electrical characteristics plots on this catalog may have some difference to official specification value.

Contents

Application Examples p2

EMI Suppression Filters (for DC)

Contents ·····	р7
EMI Suppression Filters (for DC) Product Guide ·····	р8
Chip Ferrite Bead	p11
	o116
Chip Common Mode Choke Coil	o140
Block Type EMIFIL [®]	o176
EMI Suppression Filters (Lead Type)	5182
Microchip Transformer (Balun)	0202

Chip Inductors

Contents ······p209
Chip Inductors Product Guide ······ p210
Inductors for Power Lines
Inductors for General Circuits
RF Inductors

Please check the MURATA website (https://www.murata.com/) if you cannot find a part number in this catalog.

Application Examples

Car Navigation System

Application Examples

Car Camera System

Application Examples Electronic Control Unit

Application Examples Smart Keyless Entry

Application Examples

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C51E.pdf Apr. 27,2018

Product Guide	 р8

Chip Ferrite Bead

Part Numbering p1	1
Product Detail	13
Caution/Notice)9
Soldering and Mounting p11	11
Packaging	15

Chip EMIFIL®

Part Numbering ······ p116
Product Detail ······ p118
Soldering and Mounting p134
Packaging ····· p139

Chip Common Mode Choke Coil

Part Numbering
Product Detail
▲Caution/Notice
Soldering and Mounting p166
Packaging ······ p173

Block Type EMIFIL[®]

Product Detail ······ p176
Soldering and Mounting p179
Packaging ····· p181

EMI Suppression Filters (Lead Type)

Part Numbering
Product Detail
Soldering and Mounting
Packaging

Microchip Transformer (Balun)

Part Numbering ······ p202
Product Detail ······ p203
①Caution/Notice ······ p204
Soldering and Mounting p205
Packaging ····· p207

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Product Guide

						Size Code	
nductor Type		Series		Applic	ations	in inch (in mm)	Impedance at 100MHz
Unive	rsal Type	BLM03AX P	16	Info- tainment		0201 (0603)	10Ω to 1000Ω
[Power Lines / Signal Lines]	BLM15AX Pi	32	Info- tainment		0402 (1005)	10Ω to 1000Ω	
		BLM03AG P	18	Info- tainment		0201 (0603)	10Ω to 1000Ω
		BLM15AG P	34	Info- tainment	Power- train	0402 (1005)	10Ω to 1000Ω
		BLM18AG P	61	Info- tainment	Power- train	0603 (1608)	120Ω to 1000Ω
	For General	BLM18AG* (150°C available)	65		Power- train	0603 (1608)	120Ω to 1000Ω
	Signal Lines	BLM18AG* (Conductive glue)	63		Power- train	0603 (1608)	470Ω to 1000Ω
		BLM21AG PI	88	Info- tainment	Power- train	0805 (2012)	120Ω to 1000Ω
Signal Lines Type		BLM21AG* (150°C available)	90		Power- train	0805 (2012)	120Ω to 1000Ω
i ypc		BLM31AJ p10	03		Power- train	1206 (3216)	600Ω
		BLM03B Pi	20	Info- tainment		0201 (0603)	10Ω to 600Ω
		BLM15B Pi	36	Info- tainment	Power- train	0402 (1005)	5Ω to 1800Ω
	For High Speed Signal Lines	BLM18B	67	Info- tainment	Power- train	0603 (1608)	5Ω to 2500Ω
	Signal Lines	BLM18B* (150°C available)	72		Power- train	0603 (1608)	47Ω to 2500Ω
		BLM21B P	92	Info- tainment	Power- train	0805 (2012)	5Ω to 2700Ω
	1	BLM03PX*		Info- tainment		0201 (0603)	22Ω to 80Ω
		BLM03PG P		Info- tainment		0201 (0603)	22Ω to 33Ω
		BLM15PX* P		Info- tainment		0402 (1005)	33Ω to 600Ω
		BLM15PG/PD*		Info- tainment		0402 (1005)	10Ω to 120Ω
		BLM18PG* P		Info- tainment	Power- train	0603 (1608)	30Ω to 470Ω
		BLM21PG* P ⁱ		Info- tainment	Power- train	0805 (2012)	22Ω to 330Ω
		BLM21PG* (150°C available)	85		Power- train	0805 (2012)	22Ω to 330Ω
			96	Info- tainment	Power- train	1206 (3216)	33Ω to 600Ω
		BLM41PG*		Info- tainment	Power- train	1806 (4516)	60Ω to 1000Ω
Power	Lines Type			Info- tainment	Power- train	0603 (1608)	26Ω to 1000Ω
			58		Power- train	0603 (1608)	26Ω to 1000Ω
			98	Info- tainment	Power- train	1206 (3216)	120Ω to 1000Ω
		BLM31KN* (150°C available)		tainiment	Power- train	1206 (3216)	120Ω to 1000Ω
			52	Info- tainment	uani	0603 (1608)	26Ω to 330Ω
				Info- tainment	Power- train	0603 (1608)	22Ω
				Info- tainment	Power- train	0805 (2012)	30Ω
		BLM31SN* p10		Info-	Power- train	1206 (3216)	50Ω
		BLE18PS* p10	06	Info- tainment	uain	0603 (1608)	8.5Ω
		BLE32PN p1		Info- tainment	Power- train	1210 (3225)	26Ω to 30Ω
				Info- tainment	train	0201 (0603)	25Ω to 50Ω
Linivo	rsal Type			tainment	Power- train	0402 (1005)	120Ω to 220Ω
	s / Signal Lines]			tainment Info- tainment	train Power- train	0603 (1608)	100Ω to 600Ω
	0			tainment Info- tainment	train Power- train	0603 (1608)	600Ω to 1500Ω
			tainment Info- tainment	train Power- train	0201 (0603)	600Ω to 1300Ω	
				tainment Info- tainment	train	0201 (0603)	330Ω to 1800Ω
98 92 92 94 95 95 95 95 95 95 95 95 95 95 95 95 95			Info- tainment				
				tainment Info- tainment	Power- train	0201 (0603) 0402 (1005)	190Ω to 400Ω 600Ω to 1000Ω
		DEI 120110	45	tainment	train Power- train	0402 (1005)	600Ω to 1000Ω
	Lines Type			Info- tainment	train Power- train	. ,	
						0402 (1005)	600Ω to 1800Ω
		BEITIONB		Info- tainment Info-	Power- train Power-	0402 (1005)	120Ω to 220Ω
	BEITIONG		Info- tainment	Power- train	0603 (1608)	470Ω to 1000Ω	
		BEITIOND		Info- tainment Info-	Power- train	0603 (1608)	470Ω to 1000Ω
2)		BEITIONB		Info- tainment		0603 (1608)	120Ω to 330Ω
		BEITISGG		Info- tainment		0402 (1005)	220Ω to 470Ω
୍ଟ୍ର Signal । ଜ	Lines Type	DENIISGA		Info- tainment		0402 (1005)	75Ω
Signal Lines Type	BLM18GG	82	Info- tainment		0603 (1608)	470Ω	

* The derating of rated current is required for some items according to the operating temperature on each product page.

muRata

NF Combined Type	Series	Applications	Size Code in inch (in mm)	Cut-off Frequency
Signal Lines Type	NFL18ZT p120	Info- tainment	0603 (1608)	50MHz to 500MHz

Combined Type	Series	Applications	Size Code in inch (in mm)	Capacitance
Universal Type	NFE31ZT p118	Info- tainment	1206 (3216)	22pF to 2200pF
[Power Lines / Signal Lines]	NFE61HT p119	Power- train	2706 (6816)	33pF to 3300pF

Inductor Type	Series	Applications	Size Code in inch (in mm)	Impedance at 1MHz
For LED Lines	NFZ32BW* p123	Info- tainment	1210 (3225)	3.3Ω to 880Ω
T of LED Lines	NFZ5BBW* p129	Info- tainment	2020 (5050)	2.9Ω to 140Ω

* The derating of rated current is required for some items according to the operating temperature on each product page.

Inductor Type Series		Applications	Size Code in inch (in mm)	Impedance at 100MHz
For Audio Lines	NFZ18SM* p121	Info- tainment	0603 (1608)	120Ω to 700Ω

* The derating of rated current is required for some items according to the operating temperature on each product page.

DL

Common Mode Choke Coils		oke Coils	Series		Applications	Size Code in inch (in mm)	Common Mode Impedance at 100MHz
		E Differential	DLM11S	p143	Info- tainment	0504 (1210)	45Ω to 90Ω
	Signal Lines Type		DLW21S	p144	Info- tainment	0805 (2012)	67Ω to 490Ω
Signat Lines	0.6.1.4.2.1.00	DLW31S	p146	Power- train	1206 (3216)	2200Ω	
	Univer	sal Type	DLW5BS	p154	Info- tainment	2020 (5050)	500Ω to 800Ω
[Power Lines / Signal Lines]		/ Signal Lines]	DLW5AT*/DLW5BT*	p151	Info- tainment train	2014 (5036)/2020 (5050)	45Ω to 1400Ω
Power Lines Type		ines Type	UCMH0907	p161	Info- tainment	3527 (9070)	700Ω

* The derating of rated current is required for some items according to the operating temperature on each product page.

Common Mode Choke Coils	Series		Applications	Size Code in inch (in mm)	Common Mode Inductance at 0.1MHz
For CAN/CAN FD/FlexRav	DLW32SH	p147	Power- train	1210 (3225)	11µН to 100µН
FOI CAIN/CAIN FD/FlexRay	DLW43MH	p148	Power- train	1812 (4532)	200µH

Common Mode Choke Coils	Series	Applications	Size Code in inch (in mm)	Common Mode Inductance at 0.1MHz
Signal Lines Type For Differential Signal Lines	DLW43S p149	Power- train	1812 (4532)	11µH to 100µH

Common Mode Choke Coils Series		Applications	Size Code in inch (in mm)	Common Mode Inductance at 1MHz	
Signal Lines Type For Differen	ential Signal Lines DLW	V43S p149	Power- train	1812 (4532)	51µH to 100µH

muRata

PL		
Large Cu	irrent	Сс

Large Current Common Mode Choke Coil for Automotive Available		Applications	Size Code in inch (in mm)	Common Mode Impedance at 10MHz	
Dower Lipps Type	PLT10H*	p159	Power- train	-	45Ω to 1000Ω
Power Lines Type	PLT5BP*	p157	Power- train	2020 (5050)	100Ω to 500Ω

* The derating of rated current is required for some items according to the operating temperature on each product page.

BINX Block EMIFIL®		Series		Applications	Height (mm)	Rated Voltage (Vdc)	Rated Current (A)
	BNX024H01*	p176	Power- train	3.5	50	20	
	SMD Type	BNX025H01*	p176	Power- train	3.5	25	20
Power Lines Type	зи туре	BNX026H01*	p176	Power- train	3.5	50	20
Type	BNX027H01*	p176	Power- train	3.5	16	20	
	Lead Type	BNX012H01*	p191	Power- train	8.5 max.	50	15

* The derating of rated current is required for some items according to the operating temperature on each product page.

BLI				
Leaded Multilayer Ferrite Beads	Series	Applications	Height (mm)	Impedance at 100MHz
Signal Lines Type	BLL18AG P18	5 Power- train	4.0 max.	120Ω to 1000Ω

DS

3-Terminal Capacitor Lead Type	Series	Applications	Height (mm)	Capacitance	
Universal Type [Power Lines / Signal Lines]	DSS1 P187	Info- tainment	7.5 max.	22pF to 100nF	

V	F	
Lead	Tvn	e Can

Lead Type Capacitor with Varistor Function	Series		Applications	Height (mm)	Capacitance	Varistor Voltage	
Power Lines Type	VFC2	p190	Power- train	6.0 max.	1.0µF	27V	

muRata

GImpedance

6 Electrode

Category Code

z

н

Oumber of Circuits Code

1

Ex.)

Expressed by a letter.

Code

S/F/T/B/J

Α

W

For Automotive

Expressed by three figures. The unit is in ohm (Ω) at 100MHz. The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Electrode

Sn Plating Au Plating

Ag/Pd

Infotainment

Powertrain, Safety

Category

Number of Circuits 1 Circuit

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

Chip	Ferrite	Bead f	for A	utomo	tive

Part Numbering

·									
(Part Number)	BL	М	18	AG	102	s	Z	1	D
	1	2	8	4	6	6	7	8	9

1 Product ID

Product ID	
BL	Chip Ferrite Beads

2 Туре

Code	Туре				
E	DC Bias Characteristics Improved Type				
M Ferrite Bead Single Type					

Object States (LxW)

Code	Code Dimensions (LxW)		
03	0.6x0.3mm	0201	
15	1.0x0.5mm	0402	
18	1.6x0.8mm	0603	
21	2.0x1.25mm	0805	
31	3.2x1.6mm	1206	
32	32 3.2x2.5mm		
41	4.5x1.6mm	1806	

Characteristics/Applications

4 Characteristic				
Code * ¹	Characteristics/Applications	Series		
AG		BLM03/15/18/21		
AJ	For General Use	BLM31		
AX		BLM03/15		
BA		BLM15/18		
BB		BLM03/15/18/21		
BC	For High-speed Signal Lines	BLM03/15		
BD		BLM03/15/18/21		
BX		BLM15		
KG		BLM18		
KN		BLM31		
PD		BLM15		
PG		BLM03/15/18/21/31/41		
PN	For Power Lines	BLE32		
PS		BLE18		
PX		BLM03/15		
SG		BLM18		
SN		BLM18/21/31		
HG	For GHz Band General Use	BLM03/15/18		
EB	For GHz Band High-speed Signal Lines (Low Direct Current Type)	BLM03		
EG	For GHz Band General Use (Low DC Resistance Type)	BLM15/18		
НВ		BLM03/15/18		
HD	For GHz Band High-speed Signal Lines	BLM03/15/18		
HE		BLM18		
GA	For High-GHz Band High-speed Signal Lines	BLM15		
GG	For High-GHz Band General Use	BLM15/18		

*¹ Frequency characteristics vary with each code.

Continued on the following page. \nearrow

Continued from the preceding page. \searrow

Packaging

Packaging	rackaging							
Code	Packaging	Series						
к	Embossed Taping (ø330mm Reel)	BLE32, BLM21*1/31A/31K/31P/41						
L	Embossed Taping (ø180mm Reel)	BLE32, BLM21* ¹ /31/41						
В	Bulk	All Series						
J	Paper Taping (ø330mm Reel)	BLE18, BLM03/15/18* ² /21* ³						
D	Paper Taping (ø180mm Reel)	BLE18, BLM03/15/18/21* ³						

*¹BLM21BD222S□1/BLM21BD272S□1 only.

*² Except for BLM18KG_JH1/_BH1/BLM18BD_BH1/BLM18AG_BH1

*³ Except for BLM21BD222S 1/BLM21BD272S 1

Microchip Transformer (Balun) SMD Type

Chip Ferrite Bead SMD Type

0.3±0.03

: Electrode (in mm)

Chip EMIFIL® SMD Type

Chip Ferrite Bead SMD Type BLM03PX Series 0201/0603(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	15000	
ſ	ø330mm Paper Tape	50000	
В	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	y at 100MHz	at 85°C	at 125°C	(Max.)
BLM03PX220SZ1	-	22Ω±25%	1.8A	1.45A	0.04Ω
BLM03PX330SZ1	-	33Ω±25%	1.5A	1.2A	0.055Ω
BLM03PX800SZ1	—	80Ω±25%	1A	800mA	0.13Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM03PX_SZ1 series

BLM03PX800SZ1

Continued on the following page. 🖊

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM03PX_S 1 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

14

SMD Type Chip EMIFIL®

ype e Coil

Chip Ferrite Bead SMD Type BLM03PG Series 0201/0603(inch/mm)

Appearance/Dimensions

: Electrode

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	15000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

С -0

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part N	lumber	Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)
BLM03PG220SZ1	—	22Ω±25%	900mA	900mA	0.065Ω
BLM03PG330SZ1	—	33Ω±25%	750mA	750mA	0.09Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM03PG_SZ1 series

Chip Ferrite Bead SMD Type BLM03AX Series 0201/0603(inch/mm)

0.3±0.03

0.3±0.03

: Electrode

Appearance/Dimensions

Chip Ferrite Bead SMD Type

		0.6±0.03
9	4	0.15±0.05

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	15000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	
BLM03AX100SZ1	—	10Ω(Typ.)	1A	1A	0.05Ω	
BLM03AX800SZ1	—	80Ω±25%	500mA	500mA	0.18Ω	
BLM03AX121SZ1	—	120Ω±25%	450mA	450mA	0.23Ω	
BLM03AX241SZ1	_	240Ω±25%	350mA	350mA	0.38Ω	
BLM03AX601SZ1	_	600Ω±25%	250mA	250mA	0.85Ω	
BLM03AX102SZ1	—	1000Ω±25%	200mA	200mA	1.25Ω	

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM03AX_SZ1 series

Continued on the following page. 🖊

SMD Type Chip EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

SMD Type Block Type EMIFIL[®]

SMD Type Chip Common Mode Choke Coil

BLM03AG Series 0201/0603(inch/mm)

Chip Ferrite Bead

Chip EMIFIL® SMD Type

Chip Ferrite Bead SMD Type

0.3±0.03

: Electrode

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	15000
L	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

Packaging

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Appearance/Dimensions

Part Number		Impedance	Rated Current	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	
BLM03AG100SZ1	—	10Ω(Typ.)	500mA	500mA	0.1Ω	
BLM03AG700SZ1	—	70Ω(Тур.)	200mA	200mA	0.4Ω	
BLM03AG800SZ1	—	80Ω±25%	200mA	200mA	0.4Ω	
BLM03AG121SZ1	—	120Ω±25%	200mA	200mA	0.5Ω	
BLM03AG241SZ1	—	240Ω±25%	200mA	200mA	0.8Ω	
BLM03AG601SZ1	—	600Ω±25%	100mA	100mA	1.5Ω	
BLM03AG102SZ1	—	1000Ω±25%	100mA	100mA	2.5Ω	

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM03AG_SZ1 series

Continued on the following page. $earrow \earrow \ea$

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

muRata

SMD Type Microchip Transformer (Balun)

Lead Type EMI Suppression Filters

19

0.3±0.03

Chip Ferrite Bead SMD Type BLM03BB/BC/BD Series 0201/0603(inch/mm)

0.3±0.03

: Electrode

Appearance/Dimensions

		0.6±0.03	
2	4	0.15±0.05	

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	15000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
BLM03BB100SZ1	—	10Ω±25%	300mA	300mA	0.4Ω
BLM03BB220SZ1	-	22Ω±25%	200mA	200mA	0.5Ω
BLM03BB470SZ1	—	47Ω±25%	200mA	200mA	0.7Ω
BLM03BB750SZ1	—	75Ω±25%	200mA	200mA	1Ω
BLM03BB121SZ1	-	120Ω±25%	100mA	100mA	1.5Ω
BLM03BC330SZ1	-	33Ω±25%	150mA	150mA	0.85Ω
BLM03BC560SZ1	-	56Ω±25%	100mA	100mA	1.05Ω
BLM03BC800SZ1	—	80Ω±25%	100mA	100mA	1.4Ω
BLM03BD750SZ1	—	75Ω±25%	300mA	300mA	0.4Ω
BLM03BD121SZ1	—	120Ω±25%	250mA	250mA	0.5Ω
BLM03BD241SZ1	—	240Ω±25%	200mA	200mA	0.8Ω
BLM03BD471SZ1	—	470Ω±25%	215mA	215mA	1.5Ω
BLM03BD601SZ1	—	600Ω±25%	200mA	200mA	1.7Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM03BB_SZ1 series 700 600 500 10 ojacurpaduj 200 100 106 108 100М 16 Frequency [Hz] ELM03BB100SZ1 [Z] BLM03BB220SZ1 [Z] ELM03BB470SZ1 [Z] BLM03BB750SZ1 [Z] ELM03BB121SZ1 [Z]

Z-f characteristics: BLM03BC_SZ1 series

Continued on the following page. earrow

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics: BLM03BD_SZ1 series

BLM03BB750SZ1

008

(reich

-81,80388171521 8

fr-

BLM03BB220SZ1

freq.

BLM03BB121SZ1

Deich

-81,80388220525 B

ŵ

BLM03BD750SZ1

Continued on the following page. 🎢

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Z-f characteristics

Chip Ferrite Bead SMD Type

Chip EMIFIL[®] SMD Type

Block Type EMIFIL[®] SMD Type

Chip Common Mode Choke Coil

SMD Type

22

Chip Ferrite Bead SMD Type BLM03HB/HD/HG Series 0201/0603(inch/mm)

Appearance/Dimensions

: Electrode

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	15000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance Im	Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 1GHz	at 85°C	at 125°C	(Max.)
BLM03HB191SZ1	_	190Ω±25%	1150Ω±40%	150mA	150mA	2Ω
BLM03HB401SZ1	-	400Ω±25%	1850Ω±40%	125mA	125mA	2.8Ω
BLM03HD331SZ1	-	330Ω±25%	750Ω±40%	200mA	200mA	1Ω
BLM03HD471SZ1	—	470Ω±25%	1000Ω±40%	175mA	175mA	1.3Ω
BLM03HD601SZ1	-	600Ω±25%	1500Ω±40%	150mA	150mA	1.7Ω
BLM03HD102FZ1	-	1000Ω±25%	2300Ω±40%	135mA	135mA	2.4Ω
BLM03HD102SZ1	-	1000Ω±25%	2300Ω±40%	120mA	120mA	2.9Ω
BLM03HD152FZ1	-	1500Ω±25%	2700Ω±40%	120mA	120mA	3.1Ω
BLM03HD182FZ1	-	1800Ω±25%	3000Ω±40%	100mA	100mA	3.8Ω
BLM03HG601SZ1	BLM03HG601SH1	600Ω±25%	1000Ω±40%	150mA	150mA	1.6Ω
BLM03HG102SZ1	BLM03HG102SH1	1000Ω±25%	1800Ω±40%	125mA	125mA	2.6Ω
BLM03HG122SZ1	BLM03HG122SH1	1200Ω±25%	2000Ω±40%	100mA	100mA	3.5Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM03HB_SZ1 series

Z-f characteristics: BLM03HD_SZ1 series

Continued on the following page. earrow

Continued from the preceding page. \searrow

SMD Tvpe

Chip EMIFIL® SMD Type

Z-f characteristics: BLM03HD_FZ1 series

Z-f characteristics: BLM03HG_SH1 series

100

Frequency(95) +6L80348181521 8

18

100

BLNCOBINISZI (Z)

-0.0000101521 X

Z-f characteristics: BLM03HG_SZ1 series

Continued on the following page. 🎢

Microchip Transformer (Balun)

SMD Type

SMD Type Chip EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

SMD Type Chip Common Mode Choke Coil

0.3±0.03

: Electrode (in mm)

Chip Ferrite Bead SMD Type BLM03EB Series 0201/0603(inch/mm)

Appearance/Dimensions

		0.6±0.03	+0.3±0.03
9	2	0.15±0.05	
			. E

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	15000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

С ()-0

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Impedance Impedance		Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 1GHz	at 85°C	at 125°C	(Max.)
BLM03EB250SZ1	—	25Ω±25%	105Ω±40%	600mA	450mA	0.26Ω
BLM03EB500SZ1	-	50Ω±25%	255Ω±40%	400mA	300mA	0.58Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM03EB_SZ1 series

Continued on the following page. \nearrow

Chip Ferrite Bead SMD Type

Microchip Transformer (Balun)

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM03E series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

0.5±0.05

: Electrode

Chip Ferrite Bead SMD Type BLM15PX Series 0402/1005(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
BLM15PX330SZ1	—	33Ω±25%	ЗA	1.7A	0.022Ω
BLM15PX600SZ1	—	60Ω±25%	2.5A	1.4A	0.032Ω
BLM15PX800SZ1	—	80Ω±25%	2.3A	1.3A	0.038Ω
BLM15PX121SZ1	—	120Ω±25%	2A	1.1A	0.055Ω
BLM15PX181SZ1	—	180Ω±25%	1.5A	800mA	0.09Ω
BLM15PX221SZ1	—	220Ω±25%	1.4A	800mA	0.1Ω
BLM15PX331SZ1	—	330Ω±25%	1.2A	700mA	0.15Ω
BLM15PX471SZ1	—	470Ω±25%	1A	600mA	0.2Ω
BLM15PX601SZ1	_	600Ω±25%	900mA	500mA	0.23Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15PX_SZ1 series

Continued on the following page. 🖊

SMD Type

SMD Type Chip EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

1.00

.....

-0.01996471521 X

1008

(had)

+8L81576471521 8

free

Derating of Rated Current

1.00

E.F.SP(201521-12)

-0.01994321521 X

1008

(m)

+0.015PX211521 8

free

In operating temperature exceeding +85°C, derating of current is necessary for BLM15PX series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

SMD Type Chip Common Mode Choke Coil

muRata

BLM15PG/PD Series 0402/1005(inch/mm)

Chip Ferrite Bead SMD Type

Chip Ferrite Bead SMD Type

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

o____(\\\)−o

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)
BLM15PG100SZ1	—	10Ω(Typ.)	1A	1A	0.025Ω
BLM15PD300SZ1	—	30Ω±25%	2.2A	1.4A	0.035Ω
BLM15PD600SZ1	—	60Ω±25%	1.7A	1.1A	0.06Ω
BLM15PD800SZ1	—	80Ω±25%	1.5A	1A	0.07Ω
BLM15PD121SZ1	—	120Ω±25%	1.3A	900mA	0.09Ω

(in mm)

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15PG/PD_SZ1 series

Continued on the following page. 🖊

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Lead Type EMI Suppression Filters

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM15PD series. Please apply the derating curve shown in chart according to the operating temperature.

.....

Derating of Rated Current

SMD Type Microchip Transformer (Balun) 0.5±0.05

: Electrode

Chip Ferrite Bead SMD Type BLM15AX Series 0402/1005(inch/mm)

Appearance/Dimensions

0.25±0.1

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)
BLM15AX100SZ1	—	10Ω±5Ω	1.74A	1.74A	0.015Ω
BLM15AX300SZ1	—	30Ω±25%	1.1A	1.1A	0.06Ω
BLM15AX700SZ1	—	70Ω±25%	780mA	780mA	0.1Ω
BLM15AX121SZ1	—	120Ω±25%	700mA	700mA	0.13Ω
BLM15AX221SZ1	—	220Ω±25%	600mA	600mA	0.18Ω
BLM15AX601SZ1	—	600Ω±25%	500mA	500mA	0.34Ω
BLM15AX102SZ1	—	1000Ω±25%	350mA	350mA	0.49Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15AX_SZ1 series

Continued on the following page. 🖊

32

Microchip Transformer (Balun)

SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

Lead Type EMI Suppression Filters

: Electrode

Chip Ferrite Bead SMD Type BLM15AG Series 0402/1005(inch/mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

•••••		••••••
	0.25±0.1	0.5±0.05
1	1.0±0.05	0.5±0.05

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)
BLM15AG100SZ1	BLM15AG100SH1	10Ω(Typ.)	1A	1A	0.025Ω/0.05Ω
BLM15AG700SZ1	BLM15AG700SH1	70Ω(Тур.)	600mA/500mA	600mA/500mA	0.15Ω
BLM15AG121SZ1	BLM15AG121SH1	120Ω±25%	550mA/500mA	550mA/500mA	0.19Ω/0.25Ω
BLM15AG221SZ1	BLM15AG221SH1	220Ω±25%	450mA/300mA	450mA/300mA	0.29Ω/0.35Ω
BLM15AG601SZ1	BLM15AG601SH1	600Ω±25%	300mA	300mA	0.52Ω/0.6Ω
BLM15AG102SZ1	BLM15AG102SH1	1000Ω±25%	300mA/200mA	300mA/200mA	0.65Ω/1Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15AG_SZ1 series

Z-f characteristics: BLM15AG_SH1 series

Continued on the following page. 🖊

⁽Resistance element becomes dominant at high frequencies.)
ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

SMD Type Chip EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

SMD Type Block Type EMIFIL®

SMD Type Chip Common Mode Choke Coil

muRata

0.5±0.05

: Electrode

Chip Ferrite Bead SMD Type BLM15BX Series 0402/1005(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

 $\longrightarrow (\land \land \land) \longrightarrow (\land \land \land) \longrightarrow (\land \land \land) \longrightarrow (\land)) \longrightarrow (\land) \longrightarrow (\land) \longrightarrow (\land) \longrightarrow (\land)) \longrightarrow (\land) \longrightarrow (\land)) \longrightarrow (\land) \longrightarrow (\land))$

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part N	umber	Impedance Rated Current		Rated Current	DC	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)	
BLM15BX750SZ1	-	75Ω±25%	600mA	600mA	0.15Ω	
BLM15BX121SZ1	-	120Ω±25%	600mA	600mA	0.17Ω	
BLM15BX221SZ1	_	220Ω±25%	450mA	450mA	0.27Ω	
BLM15BX471SZ1	_	470Ω±25%	350mA	350mA	0.41Ω	
BLM15BX601SZ1	_	600Ω±25%	350mA	350mA	0.46Ω	
BLM15BX102SZ1	_	1000Ω±25%	300mA	300mA	0.65Ω	
BLM15BX182SZ1	_	1800Ω±25%	250mA	250mA	0.9Ω	

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15BX_SZ1 series

Continued on the following page. 🖊

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Lead Type EMI Suppression Filters

Continued from the preceding page. \searrow

Z-f characteristics

BLM15BX102SZ1

BLM15BX182SZ1

muRata

0.5±0.05

: Electrode

Chip Ferrite Bead SMD Type BLM15BA/BB/BC/BD Series 0402/1005(inch/mm)

Appearance/Dimensions

	0.25±0.1	
)	1.0±0.05	

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

o____(\\\)_−o

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part N	Number	Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)
BLM15BA050SZ1	_	5Ω±25%	300mA	300mA	0.1Ω
BLM15BA100SZ1	-	10Ω±25%	300mA	300mA	0.2Ω
BLM15BA220SZ1	-	22Ω±25%	300mA	300mA	0.3Ω
BLM15BA330SZ1	-	33Ω±25%	300mA	300mA	0.4Ω
BLM15BA470SZ1	-	47Ω±25%	200mA	200mA	0.6Ω
BLM15BA750SZ1	-	75Ω±25%	200mA	200mA	0.8Ω
BLM15BB050SZ1	BLM15BB050SH1	5Ω±25%	500mA	500mA	0.08Ω
BLM15BB100SZ1	BLM15BB100SH1	10Ω±25%	300mA	300mA	0.1Ω
BLM15BB220SZ1	BLM15BB220SH1	22Ω±25%	300mA	300mA	0.2Ω
BLM15BB470SZ1	BLM15BB470SH1	47Ω±25%	300mA	300mA	0.35Ω
BLM15BB750SZ1	BLM15BB750SH1	75Ω±25%	300mA	300mA	0.4Ω
BLM15BB121SZ1	BLM15BB121SH1	120Ω±25%	300mA	300mA	0.55Ω
BLM15BB221SZ1	BLM15BB221SH1	220Ω±25%	200mA	200mA	0.8Ω
BLM15BC121SZ1	-	120Ω±25%	350mA	350mA	0.45Ω
BLM15BC241SZ1	_	240Ω±25%	250mA	250mA	0.7Ω
BLM15BD750SZ1	_	75Ω±25%	300mA	300mA	0.2Ω
BLM15BD121SZ1	_	120Ω±25%	300mA	300mA	0.3Ω
BLM15BD221SZ1	_	220Ω±25%	300mA	300mA	0.4Ω
BLM15BD471SZ1	BLM15BD471SH1	470Ω±25%	200mA	200mA	0.6Ω
BLM15BD601SZ1	BLM15BD601SH1	600Ω±25%	200mA	200mA	0.65Ω
BLM15BD102SZ1	BLM15BD102SH1	1000Ω±25%	200mA	200mA	0.9Ω
BLM15BD152SZ1	-	1500Ω±25%	190mA	190mA	1Ω
BLM15BD182SZ1	BLM15BD182SH1	1800Ω±25%	100mA/200mA	100mA/200mA	1.4Ω

Operating Temp. Range: -55°C to 125°C

Continued on the following page. earrow

muRata

SMD Type

SMD Type Chip EMIFIL®

Chip Common Mode Choke Coil

Block Type EMIFIL®

EMI Suppression Filters

Microchip Transformer (Balun)

Continued from the preceding page. \searrow

Z-f characteristics: BLM15BA_SZ1 series

Z-f characteristics: BLM15BB_SH1 series

Z-f characteristics: BLM15BD_SZ1 series

muRata

Z-f characteristics

008 free 86.5 -B, #158A220521 [7] *8L#158A220521 8 MARTINARYONY X

BLM15BA220SZ1

BLM15BB470SZ1/BLM15BB470SH1

BLM15BA470SZ1

10

BLM15BA750SZ1

BLM15BB100SZ1/BLM15BB100SH1

muRata

BLM15BB220SZ1/BLM15BB220SH1

Continued on the following page. 🖊

SMD Type

Chip Ferrite Bead SMD Type

Chip EMIFIL[®] SMD Type

EMI Suppression Filters Lead Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Lead Type EMI Suppression Filters

Continued from the preceding page. \searrow

Z-f characteristics

muRata

SMD Type Microchip Transformer (Balun)

Chip Ferrite Bead SMD Type BLM15HB/HD/HG Series 0402/1005(inch/mm)

0.5±0.05

: Electrode

Appearance/Dimensions

Chip Ferrite Bead SMD Type

		•••••
	0.25±0.1	
	1.0±0.05	0.5±0.05
1	<u>↓ 1.0±0.05</u>	↓ 0.5±0.05

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
ſ	ø330mm Paper Tape	50000
В	Bulk(Bag)	1000

Equivalent Circuit

 $\longrightarrow (\land \land \land) \rightarrow \circ$

Rated Value (: packaging code)

Part N	Part Number		Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz at 1GHz	at 85°C	at 125°C	(Max.)	
BLM15HB121SZ1	BLM15HB121SH1	120Ω±25%	500Ω±40%	300mA	300mA	0.7Ω
BLM15HB221SZ1	BLM15HB221SH1	220Ω±25%	900Ω±40%	250mA	250mA	1Ω
BLM15HD601SZ1	BLM15HD601SH1	600Ω±25%	1400Ω±40%	300mA	300mA	0.85Ω
BLM15HD102SZ1	BLM15HD102SH1	1000Ω±25%	2000Ω±40%	250mA	250mA	1.25Ω
BLM15HD182SZ1	BLM15HD182SH1	1800Ω±25%	2700Ω±40%	200mA	200mA	2.2Ω
BLM15HG601SZ1	BLM15HG601SH1	600Ω±25%	1000Ω±40%	300mA	300mA	0.7Ω
BLM15HG102SZ1	BLM15HG102SH1	1000Ω±25%	1400Ω±40%	250mA	250mA	1.1Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15HB_SZ1 series

Z-f characteristics: BLM15HB_SH1 series

Continued on the following page. $earrow \earrow \ea$

⁽Resistance element becomes dominant at high frequencies.)

Z-f characteristics: BLM15HD_SZ1 series

Z-f characteristics: BLM15HG_SZ1 series

BLM15HB121SZ1/BLM15HB121SH1

BLM15HD102SZ1/BLM15HD102SH1

1000 frequ Dec) B. IN 9482215H1 121 -0.01500221501 8 -0.019022190 X

BLM15HB221S71/BLM15HB221SH1

BLM15HD182SZ1/BLM15HD182SH1

Z-f characteristics: BLM15HD_SH1 series

BLM15HD601SZ1/BLM15HD601SH1

BLM15HG601SZ1/BLM15HG601SH1

Continued on the following page. 🎢

SMD Type

Chip Common Mode Choke Coil

Block Type EMIFIL®

Lead Type EMI Suppression Filters

Microchip Transformer (Balun)

SMD Type

Z-f characteristics

BLM15HG102SZ1/BLM15HG102SH1

Microchip Transformer (Balun) SMD Type

Chip Ferrite Bead SMD Type

0.5±0.05

(in mm)

Chip Ferrite Bead SMD Type BLM15HG(150°C available) Series 0402/1005(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	10000	-
L	ø330mm Paper Tape	50000	
В	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Part Number Impedance Impedance		Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 1GHz	at 85°C	at 125°C	(Max.)
-	BLM15HG601BH1	600Ω±25%	1000Ω±40%	300mA	300mA	0.7Ω
—	BLM15HG102BH1	1000Ω±25%	1400Ω±40%	250mA	250mA	1.1Ω

Rated Current at 150°C: 20mA

Operating Temp. Range: -55°C to 150°C

Z-f characteristics: BLM15HG_BH1 series

BLM15HG601BH1 . 60 1008 Freq 04/3 HEATSHOLDHER R BURGHOUSERI 121 -CLASSICS OF SHEEP х

Continued on the following page. 🖊

SMD Type Microchip Transformer (Balun)

.....

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for BLM15HG series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

46

muRata

SMD Type Chip EMIFIL®

Lead Type EMI Suppression Filters

Chip Ferrite Bead SMD Type BLM15EG Series 0402/1005(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	10000	Ĩ
L	ø330mm Paper Tape	50000	
В	Bulk(Bag)	1000	

Equivalent Circuit

0

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	lumber	Impedance	Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz at 1GHz	at 85°C	at 125°C	(Max.)	
BLM15EG121SZ1	BLM15EG121SH1	120Ω±25%	145Ω(Typ.)	1.5A	900mA	0.095Ω
BLM15EG221SZ1	BLM15EG221SH1	220Ω±25%	270Ω(Typ.)	700mA	500mA	0.28Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15EG_SZ1 series

Z-f characteristics: BLM15EG_SH1 series

BLM15EG221SZ1/BLM15EG221SH1

muRata

Continued on the following page. earrow

.....

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM15E series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip EMIFIL[®] SMD Type

48

SMD Type Chip EMIFIL®

) Type oke Coil

Chip Ferrite Bead SMD Type BLM15GA/GG Series 0402/1005(inch/mm)

0.5±0.05

: Electrode

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	10000	Ĩ
ſ	ø330mm Paper Tape	50000	1
В	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part N	lumber	Impedance	Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 1GHz	at 85°C	at 125°C	(Max.)
BLM15GA750SZ1	_	75Ω±25%	1000Ω±40%	200mA	200mA	1.3Ω
BLM15GG221SZ1	_	220Ω±25%	600Ω±40%	300mA	300mA	0.7Ω
BLM15GG471SZ1	—	470Ω±25%	1200Ω±40%	200mA	200mA	1.3Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM15GA/GG_SZ1 series

: Electrode (in mm)

BLM18PG Series 0603/1608(inch/mm)

Chip Ferrite Bead SMD Type

Chip Ferrite Bead SMD Type

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
J	ø330mm Paper Tape	10000
В	Bulk(Bag)	1000

Equivalent Circuit

-0

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Appearance/Dimensions

Part I	Number	Impedance	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	(Max.)
BLM18PG300SZ1	BLM18PG300SH1	30Ω(Тур.)	1A	0.05Ω
BLM18PG330SZ1	BLM18PG330SH1	33Ω±25%	ЗА	0.025Ω
BLM18PG600SZ1	BLM18PG600SH1	60Ω(Тур.)	1A	0.1Ω
BLM18PG121SZ1	BLM18PG121SH1	120Ω±25%	2A	0.05Ω
BLM18PG181SZ1	BLM18PG181SH1	180Ω±25%	1.5A	0.09Ω
BLM18PG221SZ1	BLM18PG221SH1	220Ω±25%	1.4A	0.1Ω
BLM18PG331SZ1	BLM18PG331SH1	330Ω±25%	1.2A	0.15Ω
BLM18PG471SZ1	BLM18PG471SH1	470Ω±25%	1A	0.2Ω

muRata

Rated Current at 125°C: 1A

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM18PG_SZ1 series

Z-f characteristics: BLM18PG_SH1 series

Continued on the following page. $earrow \earrow \ea$

SMD Type

50

SMD Type

SMD Type Chip EMIFIL®

Chip Common Mode Choke Coil

SMD Type

Continued from the preceding page. \searrow

Z-f characteristics

BLM18PG121SZ1/BLM18PG121SH1

BLM18PG221SZ1/BLM18PG221SH1

BLM18PG331SZ1/BLM18PG331SH1

BLM18PG471SZ1/BLM18PG471SH1

muRata

.

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM18PG series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

SMD Type Block Type EMIFIL®

(in mm)

Chip Ferrite Bead SMD Type BLM18SG Series 0603/1608(inch/mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

1.6±0.15	0.8±0.15
-0.4±0.2	: Electrode

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	10000
J	ø330mm Paper Tape	30000
В	Bulk(Bag)	1000

Equivalent Circuit

-0

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	lumber	Impedance	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	(Max.)	
BLM18SG260TZ1	—	26Ω±25%	6A	0.007Ω	
BLM18SG700TZ1	—	70Ω±25%	4A	0.02Ω	
BLM18SG121TZ1	—	120Ω±25%	ЗА	0.025Ω	
BLM18SG221TZ1	—	220Ω±25%	2.5A	0.04Ω	
BLM18SG331TZ1	—	330Ω±25%	1.5A	0.07Ω	

Rated Current at 125°C: 1A

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM18SG_TZ1 series

Continued on the following page. 🖊

muRata

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM18SG_T \Box 1 series. Please apply the derating curve shown in chart according to the operating temperature.

.....

Derating of Rated Current

SMD Type Microchip Transformer (Balun)

Lead Type EMI Suppression Filters

0.6±0.15

(in mm)

Chip Ferrite Bead SMD Type BLM18SN Series 0603/1608(inch/mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

1.6±0.15 0.8±0.15 0.4±0.2 : Electrode

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
В	Bulk(Bag)	1000

Equivalent Circuit

()

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	lumber	Impedance Rated Current		Rated Current DC Resistance		Operating	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	Temp. Range	
BLM18SN220TZ1	BLM18SN220TH1	22Ω±7Ω	8A	5A	0.004Ω	-55°C to 125°C	

Z-f characteristics

008 the state

Ind

HLKIGROZZINI B

Derating of Rated Current

B, IN BOX220101 [2]

NUMBER OF A

In operating temperature exceeding +85°C, derating of current is necessary for BLM18SN series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip Common Mode Choke Coil

SMD Type

SMD Type Chip EMIFIL®

Lead Type EMI Suppression Filters

Chip Ferrite Bead SMD Type BLM18KG Series 0603/1608(inch/mm)

Appearance/Dimensions

: Electrode

(in mm)

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	4000	
J	ø330mm Paper Tape	10000	
В	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	Part Number		Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
BLM18KG260TZ1	BLM18KG260TH1	26Ω±25%	6A	4A	0.007Ω
BLM18KG300TZ1	BLM18KG300TH1	30Ω±25%	5A	3.3A	0.01Ω
BLM18KG700TZ1	BLM18KG700TH1	70Ω±25%	3.5A	2.2A	0.022Ω
BLM18KG101TZ1	BLM18KG101TH1	100Ω±25%	ЗA	1.9A	0.03Ω
BLM18KG121TZ1	BLM18KG121TH1	120Ω±25%	ЗA	1.9A	0.03Ω
BLM18KG221SZ1	BLM18KG221SH1	220Ω±25%	2.2A	1.5A	0.05Ω
BLM18KG331SZ1	BLM18KG331SH1	330Ω±25%	1.7A	1.2A	0.08Ω
BLM18KG471SZ1	BLM18KG471SH1	470Ω±25%	1.5A	1A	0.13Ω
BLM18KG601SZ1	BLM18KG601SH1	600Ω±25%	1.3A	1A	0.15Ω
BLM18KG102SZ1	BLM18KG102SH1	1000Ω±25%	1A	800mA	0.2Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM18KG_TZ1 series

Z-f characteristics: BLM18KG_TH1 series

Continued on the following page. 🎢

muRata

Chip Common Mode Choke Coil

Block Type EMIFIL®

EMI Suppression Filters

Microchip Transformer (Balun)

A Note
 • Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

.....

Continued from the preceding page. \searrow

Z-f characteristics

BLM18KG102SZ1/BLM18KG102SH1

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM18KG series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

C51E.pdf Apr. 27,2018

muRata

Chip Ferrite Bead SMD Type BLM18KG(150°C available) Series 0603/1608(inch/mm)

Appearance/Dimensions

(in mm)

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Appearance/Dimensions

(in mm)

Rated Value (: packaging code)

Part	Number	Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
-	BLM18KG221BH1	220Ω±25%	1.5A	1.5A	0.05Ω
_	BLM18KG331BH1	330Ω±25%	1.2A	1.2A	0.08Ω
_	BLM18KG471BH1	470Ω±25%	1A	1A	0.13Ω
_	BLM18KG601BH1	600Ω±25%	1A	1A	0.15Ω
_	BLM18KG102BH1	1000Ω±25%	800mA	800mA	0.2Ω
_	BLM18KG260JH1	26Ω±25%	4A	4A	0.007Ω
_	BLM18KG300JH1	30Ω±25%	3.3A	3.3A	0.01Ω
_	BLM18KG700JH1	70Ω±25%	2.2A	2.2A	0.022Ω
_	BLM18KG101JH1	100Ω±25%	1.9A	1.9A	0.03Ω
_	BLM18KG121JH1	120Ω±25%	1.9A	1.9A	0.03Ω

Rated Current at 150°C: 10mA

Operating Temp. Range: -55°C to 150°C

Continued on the following page. 🎜

Chip EMIFIL® SMD Type

BLM18KG331BH1

-R. MIRKERSON X

BLM18KG300JH1

BLM18KG101JH1

Continued on the following page. 🖊

Lead Type EMI Suppression Filters

Chip Common Mode Choke Coil

SMD Type

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

.....

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for BLM18KG_JH1/_BH1 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

muRata

60

EMI Suppression Filters Lead Type

Microchip Transformer (Balun) SMD Type 0.8±0.15

: Electrode (in mm)

SMD Type Chip EMIFIL®

Lead Type EMI Suppression Filters

Chip Ferrite Bead SMD Type BLM18AG Series 0603/1608(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	4000	
J	ø330mm Paper Tape	10000	
в	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
BLM18AG121SZ1	BLM18AG121SH1	120Ω±25%	800mA	800mA	0.18Ω
BLM18AG151SZ1	BLM18AG151SH1	150Ω±25%	700mA	700mA	0.25Ω
BLM18AG221SZ1	BLM18AG221SH1	220Ω±25%	700mA	700mA	0.25Ω
BLM18AG331SZ1	BLM18AG331SH1	330Ω±25%	600mA	600mA	0.3Ω
BLM18AG471SZ1	BLM18AG471SH1	470Ω±25%	550mA	550mA	0.35Ω
BLM18AG601SZ1	BLM18AG601SH1	600Ω±25%	500mA	500mA	0.38Ω
BLM18AG102SZ1	BLM18AG102SH1	1000Ω±25%	450mA	450mA	0.5Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM18AG_SZ1 series

Z-f characteristics: BLM18AG_SH1 series

Continued on the following page. earrow

Z-f characteristics

BLM18AG331SZ1/BLM18AG331SH1

BLM18AG601SZ1/BLM18AG601SH1

BLM18AG102SZ1/BLM18AG102SH1

SMD Tvpe

Block Type EMIFIL[®] SMD Type

Chip Ferrite Bead SMD Type BLM18AG(for conductive glue mounting) Series 0603/1608(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
٦	ø330mm Paper Tape	10000
в	Bulk(Bag)	1000

Equivalent Circuit

-0

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance Rated Current		Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	at 150°C	(Max.)
_	BLM18AG471WH1	470Ω±25%	1A	1A	500mA	0.2Ω
—	BLM18AG102WH1	1000Ω±25%	200mA	200mA	100mA	0.7Ω

Operating Temp. Range: -55°C to 150°C

Z-f characteristics: BLM18AG_WH1 series

muRata

Continued on the following page. $earrow \earrow \ea$

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for BLM18AG_WH1 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

64

0.8±0.15

: Electrode

(in mm)

Chip Ferrite Bead SMD Type BLM18AG(150°C available) Series 0603/1608(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	4000	oe riL®
В	Bulk(Bag)	1000	TYF
Equivalent C	lircuit		SME Chip E

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part	Part Number		Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)
—	BLM18AG121BH1	120Ω±25%	800mA	800mA	0.18Ω
_	BLM18AG151BH1	150Ω±25%	700mA	700mA	0.25Ω
_	BLM18AG221BH1	220Ω±25%	700mA	700mA	0.25Ω
_	BLM18AG331BH1	330Ω±25%	600mA	600mA	0.3Ω
—	BLM18AG471BH1	470Ω±25%	550mA	550mA	0.35Ω
_	BLM18AG601BH1	600Ω±25%	500mA	500mA	0.38Ω
_	BLM18AG102BH1	1000Ω±25%	450mA	450mA	0.5Ω

Rated Current at 150°C: 10mA

Operating Temp. Range: -55°C to 150°C

Z-f characteristics: BLM18AG BH1 series

Continued on the following page. 🖊

65

Z-f characteristics

SMD Tvpe

Chip EMIFIL[®] SMD Type

BLM18AG601BH1

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for BLM18AG_BH1 series. Please apply the derating curve shown in chart according to the operating temperature.

.....

Derating of Rated Current

Block Type EMIFIL® EMI Suppression Filters Lead Type

SMD Type

Chip Common Mode Choke Coil

SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Lead Type EMI Suppression Filters

Chip Ferrite Bead SMD Type BLM18BA/BB/BD Series 0603/1608(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
J	ø330mm Paper Tape	10000
в	Bulk(Bag)	1000

Equivalent Circuit

С -0

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
BLM18BA050SZ1	BLM18BA050SH1	5Ω±25%	500mA	500mA	0.2Ω
BLM18BA100SZ1	BLM18BA100SH1	10Ω±25%	500mA	500mA	0.25Ω
BLM18BA220SZ1	BLM18BA220SH1	22Ω±25%	500mA	500mA	0.35Ω
BLM18BA470SZ1	BLM18BA470SH1	47Ω±25%	300mA	300mA	0.55Ω
BLM18BA750SZ1	BLM18BA750SH1	75Ω±25%	300mA	300mA	0.7Ω
BLM18BA121SZ1	BLM18BA121SH1	120Ω±25%	200mA	200mA	0.9Ω
BLM18BB050SZ1	BLM18BB050SH1	5Ω±25%	800mA	800mA	0.05Ω
BLM18BB100SZ1	BLM18BB100SH1	10Ω±25%	700mA	700mA	0.1Ω
BLM18BB220SZ1	BLM18BB220SH1	22Ω±25%	700mA	700mA	0.2Ω
BLM18BB470SZ1	BLM18BB470SH1	47Ω±25%	600mA	600mA	0.25Ω
BLM18BB600SZ1	BLM18BB600SH1	60Ω±25%	600mA	600mA	0.25Ω
BLM18BB750SZ1	BLM18BB750SH1	75Ω±25%	600mA	600mA	0.3Ω
BLM18BB121SZ1	BLM18BB121SH1	120Ω±25%	550mA	550mA	0.3Ω
BLM18BB141SZ1	BLM18BB141SH1	140Ω±25%	500mA	500mA	0.35Ω
BLM18BB151SZ1	BLM18BB151SH1	150Ω±25%	450mA	450mA	0.37Ω
BLM18BB221SZ1	BLM18BB221SH1	220Ω±25%	450mA	450mA	0.45Ω
BLM18BB331SZ1	BLM18BB331SH1	330Ω±25%	400mA	400mA	0.58Ω
BLM18BB471SZ1	BLM18BB471SH1	470Ω±25%	300mA	300mA	0.85Ω
BLM18BD470SZ1	BLM18BD470SH1	47Ω±25%	500mA	500mA	0.3Ω
BLM18BD121SZ1	BLM18BD121SH1	120Ω±25%	300mA	300mA	0.4Ω
BLM18BD151SZ1	BLM18BD151SH1	150Ω±25%	300mA	300mA	0.4Ω
BLM18BD221SZ1	BLM18BD221SH1	220Ω±25%	250mA	250mA	0.45Ω
BLM18BD331SZ1	BLM18BD331SH1	330Ω±25%	250mA	250mA	0.5Ω
BLM18BD421SZ1	BLM18BD421SH1	420Ω±25%	250mA	250mA	0.55Ω
BLM18BD471SZ1	BLM18BD471SH1	470Ω±25%	250mA	250mA	0.55Ω
BLM18BD601SZ1	BLM18BD601SH1	600Ω±25%	200mA	200mA	0.65Ω
BLM18BD102SZ1	BLM18BD102SH1	1000Ω±25%	200mA	200mA	0.85Ω
BLM18BD152SZ1	BLM18BD152SH1	1500Ω±25%	150mA	150mA	1.2Ω
BLM18BD182SZ1	BLM18BD182SH1	1800Ω±25%	150mA	150mA	1.5Ω
BLM18BD222SZ1	BLM18BD222SH1	2200Ω±25%	150mA	150mA	1.5Ω
BLM18BD252SZ1	BLM18BD252SH1	2500Ω±25%	150mA	150mA	1.5Ω

Operating Temp. Range: -55°C to 125°C

Continued on the following page. $earrow \earrow \ea$

Z-f characteristics: BLM18BA_SZ1 series

Z-f characteristics: BLM18BB_SZ1 series

Z-f characteristics: BLM18BB_SZ1 series

Z-f characteristics: BLM18BA_SH1 series

Z-f characteristics: BLM18BB_SH1 series

Continued on the following page. $ot\!\!\!/$

Z-f characteristics: BLM18BD_SZ1 series

BLM18BA050SZ1/BLM18BA050SH1

BLM18BA470SZ1/BLM18BA470SH1

BLM18BA100SZ1/BLM18BA100SH1

Z-f characteristics: BLM18BD_SH1 series

BLM18BA220SZ1/BLM18BA220SH1

BLM18BA121SZ1/BLM18BA121SH1

Continued on the following page. 🎢

SMD Type Chip EMIFIL®

Z-f characteristics

BLM18BB121SZ1/BLM18BB121SH1

BLM18BB221SZ1/BLM18BB221SH1

BLM18BD470SZ1/BLM18BD470SH1

BLM18BB100SZ1/BLM18BB100SH1

BLM18BB600SZ1/BLM18BB600SH1

- 14

-B. #1000141581 121

-1. INSERTATION X

-0,810080015H1 (Z)

NINGHERSON X

1.44

1008

BLM18BB331SZ1/BLM18BB331SH1

Dich

+81,910881412H1 8

-

BI M18BB141571/BI M18BB1415H1 BI M18BB151571/

-B, #10067500H1 [2]

108

B, #10062203H1 121

■IL#1888230001 X

BLM18BB151SZ1/BLM18BB151SH1

BLM18BB220SZ1/BLM18BB220SH1

free.

BLM18BB750SZ1/BLM18BB750SH1

008

+8L910887505H1 8

۴.,

+6L910002205H1 8

BLM18BB471SZ1/BLM18BB471SH1

BLM18BD121SZ1/BLM18BD121SH1

100

Debri

-0.01000331341 8

free:

BLM18BD151SZ1/BLM18BD151SH1

Continued on the following page. 🎜

Block Type EMIFIL® SMD Type

EMI Suppression Filters

Lead Type

Chip EMIFIL® SMD Type

Microchip Transformer (Balun)

SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

Continued from the preceding page. \searrow

Z-f characteristics

BLM18BD471SZ1/BLM18BD471SH1

BLM18BD601SZ1/BLM18BD601SH1

BLM18BD102SZ1/BLM18BD102SH1

BLM18BD152SZ1/BLM18BD152SH1

BLM18BD252SZ1/BLM18BD252SH1

Frequence (No)

*8LX10002525H1 8

30

■0,410002525H1 [7] ■0,410002525H1 X

BLM18BD182SZ1/BLM18BD182SH1

BLM18BD222SZ1/BLM18BD222SH1

l ype Filters

SMD Type Block Type EMIFIL®

0.8±0.15

: Electrode

(in mm)

Chip Ferrite Bead SMD Type BLM18BD(150°C available) Series 0603/1608(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part I	Number	Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
_	BLM18BD470BH1	47Ω±25%	500mA	500mA	0.3Ω
_	BLM18BD121BH1	120Ω±25%	300mA	300mA	0.4Ω
_	BLM18BD151BH1	150Ω±25%	300mA	300mA	0.4Ω
_	BLM18BD221BH1	220Ω±25%	250mA	250mA	0.45Ω
_	BLM18BD331BH1	330Ω±25%	250mA	250mA	0.5Ω
_	BLM18BD421BH1	420Ω±25%	250mA	250mA	0.55Ω
_	BLM18BD471BH1	470Ω±25%	250mA	250mA	0.55Ω
_	BLM18BD601BH1	600Ω±25%	200mA	200mA	0.65Ω
_	BLM18BD102BH1	1000Ω±25%	200mA	200mA	0.85Ω
_	BLM18BD152BH1	1500Ω±25%	150mA	150mA	1.2Ω
_	BLM18BD182BH1	1800Ω±25%	150mA	150mA	1.5Ω
_	BLM18BD222BH1	2200Ω±25%	150mA	150mA	1.5Ω
_	BLM18BD252BH1	2500Ω±25%	150mA	150mA	1.5Ω

Rated Current at 150°C: 10mA

Operating Temp. Range: -55°C to 150°C

Z-f characteristics: BLM18BD_BH1 series

Z-f characteristics: BLM18BD_BH1 series

Continued on the following page. $earrow \earrow \ea$

Z-f characteristics

muRata

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

.....

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for BLM18BD_BH1 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

muRata

74

0.8±0.15

: Electrode (in mm)

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

Lead Type EMI Suppression Filters

Chip Ferrite Bead SMD Type BLM18HB/HD/HE/HG Series 0603/1608(inch/mm)

Appearance/Dimensions

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
L	ø330mm Paper Tape	10000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	lumber	Impedance	Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 100MHz at 1GHz		at 125°C	(Max.)
BLM18HB121SZ1	—	120Ω±25%	500Ω±40%	200mA	200mA	0.5Ω
BLM18HB221SZ1	—	220Ω±25%	1100Ω±40%	100mA	100mA	0.8Ω
BLM18HB331SZ1	—	330Ω±25%	1600Ω±40%	50mA	50mA	1.2Ω
BLM18HD471SZ1	BLM18HD471SH1	470Ω±25%	1000Ω(Typ.)	100mA	100mA	1.2Ω
BLM18HD601SZ1	BLM18HD601SH1	600Ω±25%	1200Ω(Typ.)	100mA	100mA	1.5Ω
BLM18HD102SZ1	BLM18HD102SH1	1000Ω±25%	1700Ω(Typ.)	50mA	50mA	1.8Ω
BLM18HE601SZ1	BLM18HE601SH1	600Ω±25%	600Ω(Тур.)	800mA	600mA	0.25Ω
BLM18HE102SZ1	BLM18HE102SH1	1000Ω±25%	1000Ω(Typ.)	600mA	500mA	0.35Ω
BLM18HE152SZ1	BLM18HE152SH1	1500Ω±25%	1500Ω(Typ.)	500mA	400mA	0.5Ω
BLM18HG471SZ1	BLM18HG471SH1	470Ω±25%	600Ω(Тур.)	200mA	200mA	0.85Ω
BLM18HG601SZ1	BLM18HG601SH1	600Ω±25%	700Ω(Тур.)	200mA	200mA	1Ω
BLM18HG102SZ1	BLM18HG102SH1	1000Ω±25%	1000Ω(Тур.)	100mA	100mA	1.6Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM18HB_SZ1 series

Z-f characteristics: BLM18HD_SZ1 series

Continued on the following page. 🎢

Z-f characteristics: BLM18HE_SH1 series

Z-f characteristics: BLM18HG_SH1 series

Z-f characteristics: BLM18HE_SZ1 series

Continued on the following page. 🖊

Z-f characteristics

140

-

-B.R.M.M.G.(15H1 12)

-R.M.B6471911 X

BLM18HD471SZ1/BLM18HD471SH1

.....

1.0

B, #1048031521 [7]

-1. mileszetzet x

BLM18HD601SZ1/BLM18HD601SH1

BLM18HD102SZ1/BLM18HD102SH1

freq

HLX1040331521 8

BLM18HB331SZ1

BLM18HE601SZ1/BLM18HE601SH1

108

*8LX104D4715H1 8

free.

BLM18HG471SZ1/BLM18HG471SH1

BLM18HE102SZ1/BLM18HE102SH1

BLM18HG601SZ1/BLM18HG601SH1

BLM18HE152SZ1/BLM18HE152SH1

BLM18HG102SZ1/BLM18HG102SH1

Continued on the following page. 🖊

SMD Type Chip EMIFIL®

muRata

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM18HE series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

muRata

Chip EMIFIL[®] SMD Type

EMI Suppression Filters Lead Type

Microchip Transformer (Balun)

SMD Type

SMD Type Chip EMIFIL®

1D Type hoke Coil

Lead Type EMI Suppression Filters

Chip Ferrite Bead SMD Type BLM18EG Series 0603/1608(inch/mm)

Appearance/Dimensions

(in mm)

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	4000	Ĩ
ſ	ø330mm Paper Tape	10000	
В	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part N	lumber	Impedance	Impedance	Rated Current	Rated Current	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	at 1GHz	at 85°C	at 125°C	(Max.)
BLM18EG121SZ1	BLM18EG121SH1	120Ω±25%	145Ω(Typ.)	2A	1A	0.04Ω
—	BLM18EG181SH1	180Ω±25%	240Ω(Тур.)	2A	1A	0.05Ω
BLM18EG221SZ1	—	220Ω±25%	260Ω(Тур.)	2A	1A	0.05Ω
BLM18EG471SZ1	BLM18EG471SH1	470Ω±25%	550Ω(Typ.)	500mA	500mA	0.21Ω
BLM18EG601SZ1	BLM18EG601SH1	600Ω±25%	700Ω(Тур.)	500mA	500mA	0.35Ω
BLM18EG101TZ1	BLM18EG101TH1	100Ω±25%	140Ω(Typ.)	2A	1A	0.045Ω
BLM18EG221TZ1	BLM18EG221TH1	220Ω±25%	300Ω(Тур.)	1A	1A	0.15Ω
BLM18EG331TZ1	BLM18EG331TH1	330Ω±25%	450Ω(Typ.)	500mA	500mA	0.21Ω
BLM18EG391TZ1	BLM18EG391TH1	390Ω±25%	520Ω(Typ.)	500mA	500mA	0.3Ω

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM18EG_SZ1 series

Z-f characteristics: BLM18EG_SH1 series

Continued on the following page. 🖊

BLM18EG221TZ1/BLM18EG221TH1

BLM18EG181SH1

600

500

18400

300 g

1 200

100

Y

BLMI8EG101TH1 [Z]

ELM18E6331TH1 [Z]

÷

20

-B. MINE 66015H1 [2]

MILMISESSOTONI X

#BLM18EG221TH1 [Z]

BLM18E6391TH1 [Z]

16

106

1000

Frequency[Hz]

BLM18EG601SZ1/BLM18EG601SH1 BLM18EG101TZ1/BLM18EG101TH1

Z-f characteristics: BLM18EG_TH1 series

100

BLM18EG331TZ1/BLM18EG331TH1

008

(md

-81.91005001381 8

1-1

BLM18EG391TZ1/BLM18EG391TH1

Continued on the following page. earrow

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM18EG series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

muRata

BLM18G Series 0603/1608(inch/mm)

Chip Ferrite Bead SMD Type

Chip EMIFIL® SMD Type

Chip Ferrite Bead SMD Type

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
J	ø330mm Paper Tape	10000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Appearance/Dimensions

Part Number		Impedance Impedance		Rated Current Rated Current		DC Resistance	Operating	
Infotainment	Powertrain/Safety	at 100MHz	at 1GHz	at 85°C	at 125°C	(Max.)	Temp. Range	
BLM18GG471SZ1	_	470Ω±25%	1800Ω±30%	200mA	200mA	1.3Ω	-55°C to 125°C	

(in mm)

Z-f characteristics

Chip Common Mode Choke Coil

SMD Type

muRata

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

Chip Ferrite Bead SMD Type BLM21PG Series 0805/2012(inch/mm)

Appearance/Dimensions

(in mm)

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	4000	
ſ	ø330mm Paper Tape	10000	
в	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	Part Number		Rated Current	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	
BLM21PG220SZ1	BLM21PG220SH1	22Ω±25%	6A	3.3A	0.009Ω	
BLM21PG300SZ1	BLM21PG300SH1	30Ω(Тур.)	4A	2.3A	0.014Ω	
BLM21PG600SZ1	BLM21PG600SH1	60Ω±25%	3.5A	1.9A	0.02Ω	
BLM21PG121SZ1	BLM21PG121SH1	120Ω±25%	ЗA	1.55A	0.03Ω	
BLM21PG221SZ1	BLM21PG221SH1	220Ω±25%	2A	1.25A	0.045Ω	
BLM21PG331SZ1	BLM21PG331SH1	330Ω±25%	1.5A	1A	0.07Ω	

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM21PG_SZ1 series

Z-f characteristics: BLM21PG_SH1 series

Continued on the following page. 🎜

Z-f characteristics

BLM21PG600SZ1/BLM21PG600SH1

BLM21PG121SZ1/BLM21PG121SH1

BLM21PG331SZ1/BLM21PG331SH1

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM21PG series. Please apply the derating curve shown in chart according to the operating temperature.

.....

Derating of Rated Current

muRata

Chip Ferrite Bead SMD Type BLM21PG(150°C available) Series 0805/2012(inch/mm)

Appearance/Dimensions

(in mm)

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	4000	q
ſ	ø330mm Paper Tape	10000	Tur
В	Bulk(Bag)	1000	JMS

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part	Part Number		Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
—	BLM21PG220BH1	22Ω±25%	3.3A	3.3A	0.009Ω
_	BLM21PG300BH1	30Ω(Тур.)	2.3A	2.3A	0.014Ω
—	BLM21PG600BH1	60Ω±25%	1.9A	1.9A	0.02Ω
_	BLM21PG121BH1	120Ω±25%	1.55A	1.55A	0.03Ω
—	BLM21PG221BH1	220Ω±25%	1.25A	1.25A	0.045Ω
_	BLM21PG331BH1	330Ω±25%	1A	1A	0.07Ω

Rated Current at 150°C: 10mA

Operating Temp. Range: -55°C to 150°C

Z-f characteristics: BLM21PG_BH1 series

Continued on the following page. earrow

Chip EMIFIL®

Z-f characteristics

-B.X21P02218H1 [2]

-R. 821P0221841 X

.....

008

and a

+61.821PG2218H1 8

6.

Tra

(Ra)

-RLN21PGAGGERS B

Derating of Rated Current

-B.X21PC1218H1 121

-R.R21PG1218H1 X

008

+RLX21PG1218H1 B

6.

In operating temperature exceeding +125°C, derating of current is necessary for BLM21PG_BH1 series. Please apply the derating curve shown in chart according to the operating temperature.

86

SMD Type Chip EMIFIL®

pe Coil

Chip Ferrite Bead SMD Type BLM21SN Series 0805/2012(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
D	ø180mm Paper Tape	4000	
J	ø330mm Paper Tape	10000	
В	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Impedance Rated Current		Rated Current	DC Resistance	Operating
Infotainment	Powertrain/Safety	at 100MHz	00MHz at 85°C	at 125°C	(Max.)	Temp. Range
BLM21SN300SZ1	BLM21SN300SH1	30Ω±10Ω	8.5A	6A	0.004Ω	-55°C to 125°C

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM21SN series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip Ferrite Bead SMD Type BLM21AG Series 0805/2012(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
L	ø330mm Paper Tape	10000
В	Bulk(Bag)	1000

Equivalent Circuit

-0

Rated Value (: packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 100MHz at 85°C		(Max.)	
BLM21AG121SZ1	BLM21AG121SH1	120Ω±25%	1A	1A	0.09Ω	
BLM21AG151SZ1	BLM21AG151SH1	150Ω±25%	1A	1A	0.09Ω	
BLM21AG221SZ1	BLM21AG221SH1	220Ω±25%	900mA	900mA	0.12Ω	
BLM21AG331SZ1	BLM21AG331SH1	330Ω±25%	800mA	800mA	0.15Ω	
BLM21AG471SZ1	BLM21AG471SH1	470Ω±25%	700mA	700mA	0.18Ω	
BLM21AG601SZ1	BLM21AG601SH1	600Ω±25%	700mA	700mA	0.2Ω	
BLM21AG102SZ1	BLM21AG102SH1	1000Ω±25%	600mA	600mA	0.27Ω	

(in mm)

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM21AG_SZ1 series

Z-f characteristics: BLM21AG_SH1 series

Continued on the following page. earrow

SMD Type

Lead Type

88

⁽Resistance element becomes dominant at high frequencies.)

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

BLM21AG331SZ1/BLM21AG331SH1

BLM21AG471SZ1/BLM21AG471SH1

BLM21AG601SZ1/BLM21AG601SH1

BLM21AG102SZ1/BLM21AG102SH1

Lead Type EMI Suppression Filters

muRata

0.85±0.2

(in mm)

Chip Ferrite Bead SMD Type BLM21AG(150°C available) Series 0805/2012(inch/mm)

Appearance/Dimensions

0.5±0.2 2.0±0.2 EIA CODE : 0805

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
J	ø330mm Paper Tape	10000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
—	BLM21AG121BH1	120Ω±25%	1A	1A	0.09Ω
—	BLM21AG151BH1	150Ω±25%	1A	1A	0.09Ω
—	BLM21AG221BH1	220Ω±25%	900mA	900mA	0.12Ω
—	BLM21AG331BH1	330Ω±25%	800mA	800mA	0.15Ω
_	BLM21AG471BH1	470Ω±25%	700mA	700mA	0.18Ω
_	BLM21AG601BH1	600Ω±25%	700mA	700mA	0.2Ω
_	BLM21AG102BH1	1000Ω±25%	600mA	600mA	0.27Ω

Rated Current at 150°C: 10mA Operating Temp. Range: -55°C to 150°C

Z-f characteristics: BLM21AG_BH1 series

Continued on the following page. 🎢

muRata

SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Lead Type EMI Suppression Filters

Continued from the preceding page. \searrow

Z-f characteristics

BLM21AG221BH1

.

BLM21AG601BH1

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for BLM21AG_BH1 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

SMD Type Microchip Transformer (Balun)

muRata

Chip Ferrite Bead SMD Type BLM21BB/BD Series 0805/2012(inch/mm)

Appearance/Dimensions

Packaging

All except for BLM21BD222SZ1/BLM21BD222SH1/BLM21BD272SZ1/BLM21BD272SH1

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
J	ø330mm Paper Tape	10000
В	Bulk(Bag)	1000

BLM21BD222SZ1/BLM21BD222SH1/BLM21BD272SZ1/BLM21BD272SH1 only

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	10000
L	ø180mm Embossed Tape	3000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part	Number	Impedance	Rated Current	Rated Current	DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
BLM21BB050SZ1	BLM21BB050SH1	5Ω±25%	1A	1A	0.02Ω
BLM21BB600SZ1	BLM21BB600SH1	60Ω±25%	800mA	800mA	0.13Ω
BLM21BB750SZ1	BLM21BB750SH1	75Ω±25%	700mA	700mA	0.16Ω
BLM21BB121SZ1	BLM21BB121SH1	120Ω±25%	600mA	600mA	0.19Ω
BLM21BB151SZ1	BLM21BB151SH1	150Ω±25%	600mA	600mA	0.21Ω
BLM21BB201SZ1	BLM21BB201SH1	200Ω±25%	500mA	500mA	0.26Ω
BLM21BB221SZ1	BLM21BB221SH1	220Ω±25%	500mA	500mA	0.26Ω
BLM21BB331SZ1	BLM21BB331SH1	330Ω±25%	400mA	400mA	0.33Ω
BLM21BB471SZ1	BLM21BB471SH1	470Ω±25%	400mA	400mA	0.4Ω
BLM21BD121SZ1	BLM21BD121SH1	120Ω±25%	350mA	350mA	0.25Ω
BLM21BD151SZ1	BLM21BD151SH1	150Ω±25%	350mA	350mA	0.25Ω
BLM21BD221SZ1	BLM21BD221SH1	220Ω±25%	350mA	350mA	0.25Ω
BLM21BD331SZ1	BLM21BD331SH1	330Ω±25%	300mA	300mA	0.3Ω
BLM21BD421SZ1	BLM21BD421SH1	420Ω±25%	300mA	300mA	0.3Ω
BLM21BD471SZ1	BLM21BD471SH1	470Ω±25%	300mA	300mA	0.35Ω
BLM21BD601SZ1	BLM21BD601SH1	600Ω±25%	300mA	300mA	0.35Ω
BLM21BD751SZ1	BLM21BD751SH1	750Ω±25%	250mA	250mA	0.4Ω
BLM21BD102SZ1	BLM21BD102SH1	1000Ω±25%	250mA	250mA	0.4Ω
BLM21BD152SZ1	BLM21BD152SH1	1500Ω±25%	250mA	250mA	0.45Ω
BLM21BD182SZ1	BLM21BD182SH1	1800Ω±25%	250mA	250mA	0.5Ω
BLM21BD222TZ1	BLM21BD222TH1	2200Ω±25%	200mA	200mA	0.6Ω
BLM21BD222SZ1	BLM21BD222SH1	2250Ω(Typ.)	250mA	250mA	0.6Ω
BLM21BD272SZ1	BLM21BD272SH1	2700Ω±25%	200mA	200mA	0.8Ω

muRata

Operating Temp. Range: -55°C to 125°C

Continued on the following page. earrow

Chip EMIFIL® SMD Type

92

SMD Type

SMD Type Chip EMIFIL®

Chip Common Mode Choke Coil

Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics: BLM21BD_SZ1/TZ1 series

Z-f characteristics: BLM21BD_SZ1/TZ1 series

Z-f characteristics: BLM21BD_SH1/TH1 series

Continued on the following page. earrow

Z-f characteristics

BLM21BB121SZ1/BLM21BB121SH1

BLM21BB331S71/BLM21BB331SH1

10

10

-B.K71662315H1 171

-R. #2108221941 X

BLM21BB600SZ1/BLM21BB600SH1

008

-RLR215BADDDH1 B

1-4

BLM21BB151SZ1/BLM21BB151SH1

free

KX2166750341 [2]

■R.#2188252001 X

008

+RL821887505H1

.

BLM21BB750SZ1/BLM21BB750SH1

BLM21BB221SZ1/BLM21BB221SH1

BLM21BD121SZ1/BLM21BD121SH1

frequ

1008

(hb)

HEREINGERTEN B

18

1.00

BLM21BB471SZ1/BLM21BB471SH1

Continued on the following page. 🖊

SMD Tvpe

EMI Suppression Filters Lead Type

muRata

.....

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

10

BLM21BD601SZ1/BLM21BD601SH1

HANG 100 HANG 1

BLM21BD751SZ1/BLM21BD751SH1

BLM21BD102SZ1/BLM21BD102SH1

BLM21BD471SZ1/BLM21BD471SH1

BLM21BD152SZ1/BLM21BD152SH1

BLM21BD222SZ1/BLM21BD222SH1

BLM21BD182SZ1/BLM21BD182SH1

BLM21BD272SZ1/BLM21BD272SH1

BLM21BD222TZ1/BLM21BD222TH1

: Electrode

Chip Ferrite Bead SMD Type BLM31PG Series 1206/3216(inch/mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

0.7±0.3	
3.2±0.2	1.6±0.2
	

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	10000
L	ø180mm Embossed Tape	3000
В	Bulk(Bag)	1000

Equivalent Circuit

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	
BLM31PG330SZ1	BLM31PG330SH1	33Ω±25%	6A	3.5A	0.009Ω	
BLM31PG500SZ1	BLM31PG500SH1	50Ω(Typ.)	3.5A	2.3A	0.015Ω	
BLM31PG121SZ1	BLM31PG121SH1	120Ω±25%	3.5A	2A	0.02Ω	
BLM31PG391SZ1	BLM31PG391SH1	390Ω±25%	2A	1.25A	0.05Ω	
BLM31PG601SZ1	BLM31PG601SH1	600Ω±25%	1.5A	1A	0.08Ω	

muRata

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM31PG_SH1 series

Continued on the following page. 🖊

⁽Resistance element becomes dominant at high frequencies.)

SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Lead Type EMI Suppression Filters

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM31PG series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

muRata

SMD Type Microchip Transformer (Balun) 1.6±0.2

(in mm)

Chip Ferrite Bead SMD Type BLM31KN Series 1206/3216(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	8000
L	ø180mm Embossed Tape	2500
В	Bulk(Bag)	1000

Equivalent Circuit

Rated Value (: packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	
BLM31KN121SZ1	BLM31KN121SH1	120Ω±25%	6A	4A	0.009Ω	
BLM31KN271SZ1	BLM31KN271SH1	270Ω±25%	4.5A	ЗA	0.016Ω	
BLM31KN471SZ1	BLM31KN471SH1	470Ω±25%	4A	2.7A	0.02Ω	
BLM31KN601SZ1	BLM31KN601SH1	600Ω±25%	2.9A	2A	0.038Ω	
BLM31KN801SZ1	BLM31KN801SH1	800Ω±25%	2.5A	1.7A	0.05Ω	
BLM31KN102SZ1	BLM31KN102SH1	1000Ω±25%	2A	1.4A	0.075Ω	

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM31KN_SZ1 series

Z-f characteristics: BLM31KN_SH1 series

Continued on the following page. 🖊

⁽Resistance element becomes dominant at high frequencies.)

SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

BLM31KN601SZ1/BLM31KN601SH1

.....

BLM31KN102SZ1/BLM31KN102SH1

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM31KN series. Please apply the derating curve shown in chart according to the operating temperature.

Chip Ferrite Bead SMD Type BLM31KN(150°C available) Series 1206/3216(inch/mm)

1.6±0.2

(in mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

0.7±0.3

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	8000
L	ø180mm Embossed Tape	2500
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	
—	BLM31KN121BH1	120Ω±25%	4A	4A	0.009Ω	
—	BLM31KN271BH1	270Ω±25%	ЗA	ЗA	0.016Ω	
—	BLM31KN471BH1	470Ω±25%	2.7A	2.7A	0.02Ω	
—	BLM31KN601BH1	600Ω±25%	2A	2A	0.038Ω	
—	BLM31KN801BH1	800Ω±25%	1.7A	1.7A	0.05Ω	
—	BLM31KN102BH1	1000Ω±25%	1.4A	1.4A	0.075Ω	

Rated Current at 150°C: 10mA

Operating Temp. Range: -55°C to 150°C

Z-f characteristics: BLM31KN_BH1 series

Continued on the following page. \checkmark

SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for BLM31KN_BH1 series. Please apply the derating curve shown in chart according to the operating temperature.

.....

Derating of Rated Current

Chip Ferrite Bead SMD Type BLM31SN Series 1206/3216(inch/mm)

Appearance/Dimensions

0.7±0.3	N 0 1.6±0.2
	: Electrode

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Tape	3000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part Number		Impedance Rated Current		Rated Current	DC Resistance	Operating
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C		Temp. Range
BLM31SN500SZ1	BLM31SN500SH1	50Ω±12.5Ω	12A	10A	0.0016Ω	-55°C to 125°C

(in mm)

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM31SN series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip Common Mode Choke Coil

SMD Type

SMD Type Chip EMIFIL®

Chip Ferrite Bead SMD Type BLM31AJ Series 1206/3216(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
к	ø330mm Embossed Tape	10000	
L	ø180mm Embossed Tape	3000	
в	Bulk(Bag)	1000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Impedance Rated Current		Rated Current	DC Resistance	Operating
Infotainment	Powertrain/Safety	at 100MHz	at 100MHz at 85°C	at 125°C	(Max.)	Temp. Range
_	BLM31AJ601SH1	600Ω±25%	200mA	200mA	0.9Ω	-55°C to 125°C

Z-f characteristics

Chip Ferrite Bead SMD Type BLM41PG Series 1806/4516(inch/mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

0.7±0.3	
	1.6±0.2
4.5±0.2	+ 1.6±0.2
	: Electrode

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	8000
L	ø180mm Embossed Tape	2500
В	Bulk(Bag)	1000

Equivalent Circuit

Rated Value (\Box : packaging code)

Part N	lumber	Impedance	Impedance Rated Current		DC
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	Resistance (Max.)
BLM41PG600SZ1	BLM41PG600SH1	60Ω(Тур.)	6A	3.7A	0.009Ω
BLM41PG750SZ1	BLM41PG750SH1	75Ω(Тур.)	3.5A	2.45A	0.015Ω
BLM41PG181SZ1	BLM41PG181SH1	180Ω±25%	3.5A	2.1A	0.02Ω
BLM41PG471SZ1	BLM41PG471SH1	470Ω±25%	2A	1.35A	0.05Ω
BLM41PG102SZ1	BLM41PG102SH1	1000Ω±25%	1.5A	1A	0.09Ω

muRata

(in mm)

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: BLM41PG_SH1 series

Continued on the following page. 🖊

⁽Resistance element becomes dominant at high frequencies.)

SMD Type

Continued from the preceding page. \searrow

Z-f characteristics

BLM41PG471SZ1/BLM41PG471SH1

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLM41PG series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

BLM41PG102SZ1/BLM41PG102SH1

SMD Type Chip EMIFIL®

muRata

(in mm)

Chip Power Bead SMD Type BLE18PS Series 0603/1608(inch/mm)

Appearance/Dimensions

1.6±0.15	0.8±0.15
	: Electrode

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
L	ø330mm Paper Tape	10000
В	Bulk(Bag)	1000

Equivalent Circuit

-0

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part Number		Impedance	Rated Current	Rated Current	DC Resistance	Operating
Infotainment	Powertrain/Safety	at 100MHz	at 85°C	at 125°C	(Max.)	Temp. Range
BLE18PS080SZ1	—	8.5Ω±25%	8A	5A	0.004Ω	-55°C to 125°C

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BLE18PS series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Microchip Transformer (Balun)

SMD Type
Packaging

κ

L

в

Equivalent Circuit

С

Packaging

ø330mm Embossed Tape

ø180mm Embossed Tape

Bulk(Bag)

(Resistance element becomes dominant at high frequencies.)

SMD Type Chip EMIFIL®

7000

1500

1000

0

SMD Type Chip Common Mode Choke Coil

Chip Power Bead SMD Type BLE32PN Series 1210/3225(inch/mm)

Appearance/Dimensions

Appearance/Dimensions

Rated Value (\Box : packaging code)

Part N	lumber	Impedance	Rated Current at 85°C	Rated Current at 125°C	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz		Rated Current at 125°C	(Max.)
BLE32PN260SZ1	BLE32PN260SH1	26Ω±10Ω	10A	10A	1.6mΩ
BLE32PN300SZ1	BLE32PN300SH1	30Ω±10Ω	10A	10A	1.6mΩ

Operating Temp. Range: -55°C to 125°C

Continued on the following page. earrow n

Continued from the preceding page. \searrow

Z-f characteristics: BLE32PN_SZ1 series

Z-f characteristics: BLE32PN_SH1 series

BLE32PN300SZ1/BLE32PN300SH1

Block Type EMIFIL[®] SMD Type

Chip Common Mode Choke Coil

SMD Type

Chip Ferrite Bead SMD Type

Chip EMIFIL[®] SMD Type

muRata

Chip Ferrite Bead (BL Series) ①Caution/Notice

Caution

Rating

1. About the Rated Current

Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

2. About the Excessive Surge Current Excessive surge current (pulse current or rush current)

Soldering and Mounting

1. Self-heating

Notice

<Operating Environment>

Please pay special attention when mounting chip ferrite beads BLM AX/P/K/S series chip power beads BLE series in close proximity to other products that radiate heat. The heat generated by other products may deteriorate the insulation resistance and cause excessive heat in this component.

2. Terminal Connection (BLT)

The terminations shall be connected correctly. The product consists of two coils.

In order to provide the appropriate performance, two terminations shall be connected to the single power line and used as one coil.

Do not use products in the corrodible atmosphere such as

acidic gases, alkaline gases, chlorine, sulfur gases, organic

BLM15E/15H/15G series should be used within 12

Do not use products in the environment close to the organic

gases. (the sea breeze, Cl2, H2S, NH3, SO2, NO2, etc)

than specified rated current applied to the product may cause a critical failure, such as an open circuit, burnout caused by excessive temperature rise. Please contact us in advance in case of applying the surge current.

If the terminations are connected to the power line and ground line separately, serious problems such as open circuit, short circuit, or flames might be caused due to extreme heat generation.

wrong connection

right connection

Chip Common Mode Choke Coil

SMD Type

Microchip Transformer (Balun)

SMD Type

(1) Storage temperature: -10 to +40°C Relative humidity: 15 to 85% Avoid sudden changes in temperature and humidity. (2) Do not store products in a chemical atmosphere

exceeded. 2. Storage Conditions

(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

months, the other series should be used within 6 months.

Solderability should be checked if this period is

Notice (Soldering and Mounting)

<Storage and Handling Requirements>

Storage and Operating Conditions

1. Cleaning

1. Storage Period

solvent.

Failure and degradation of a product are caused by the cleaning method. When you clean in conditions that are not in mounting information, please contact Murata engineering.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.

 Mounting on-boad with Conductive Glue BLM18AG WH is designed for conductive glue mounting method. Please refer to Mounting infomation. 4. Other

Noise suppression levels resulting from Murata's EMI suppression filters EMIFIL[®] may vary, depending on the circuits and ICs used, type of noise, mounting pattern, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

Chip Ferrite Bead (BL Series) **A Caution/Notice**

Continued from the preceding page. \searrow

Handling

1. Resin Coating

Using resin for coating/molding products may affect the products performance.

So please pay careful attention in selecting resin. Prior to use, please make the reliability evaluation with the product mounted in your application set.

2. Handling of a Substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Bending

Twisting

3. Mounting Density

Add special attention to radiating heat of products when mounting the inductor near the products with heating. The excessive heat by other products may cause deterioration at joint of this product with substrate.

muRata

Chip EMIFIL[®] SMD Type

Coil

Land Pattern

Land Pattern

Solder Resist

Chip Ferrite Bead (BL \Box Series) Soldering and Mounting

1. Standard Land Pattern Dimensions

2. otalical d Earld				_	+ Solder I		_ Land F	allein		Solder Resis	(in mm)
Series				Standard	Land Dimer	nsions					
BLE18	Reflow and Flo	w			(1)						
BLE32	BLM Series (Except f).)	(1) Туре	c	oldering		a	b	с	
BLM03	*Please refer to (1)		۲		BLM03		Reflow		a 0.25	0.8	
BLM15			━┅━┅╋╍┽╍╢━┽╼		BLM0		Reflow		0.4		0.3
BLM18		ſ	Ţ :ſ/E/	1	BLM1:					1.2	0.5
BLM21	b					3	except		0.8	2.5	0.7
BLM31 BLM41	BLE18PS-32PN-BL		D/E/K/S.18KG	Ш1/ ДЦ1.			Reflow		0.7	2.0	0.05
DEITHI	AG_BH1·BD_BH1		P/E/K/3·16KG_	, TUT_DUT.	BLM2	1	Flow		1.1	3.5	0.95
	*Please refer to (2).		,,	T Ê			Reflow		1.2	2.4	1.25
		υ 📜 —		d (pattern)		or BLM03AX·F .·SG_T□1·SN_					
				t d	SN. And	BLM03/15/18	3G is spea	cially adapt	ed for r	eflow solder	ing.
						_WH series is ormal solderir			tive glu	e mounting	method,
	(2)	L	a b	_		ontact us for ap			ethod for	BLM18A_W	'H series.
	(2)	Rated					Land	Dad Thick	ness a	nd Dimens	ion d
	Туре	Current	Soldering	a	b	с	18µm		35µm		70µm
		(A)	Flow	0.8	2.5		торш		John		τομπ
	BLE18PS	8	Reflow	0.0	2.0	0.7	-		6.4		3.3
				0.7	2.0		- /	4 () (Tempo	rature 8	5°C or less)	_
	BLE32PN	10	Flow/Reflow	2.2	4.4	2.05				25°C or less)	
	BLM03AX	0.9max.					0.3		0.3		0.3
	BLM03P	1.8max.	Reflow	0.25	0.8	0.3	1.2		0.5		0.3
	BLM03EB	1.5max.					0.5		0.7		0.5
	BLM15AX BLM15PD	2.2max.	. Reflow	0.4	1.2	0.5	1.2		0.5		0.5
	BLM15PG BLM15PX	3.0max.				0.5	2.4		1.2		0.5
		0.5-1.5					0.7		0.7		0.7
	BLM18PG_S BLM18KG_S BLM18KG_T	1.7-2.5		Flow 0.8 Reflow 0.7			1.2		0.7		0.7
		3-4	Flow/Reflow		Flow 2.5Reflow 2.0	Flow 0.7 Reflow 0.7	2.4		1.2		0.7
	BLM18SG_T□1	5-6					6.4		3.3		1.65
	BLM18SN_T	8					-		6.4		3.3
	DENIOSIA_1 BI	1.0max.					0.7		0.7		0.7
	BLM18KG_JH1	1.5max.	Flow	0.8	2.5		1.2		0.7		0.7
	BLM18KG_BH1 BLM18AG_BH1	2.5max.			2.0	0.7	2.4		1.2		0.7
	BLM18BD_BH1	4.0max.	Reflow	0.7			6.4		3.3		1.65
		1.5					1.0		1.0		1.0
		2		Flow 1.1	Flow 3.5	Flow 0.95	1.2		1.0		1.0
	BLM21PG	3-4	Flow/Reflow		Reflow 2.4		2.4		1.2		1.0
		6					6.4		3.3		1.65
			Flow	1.1	3.5	0.95					
	BLM21SN	6-8.5	Reflow	1.2	2.4	1.25	-		6.8		3.4
		1.5-2		-			1.2		1.2		1.2
	BLM31PG	3.5					2.4		1.2		1.2
		6					6.4		3.3		1.65
		2					1.2		1.2		1.2
	BLM31KN_S	2.5-2.9		Flow 2.4	Flow 4.7	Flow 1.2	2.4		1.2		1.2
		4-6	Flow/Reflow	Reflow 2		Reflow 1.8	6.4		3.3		1.65
		1.4					1.2		1.2		1.2
	BLM31KN_B	1.7-2.0					2.4		1.2		1.2
		2.7-4					6.4		3.3		1.65
	BLM31SN	10-12					-		9.8		4.9
		1.5-2					1.2		1.2		1.2
	BLM41PG	3.5	Flow/Reflow	1.2	6.0	3.0	2.4		1.2		1.2
		6		1.2			6.4		3.3		1.65
		Ū					5.7		5.5		1.00

About land pad thickness of BLE32PN, please note the upper limit of the temperature.

• Do not apply narrower pattern than listed above to BLMppAX/P/K/S. Narrow pattern can cause excessive heat or open circuit.

SMD Type Microchip Transformer (Balun)

Chip Ferrite Bead (BL Series) Soldering and Mounting

Continued from the preceding page. \searrow

PCB Warping

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

Products should be located in the sideways direction (Length: a
b) to the mechanical stress.

Poor example

Good example

2. Solder Paste Printing and Adhesive Application

When reflow soldering the chip ferrite beads and bead inductor the printing must be conducted in accordance with the following cream solder printing conditions.

If too much solder is applied, the chip will be prone to

damage by mechanical and thermal stress from the PCB and may crack.

Standard land dimensions should be used for resist and copper foil patterns.

(in mm)

Series	Solder Paste Printing
BLM BLE	 Ensure that solder is applied smoothly to a minimum height of 0.2mm to 0.3mm at the end surface of the part. Guideline of solder paste thickness: 100-150µm: BLM03 100-200µm: BLM15/18/21/31/41/BLE18/32

3. Standard Soldering Conditions

(1) Soldering Methods

Use flow and reflow soldering methods only.

Use standard soldering conditions when soldering chip ferrite beads and bead inductor.

In cases where several different parts are soldered, each having different soldering conditions, use those conditions requiring the least heat and minimum time.

Solder: Use Sn-3.0Ag-0.5Cu solder. Use of Sn-Zn based solder will deteriorate performance of products. If using BLA series with Sn-Zn based solder, please contact Murata in advance.

Flux:

- Use Rosin-based flux.
 In case of using RA type solder, products should be cleaned completely with no residual flux.
- Do not use strong acidic flux (with chlorine content exceeding 0.20wt%)
- Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

Continued on the following page. $earrow \earrow \ea$

Chip EMIFIL®

muRata

Chip Ferrite Bead (BL Series) Soldering and Mounting

Continued from the preceding page. \searrow

(2) Soldering Profile

Reflow Soldering Profile

(Sn-3.0Ag-0.5Cu Solder)

	Standard Profile			Limit Profile				
Series	Heating		Peak Temperature	Cycle	Heating		Peak Temperature	Cycle
	Temp. (T1)	Time. (t1)	(T2)	of Reflow	Temp. (T3)	Time. (t2)	(T4)	of Reflow
BLM (Except for BLM18AG_W) BLE	220°C min.	30 to 60s	245±3°C	2 times max.	230°C min.	60s max.	260°C/10s	2 times max.

(3) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron. Pre-heating: 150°C 60s min. Soldering iron power output / Tip diameter:

80W max. / ø3mm max.

Temperature of soldering iron tip / Soldering time / Times:

350°C max. / 3-4s / 2 times

Do not allow the tip of the soldering iron to directly contact the chip.

For additional methods of reworking with a soldering iron, please contact Murata engineering.

Continued on the following page. $earrow \earrow \ea$

SMD Type Chip EMIFIL®

Chip Ferrite Bead (BL Series) Soldering and Mounting

Continued from the preceding page.

4. Mounting on-board with Conductive Glue of BLM18AG

Please adhere rigidly to the condition below which shows the method of mounting with conductive glue. Please coat print pads with conductive glue using metal mask and metal squeegee, and then mount our products on the substrates with a mount machine or human hand. Please put the substrates into an oven (140 to 150°C) for

30 minutes in order to cure the adhesive.

Please check whether the chips and the substrates are connected with the conductive glue or not and there is no electrical short of the conductive glue.

5. Cleaning

Following conditions should be observed when cleaning chip ferrite beads.

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol type cleaner)
- (2) Ultrasonic

Output: 20W/liter max.

Duration: 5 minutes max.

Frequency: 28 to 40kHz

- (3) Cleaning Agent
 - The following list of cleaning agents have been tested on the individual components. Evaluation of final assembly should be completed prior to production.
 - Do not clean BLM18AG WH1 series. Before
 - cleaning, please contact Murata engineering.
 - (a) Alcohol cleaning agent

Isopropyl alcohol (IPA)

(b) Aqueous cleaning agent Pine Alpha ST-100S

1. Board	Ceramic Board or Alumina Board
2. Thickness of Glue	30 to 50µm
3. Recommended Conductive Glue	PC3000 (Manufactured by Heraeus)

- (4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agent has been removed with deionized water.
- (5) $BLM \square G$ type is processed with resin. On rinsing the product, using water for ultrasonic cleaning may affect the resin quality used for the product by water element. In case of set cleaning conditions, please make sure the reliability according to the cleaning conditions.

For additional cleaning methods, please contact Murata engineering.

114

Chip Ferrite Bead (BL Series) Packaging

Minimum Quantity and Dimensions of 8mm Width Paper / Embossed Tape

	Dimensions				Minimum Qty. (pcs.)						
Part Number	Dimensions				ø180n	nm Reel	ø330mm Reel				
	a	b	с	d	Paper Tape	Embossed Tape	Paper Tape	Embossed Tape	Bulk		
BLM03	0.70 (except 03H/03E)	0.40 (except 03H/03E)	0.55 max.	-	15000	-	50000	-	1000		
BLM15	1.15	0.65	0.8 max.	-	10000	-	50000	-	1000		
BLM18A/B/P/H/G	1.85	1.05	1.1 max. (except JH/TH/TZ)	-	4000	-	10000	-	1000		
BLM18EG/KG_T	1.85	1.05	0.85 max.		4000	-	10000	-	1000		
BLM18EG/KG_S		1.05	1.1 max.	-							
BLM18S	1.85	1.05	0.90 max.	-	10000	-	30000	-	1000		
BLM21	2.25	1.45	1.1 max.	-	4000	-	10000	-	1000		
BLM31	3.5	1.9	1.3	0.2	-	3000	-	10000	1000		
BLM21BD222S 1/272S 1	2.25	1.45	1.3	0.2	-	3000	-	10000	1000		
BLE18PS080S	1.85	1.05	0.85	-	4000	-	10000	-	1000		
BLE32PN260S	2.5		1.75	0.25		1500		7000	1000		
BLE32PN300S	3.5	2.8	2.3		5 -	1500	-	7000			
BLM31KN_SD1/BD1	3.5	1.9	1.75	0.2	-	2500	-	8000	1000		

BLM03H/03E. Dimensions a: 0.66, b: 0.36.
BLM18_JH/TH/TZ. Dimensions c: 0.85 max.

Minimum Quantity and Dimensions of 12mm Width Embossed Tape

"Minimum Quantity" means the number of units of each delivery or order. The quantity should be an integral multiple of the "Minimum Quantity."

(in mm)

Microchip Transformer (Balun)

Part Numbering

$\mathsf{Chip}\,\mathsf{EMIFIL}^{\textcircled{0}}\,\mathsf{for}\,\mathsf{Automotive}\,\mathsf{LC}\,\mathsf{Combined}$

1 Product ID

Product ID	
NF	Chip EMIFIL [®]

2Structure

Code	Structure				
L	Multilayer, LC Combined Type				
E	Block, LC Combined Type				

Object Stress (LxW)

- · · · · (/	
Code	Dimensions (LxW)	Size Code (inch)
18	1.6x0.8mm	0603
31	3.2x1.6mm	1206
61	6.8x1.6mm	2706

4Features

Code		Features			
HT		Powertrain, Safety, T Circuit			
ZT	For Automotive	Infotainment, T Circuit			

GCut-off Frequency (NFL Series)

Expressed by three figures. The unit is in hertz (Hz). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

GCapacitance (NFE Series)

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Packaging

Code Series Packaging κ Embossed Taping (ø330mm Reel) NFE L Embossed Taping (ø180mm Reel) NFE в Bulk NFL18/NFE D Paper Taping (ø180mm Reel) NFL18

6Characteristics (NFL Series)

Code	Characteristics
н	Cut-off Frequency

GCharacteristics (NFE Series)

Code	Capacitance Temperature Characteristics						
С	±20%, ±22%						
D	+20/-30%, +22/-33%						
F	+30/-80%, +22/-82%						
R	±15%						
U	-750 ±120ppm/ °C						
Z	Other						

Rated Voltage

Code	Rated Voltage			
1A	10V			
1E	25V			
2A	100V			

8 Electrode

Code	Electrode	Series
3	Sn Plating	NFL
9	Others	NFE

SMD Type thip EMIFIL®

SMD Type Chip Common Mode Choke Coil

Chip EMIFIL [®] fo	r Auto	mot	ive				
(Part Number)				BW	 	 	
Product ID							

NF Chip EMIFIL[®]

2 Structure

Code	Structure
Z	Inductor Type

Oimensions (LxW)

Code	Dimensions (LxW)	Size Code (inch)		
18	1.6x0.8mm	0603		
32	3.2x2.5mm	1210		
5B	5.0x5.0mm	2020		

4 Features

Code	Features			
SM	For Audio Lines Multilayer Type			
BW	For LED Lines Wire Wound Type			

GImpedance

Expressed by three figures. The unit is in ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

6 Inductance Tolerance

Code	Features			
s	For General Use (Sn Plating)			
н	For General Use (LF Solder) *1			
L	For General Use (LF Solder)			

 *1 NFZ32BW_H \Box 1 only.

Category

• category			
Code	Category		
Z	For Automotive Infotainment		

8Number of Circuits

Code	Number of Circuits
1	1 Circuit

Specification

•	
Code	Specification
0	Standard Type
1	Low Rdc Type

Packaging

· · · · · · · · · · · · · · · · · · ·		
Code	Packaging	Series
к	Embossed Taping (ø330mm Reel)	NFZ32/5B
L	Embossed Taping (ø180mm Reel)	NFZ32/5B
В	Bulk	NFZ18
D	Paper Taping (ø180mm Reel)	NFZ18

: Electrode

Feed Through Chip EMI Filters SMD Type NFE31ZT Series 1206/3216(inch/mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	2000
к	ø330mm Embossed Taping	8000
В	Packing in Bulk	500

Equivalent Circuit

Rated Value (\Box : packaging code)

Part N	umber	Capacitance	Rated Current	Rated Voltage	Insulation	Operating
For Infotainment	For Powertrain/Safety	Capacitance	Rated Current	Raled Vollage	Resistance (min.)	Temperature Range
NFE31ZT220R1E9	—	22pF ±30%	6A	25Vdc	1000ΜΩ	-40°C to +85°C
NFE31ZT470C1E9	—	47pF 50/-20%	6A	25Vdc	1000ΜΩ	-40°C to +85°C
NFE31ZT101C1E9	—	100pF 80/-20%	6A	25Vdc	1000ΜΩ	-40°C to +85°C
NFE31ZT221D1E9	—	220pF 50/-20%	6A	25Vdc	1000ΜΩ	-40°C to +85°C
NFE31ZT471F1E9	—	470pF 50/-20%	6A	25Vdc	1000ΜΩ	-40°C to +85°C
NFE31ZT152Z1E9	—	1500pF 50/-20%	6A	25Vdc	1000ΜΩ	-40°C to +85°C
NFE31ZT222Z1E9	—	2200pF ±50%	6A	25Vdc	1000ΜΩ	-40°C to +85°C

Number of Circuits: 1

Insertion Loss Characteristics (Main Items)

Feed Through Chip EMI Filters SMD Type NFE61HT Series 2706/6816(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	2500
к	ø330mm Embossed Taping	8000
В	Packing in Bulk	500

Equivalent Circuit

Rated Value (\Box : packaging code)

Part I	Part Number		Rated Current	Rated Voltage	Insulation	Operating	
For Infotainment	For Powertrain/Safety	Capacitance	Rated Current	Rated Voltage	Resistance (min.)	Temperature Range	
—	NFE61HT330U2A9	33pF ±30%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	
—	NFE61HT680R2A9	68pF ±30%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	
—	NFE61HT101Z2A9	100pF ±30%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	
—	NFE61HT181C2A9	180pF ±30%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	
—	NFE61HT361C2A9	360pF ±20%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	
—	NFE61HT681D2A9	680pF ±30%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	
_	NFE61HT102F2A9	1000pF 80/-20%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	
—	NFE61HT332Z2A9	3300pF 80/-20%	2A	100Vdc	1000ΜΩ	-55°C to +125°C	

(in mm)

Number of Circuit: 1

Insertion Loss Characteristics (Main Items)

muRata

LC Combined Filters (Multilayer Type) SMD Type NFL18ZT Series 0603/1608(inch/mm)

Appearance/Dimensions

Chip Ferrite Bead SMD Type

Chip Common Mode Choke Coil

Block Type EMIFIL® SMD Type

SMD Type

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
В	Packing in Bulk	1000

Equivalent Circuit

No Polarity

Rated Value (: packaging code)

Part N	lumber	Nominal Cut-off	Capacitance	Inductance	Rated	Rated	Insulation Resistance	Withstand
For Infotainment	For Powertrain/Safety	Frequency	Capacitance		Current	Voltage	(min.)	Voltage
NFL18ZT506H1A3	—	50MHz	110рҒ (Тур.)	350nH (Typ.)	75mA	10Vdc	1000ΜΩ	30Vdc
NFL18ZT706H1A3	—	70MHz	70рҒ (Тур.)	230nH (Typ.)	75mA	10Vdc	1000ΜΩ	30Vdc
NFL18ZT107H1A3	—	100MHz	50pF (Typ.)	150nH (Typ.)	75mA	10Vdc	1000ΜΩ	30Vdc
NFL18ZT207H1A3	—	200MHz	22pF (Typ.)	110nH (Typ.)	100mA	10Vdc	1000ΜΩ	30Vdc
NFL18ZT307H1A3	—	300MHz	16рҒ (Тур.)	74nH (Typ.)	100mA	10Vdc	1000ΜΩ	30Vdc
NFL18ZT507H1A3	_	500MHz	10рҒ (Тур.)	42nH (Typ.)	100mA	10Vdc	1000ΜΩ	30Vdc

muRata

Number of Circuit: 1 Operating Temperature Range: -55°C to +125°C

Insertion Loss Characteristics (Main Items)

Lead Type

SMD Type Chip Ferrite Bead

Impedance Type Filters SMD Type NFZ18SM_10 Series 0603/1608(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Tape	4000
В	Bulk(Bag)	1000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	umber	Impedance	Rated Current	DC	DC Resistance
Infotainment	Powertrain/Safety	at 100MHz	Rated Current	Resistance	(Max.)
NFZ18SM121SZ10	—	120Ω±25%	1.25A	0.11Ω (Typ.)	0.14Ω
NFZ18SM251SZ10	—	250Ω±25%	1.1A	0.15Ω (Typ.)	0.19Ω
NFZ18SM501SZ10	—	500Ω±25%	950mA	0.20Ω (Typ.)	0.25Ω
NFZ18SM701SZ10	—	700Ω±25%	800mA	0.23Ω (Typ.)	0.29Ω

Operating Temp. Range: -55°C to 125°C

W218081215210 121

***7180#1215210 X

Z-f Characteristics: NFZ18SM_10 Series

+#/210381215210 8

NFZ18SM501SZ10 1008 re-Cale 1 W71806015210 121 +W/218585015210 8 ***7185#5015210 X

Continued on the following page. 🖊

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

.....

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for NFZ18SM series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip Ferrite Bead SMD Type

muRata

SMD Type Chip Common Mode Choke Coil

Impedance Type Filters SMD Type NFZ32BW_10 Series 1210/3225(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
к	ø330mm Embossed Tape	7500	
L	ø180mm Embossed Tape	2000	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Part N	umber	Impedance	Detect Comment	DC
Infotainment	Powertrain/Safety	at 1MHz	Rated Current	Resistance
NFZ32BW3R6HZ10	_	3.6Ω±30%	2.55A	0.03Ω±20%
NFZ32BW7R4HZ10	_	7.4Ω±30%	2.05A	0.045Ω±20%
NFZ32BW9R0HZ10	_	9Ω±30%	1.75A	0.057Ω±20%
NFZ32BW150HZ10	_	15Ω±30%	1.6A	0.076Ω±20%
NFZ32BW210HZ10	_	21Ω±30%	1.2A	0.12Ω±20%
NFZ32BW320HZ10	_	32Ω±30%	1A	0.18Ω±20%
NFZ32BW420HZ10	_	42Ω±30%	850mA	0.24Ω±20%
NFZ32BW700HZ10	_	70Ω±30%	700mA	0.38Ω±20%
NFZ32BW111HZ10	_	110Ω±30%	520mA	0.57Ω±20%
NFZ32BW151HZ10	_	150Ω±30%	450mA	0.81Ω±20%
NFZ32BW221HZ10	_	220Ω±30%	390mA	1.15Ω±20%
NFZ32BW291HZ10	_	290Ω±30%	310mA	1.78Ω±20%
NFZ32BW451HZ10	_	450Ω±30%	275mA	2.28Ω±20%
NFZ32BW621HZ10	_	620Ω±30%	250mA	2.7Ω±20%
NFZ32BW881HZ10	_	880Ω±30%	200mA	4.38Ω±20%

muRata

Operating Temp. Range: -40°C to 105°C

Operating Temp. Range self-temp. rise included: -40°C to 125°C

Z-f Characteristics: NFZ32BW_10 Series

Continued on the following page. 🎢

Continued from the preceding page. \searrow

Z-f characteristics

Continued on the following page. 🖊

muRata

.....

Continued from the preceding page. \searrow

Z-f characteristics

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for NFZ32BW_H 10 series. Please apply the derating curve shown in chart according to the operating temperature.

NFZ32BW_11 Series 1210/3225(inch/mm)

Chip Ferrite Bead SMD Type

Impedance Type Filters SMD Type

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	7500
L	ø180mm Embossed Tape	2000

Equivalent Circuit

()

(Resistance element becomes dominant at high frequencies.)

Rated Value (: packaging code)

Appearance/Dimensions

Part N	umber	Impedance	Data d Ourrent	DC	
Infotainment	Powertrain/Safety	at 1MHz	Rated Current	Resistance	
NFZ32BW3R3HZ11	—	3.3Ω±30%	2.9A	0.024Ω±20%	
NFZ32BW6R8HZ11	—	6.8Ω±30%	2.5A	0.036Ω±20%	
NFZ32BW8R4HZ11	—	8.4Ω±30%	2.4A	0.048Ω±20%	
NFZ32BW9R8HZ11	—	9.8Ω±30%	2.1A	0.053Ω±20%	
NFZ32BW120HZ11	—	12Ω±30%	1.85A	0.064Ω±20%	
NFZ32BW190HZ11	—	19Ω±30%	1.8A	0.089Ω±20%	
NFZ32BW210HZ11	—	21Ω±30%	1.55A	0.100Ω±20%	
NFZ32BW310HZ11	—	31Ω±30%	1.2A	0.155Ω±20%	
NFZ32BW520HZ11	—	52Ω±30%	1.1A	0.220Ω±20%	
NFZ32BW650HZ11	—	65Ω±30%	900mA	0.295Ω±20%	
NFZ32BW101HZ11	—	100Ω±30%	900mA	0.475Ω±20%	
NFZ32BW151HZ11	_	150Ω±30%	700mA	0.685Ω±20%	

(in mm)

Operating Temp. Range: -40°C to 105°C

Operating Temp. Range self-temp. rise included: -40°C to 125°C

Z-f Characteristics: NFZ32BW_11 Series

Z-f Characteristics: NFZ32BW_11 Series

Continued on the following page. 🖊

SMD Type

EMI Suppression Filters Lead Type

Continued from the preceding page. \searrow

Z-f characteristics

muRata

127

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for NFZ32BW_H 11 series. Please apply the derating curve shown in chart according to the operating temperature.

128

muRata

Impedance Type Filters SMD Type NFZ5BBW_10 Series 2020/5050(inch/mm)

0.2)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
к	ø330mm Embossed Tape	3000	
L	ø180mm Embossed Tape	500	

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

Rated Value (\Box : packaging code)

Part N	umber	Impedance	Rated Current	DC	
Infotainment	Powertrain/Safety	at 1MHz		Resistance	
NFZ5BBW2R9LZ10	—	2.9Ω±30%	4A	0.012Ω±20%	
NFZ5BBW4R5LZ10	—	4.5Ω±30%	3.4A	0.015Ω±20%	
NFZ5BBW6R7LZ10	—	6.7Ω±30%	3.1A	0.019Ω±20%	
NFZ5BBW7R6LZ10	_	7.6Ω±30%	3.1A	0.019Ω±20%	
NFZ5BBW100LZ10	_	10Ω±30%	ЗА	0.024Ω±20%	
NFZ5BBW140LZ10	_	14Ω±30%	2.6A	0.030Ω±20%	
NFZ5BBW170LZ10	_	17Ω±30%	2.5A	0.035Ω±20%	
NFZ5BBW220LZ10	_	22Ω±30%	2.3A	0.044Ω±20%	
NFZ5BBW310LZ10	_	31Ω±30%	2A	0.058Ω±20%	
NFZ5BBW450LZ10	_	45Ω±30%	1.65A	0.083Ω±20%	
NFZ5BBW520LZ10	_	52Ω±30%	1.61A	0.100Ω±20%	
NFZ5BBW610LZ10	_	61Ω±30%	1.6A	0.106Ω±20%	
NFZ5BBW970LZ10	_	97Ω±30%	1.2A	0.187Ω±20%	
NFZ5BBW141LZ10	—	140Ω±30%	1.05A	0.259Ω±20%	

Operating Temp. Range: -40°C to 105°C

Operating Temp. Range self-temp. rise included: -40°C to 125°C

Z-f Characteristics: NFZ5BBW_10 Series

Z-f Characteristics: NFZ5BBW_10 Series

Continued on the following page. earrow
ea

Continued from the preceding page. \searrow

Z-f characteristics

NFZ5BBW7R6LZ10

NFZ5BBW140LZ10

NFZ5BBW170LZ10

NFZ5BBW450LZ10

38 1.0 1008 18 Frequency(Hz) PM 25000220.210 121 -W758887208.210 # ***/1988#220L210 X

NFZ5BBW220LZ10

muRata

NFZ5BBW310LZ10

Continued on the following page. 🖊

SMD Type

Chip Ferrite Bead SMD Type

Continued from the preceding page. \searrow

Z-f characteristics

.....

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for NFZ5BBW_L□10 series. Please apply the derating curve shown in chart according to the operating temperature.

SMD Type Chip Ferrite Bead

muRata

Chip EMIFIL[®] (NF \Box Series) \triangle Caution/Notice

Caution

Rating

- 1. About the Rated Current
 - Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.
- 2. About the Excessive Surge Current (NFZ Series) Excessive surge current (pulse current or rush current)

Soldering and Mounting

 Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure our product.

Notice

Storage and Operating Condition

<Operating Environment>

Do not use products in the corrodible atmosphere such as acidic gases, alkaline gases, chlorine, sulfur gases, organic gases. (the sea breeze, Cl₂, H₂S, NH₃, SO₂, NO₂,etc) Do not use products in the environment close to the organic solvent.

<Storage and Handling Requirements>

1. Storage Period

The NF series should be used within 12 months. Products to be used after this period should be checked for solderability or bondability with glue.

Notice (Soldering and Mounting)

1. Cleaning

Failure and degradation of a product are caused by the cleaning method. When you clean in conditions that are not in mounting information, please contact Murata engineering.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.

2. Storage Conditions

- (1) Storage temperature: -10 to +40°CRelative humidity: 15 to 85%Avoid sudden changes in temperature and humidity.
- (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

3. Other

Noise suppression levels resulting from Murata's EMI suppression filters EMIFIL[®] may vary, depending on the circuits and ICs used, type of noise, mounting pattern, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

Continued on the following page. earrow
ea

than specified rated current applied to the product may cause a critical failure, such as an open circuit, burnout caused by excessive temperature rise. Please contact us in advance in case of applying the surge current.

Chip Ferrite Bead SMD Type

EMI Suppression Filters

Microchip Transformer (Balun)

SMD Type

Lead Type

Note • Please read rating and ^(A)CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering

C51E.pdf Apr. 27,2018

Chip $\mathsf{EMIFIL}^{\mathbb{R}}$ (NF \Box Series) \triangle Caution/Notice

Continued from the preceding page. \searrow

Handling

Resin Coating (Except for NFZ Series)
 Using resin for coating/molding products may affect
 the products performance.

So please pay careful attention in selecting resin. Prior to use, please make the reliability evaluation with the product mounted in your application set.

Resin Coating (NFZ_W Series)

To prevent breaking the wire, avoid touching with sharp material, such as tweezers or other material such as bristles of cleaning brush, to the wire wound portion of this product. To prevent breaking the core, avoid applying excessive mechanical shock to products mounted on the board. An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating condition etc. Some resins containing impurities or chloride may possibly.

2. Handling of a Substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Twisting

133

muRata

Chip $\mathsf{EMIFIL}^{\mathbb{R}}$ (NF \square Series) Soldering and Mounting

1. Standard Land Pattern Dimensions

NF series suppress noise by conducting the high-frequency noise element to ground. Therefore, to obtain maximum performance from these filters, the ground pattern should be made as large as possible during the PCB design stage. As shown below, one side of the PCB is used for chip mounting, and the other is used for grounding. Small diameter feedthrough holes are then used to connect the grounds on each side of the PCB. This reduces the

high-frequency impedance of the grounding and maximizes the filter's performance.

Continued on the following page. $earrow \earrow \ea$

(1) PCB Warping

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

Products should be located in the sideways direction (Length: a<b) to the mechanical stress.

NFZ32BW

C51E.pdf

(2) Amount of Solder Paste Excessive solder causes electrode corrosion, while

- insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste as shown on the right so that solder is applied.
- Guideline of solder paste thickness · NFZ32BW / 5BBW: 100 to 150µm · NFZ18SM: 100 to 200µm

Continued on the following page. 🖊

muRata

Good example

Chip EMIFIL $^{ extsf{B}}$ (NF \square Series) Soldering and Mounting

Continued from the preceding page. \searrow

2. Solder Paste Printing and Adhesive Application

When reflow soldering the chip EMI suppression filter, the printing must be conducted in accordance with the following cream solder printing conditions.

If too much solder is applied, the chip will be prone to damage by mechanical and thermal stress from the PCB and may crack.

Standard land dimensions should be used for resist and copper foil patterns.

When flow soldering the EMI suppression filter, apply the adhesive in accordance with the following conditions. If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering process.

Continued on the following page. 🌶

muRata

Note • Please read rating and (1)CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

SMD Type Chip Ferrite Bead

SMD Type

Chip EMIFIL $^{\mathbb{R}}$ (NF \Box Series) Soldering and Mounting

Continued from the preceding page. \searrow

3. Standard Soldering Conditions

(1) Soldering Methods

(2) Soldering Profile

Reflow Soldering Profile

Use flow and reflow soldering methods only.

Use standard soldering conditions when soldering chip EMI suppression filters.

In cases where several different parts are soldered, each having different soldering conditions, use those

conditions requiring the least heat and minimum time.

Solder: Use Sn-3.0Ag-0.5Cu solder. Use of Sn-Zn based solder will deteriorate performance of products. If using NFM series with Sn-Zn based solder, please contact Murata in advance.

Flux:

- Use Rosin-based flux.
 In case of using RA type solder, products should be cleaned completely with no residual flux.
- Do not use strong acidic flux (with chlorine content exceeding 0.20wt%)
- Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

(Sn-3.0Ag-0.5Cu Solder)

	Standard Profile				Limit Profile			
Series	Heating		Peak Temperature	Cycle	Heating		Peak	Cycle
	Temp. (T1)	Time. (t1)	(T2)	of Reflow	Temp. (T3)	Time. (t2)	Temperature (T4)	of Reflow
NFE31ZT								
NFE61HT								
NFL18ZT	220°C min.	30 to 60s	245±3°C	2 times	230°C min.	60s max.	260°C/10s	2 times
NFZ18SM	220 C mm.	5010003		max.	200 0 1111	005 1107.	200 0, 105	max.
NFZ32BW								
NFZ5BBW								

Continued on the following page. 🖊

Chip EMIFIL $^{ extsf{B}}$ (NF \Box Series) Soldering and Mounting

Continued from the preceding page. \searrow

(3) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron.

Pre-heating: 150°C 60s min.

Soldering iron power output / Tip diameter:

30W max. / ø3mm max.*1

*1 NFZ18SM/32/5BBW: 80W max. / ø3mm max. Temperature of soldering iron tip / Soldering time / Times:

350°C max. / 3-4s / 2 times*² *² NFE31ZT152Z1E9 : 280°C max. / 10s max. NFZ5BBW: 380°C max. / 3-4s

4. Cleaning

Following conditions should be observed when cleaning chip EMI filter.

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol type cleaner)
- (2) Ultrasonic

Output: 20W/liter max.

Duration: 5 minutes max.

Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the PCB and mounted products.

(3) Cleaning Agent

The following list of cleaning agents have been tested on the individual components. Evaluation of final assembly should be completed prior to production.

- (a) Alcohol cleaning agent Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agent
- Pine Alpha ST-100S

Do not allow the tip of the soldering iron to directly contact the chip.

For additional methods of reworking with a soldering iron, please contact Murata engineering.

(4) Ensure that flux residue is completely removed.Component should be thoroughly dried after aqueous agent has been removed with deionized water.

138

Chip EMIFIL[®] (NF \Box Series) Packaging

Minimum Quantity and Dimensions of 8mm Width Paper / Embossed Tape

<Paper>

Dimension of the cavity of embossed tape is measured at the bottom side.

		Dimensione				Minimum Qty. (pcs.)				
Part Number	Dimensions			ø180mm Reel		ø330mm Reel				
		b	с	d	Paper Tape	Embossed Tape	Paper Tape	Embossed Tape	Bulk	
NFL18ZT	1.85	1.05	0.9 max.	-	4000	-	-	-	1000	
NFE31ZT	3.6	1.8	1.85	0.2	-	2000	-	8000	500	
NFZ18SM	1.85	1.05	1.1	-	4000	-	-	-	1000	
NFZ32BW	3.6	2.9	1.7	0.2	-	2000	-	7500	-	

Minimum Quantity and Dimensions of 12mm Width Embossed Tape

"Minimum Quantity" means the number of units of each delivery or order. The quantity should be an integral multiple of the "Minimum Quantity."

SMD Type Microchip Transformer (Balun)

Part Numbering

Chip Common Mode Choke Coil for Automotive

(Part Number)	DL W 43 S H 101 X K 2 L
	000000

Product ID

Product ID	
DL	Chip Common Mode Choke Coils

2Structure

Code	Structure
W	Wire Wound Type

Oimensions (LxW)

/	
Dimensions (LxW)	Size Code (inch)
2.0x1.2mm	0805
3.2x1.6mm	1206
3.2x2.5mm	1210
4.5x3.2mm	1812
4.0x4.0mm	1515
5.0x3.6mm	2014
5.0x5.0mm	2020
	2.0x1.2mm 3.2x1.6mm 3.2x2.5mm 4.5x3.2mm 4.0x4.0mm 5.0x3.6mm

Features (1)

Code	Туре
S	Magnetically Shielded One Circuit Type
т	One Circuit Low Profile Type
М	Magnetically Shielded One Circuit Type (Transfer mode conversion characteristics improved)

GCategory

Code	Category			
Z		Infotainment		
н	For Automotive	Powertrain, Safety		

Packaging

Code	Packaging	Series
к	Embossed Taping (ø330mm Reel)	DLW43/DLW44S/DLW5AT/DLW5BS/DLW5BT
L	Embossed Taping (ø180mm Reel)	All Series
В	Bulk	All Series

Typical impedance at 100MHz is expressed by three figures. The unit is in ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

GInductance (DLW43SH)

Expressed by three figures. The unit is micro-henry (μ H). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

Circuit

Code	Circuit
s	
М	
н	Expressed by a letter.
т	
х	

8Features (2)

Code	Features
к	
Р	Expressed by a letter.
Q	

ONumber of Signal Lines

Code	Number of Signal Lines
2	Two Lines

Chip Ferrite Bead SMD Type

SMD Type Chip EMIFIL®

(Part Number)	DL M 11 S N 900 H Z 2 L 1 2 3 4 5 6 7 3 9 1
Product ID	
Product ID	
DL	Chip Common Mode Choke Coils
2 Structure	
Code	Structure
М	Multilayer Type

Chip Common Mode Choke Coil for Automotive

Object Stress (LxW)

Code	Dimensions (LxW) Size Code (inch	
ΟQ	0.65x0.5mm	025020
ON	0.85x0.65mm	03025
11	1.25x1.0mm	0504

4Features (1)

• • • • • • • • • • • • • • • • • • • •	
Code	Туре
s	Magnetically Shielded One Circuit Type

GCategory

Code	Category
N	For General

6Impedance

Typical impedance at 100MHz is expressed by three figures. The unit is in ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Circuit

Code	Circuit
н	Expressed by a letter.

8Features (2)

eacures (2)		
Code	Features	
Z	For Automotive	Infotainment
н		Powertrain, Safety

ONumber of Signal Lines

Code	Number of Signal Lines
2	Two Lines

Packaging

Code	Packaging
L	Embossed Taping (ø180mm Reel)
В	Bulk

Common Mode	Choke Coil for Automotive	
(Part Number)	PL T 10H H 102 6R0 P N	в
	1 2 8 4 5 6 7 8 (9
1Product ID		

Product ID

PL

Code Type T DC Type

3Applications

• 11		
Code	Applications	
10H	For DC Line High-frequency Type	
5BP	5.0x5.0mm Size, for DC Lines	

Common Mode Choke Coils

4 Features (1)

l'eatures (1)				
Code	Features			
н	For Automotive	Powertrain, Safety		

GImpedance

Expressed by three figures. The unit is ohm (Ω). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

GRated Current

Expressed by three figures. The unit is ampere (A). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. A decimal point is expressed by the capital letter "R." In this case, all figures are significant digits.

7Features (2)

Code	Features	
Р	European diversity of the second	
s	Expressed by a letter.	

8 Lead Dimensions

Code	Lead Dimensions	
Ν	No Lead Terminal (SMD)	

Packaging

- · · · · · · · · · · · · · · · · · · ·				
Code	Packaging	Series		
В	Bulk	PLT10H, PLT5BP		
L	Embossed Taping (ø178mm/ø180mm Reel)	PLT10H, PLT5BP		
к	Embossed Taping (ø330mm Reel)	PLT10H		
SMD Type Chip Ferrite Bead

Chip Common Mode Choke Coil SMD Type DLM11S Series 0504/1210(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Tape	4000
В	Bulk(Bag)	500

Equivalent Circuit

Rated Value (\Box : packaging code)

Part Number		Common Mode Impedance	Rated Current Rated Volt	Pated Voltage	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	at 100MHz	Rateu Current	Raled Vollage	(Min.)	Voltage	Resistance
DLM11SN450HZ2	—	45Ω±25%	100mA	5Vdc	100ΜΩ	12.5Vdc	0.7Ω±25%
DLM11SN900HZ2	—	90Ω±25%	100mA	5Vdc	100ΜΩ	12.5Vdc	1.1Ω±25%

Operating Temp. Range: -55°C to 125°C

Z-f characteristics: DLM11SN_HZ2 series

Differential mode Z-f characteristics: DLM11SN_HZ2 series

0 2 4 6 8 8

> 100 Frequency (MHz)

10

1000

10000

10 L 1 (0.17)

(in mm)

Chip Common Mode Choke Coil SMD Type DLW21S Series 0805/2012(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Tape	2000
В	Bulk(Bag)	500

Equivalent Circuit

Rated Value (: packaging code)

Part Number		Common Mode Impedance	Rated Current	Detection	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	at 100MHz	Rated Current	t Rated Voltage	(Min.)	Voltage	Resistance
DLW21SZ670HQ2	—	67Ω±25%	320mA	20Vdc	10ΜΩ	50Vdc	0.31Ω max.
DLW21SZ900HQ2	—	90Ω±25%	280mA	20Vdc	10ΜΩ	50Vdc	0.41Ω max.
DLW21SZ121HQ2	—	120Ω±25%	280mA	20Vdc	10ΜΩ	50Vdc	0.41Ω max.
DLW21SZ181XQ2	—	180Ω±25%	240mA	20Vdc	10ΜΩ	50Vdc	0.39Ω max.
DLW21SZ261XQ2	_	260Ω±25%	220mA	20Vdc	10ΜΩ	50Vdc	0.59Ω max.
DLW21SZ491XQ2	_	490Ω±25%	200mA	20Vdc	10ΜΩ	50Vdc	0.77Ω max.

Operating Temp. Range: -40°C to 105°C

Z-f characteristics: DLW21SZ_HQ2 series

Differential mode transmission loss: DLW21SZ HQ2 series

Continued on the following page. earrow

Microchip Transformer (Balun)

SMD Type

A Note • Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. \searrow

Z-f characteristics: DLW21SZ_XQ2 series

Differential mode transmission loss: DLW21SZ_XQ2 series

1.9±0.2

(in mm)

Chip Common Mode Choke Coil SMD Type DLW31S Series 1206/3216(inch/mm)

Appearance/Dimensions

Chip EMIFIL® SMD Type

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Tape	2000
В	Bulk(Bag)	500

Equivalent Circuit

Rated Value (: packaging code)

Part Number		Common Mode Impedance Rated Current	Pated Voltage	Insulation Resistance	Withstanding	DC	
Infotainment	Powertrain/Safety	at 100MHz	Raleu Current	Rateu voltage	(Min.)	Voltage	Resistance
—	DLW31SH222SQ2	2200Ω±25%	80mA	32Vdc	10ΜΩ	80Vdc	1.6Ω±20%

Operating Temp. Range: -40°C to 125°C

Z-f characteristics: DLW31SH_SQ2 series

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

Chip Common Mode Choke Coil SMD Type DLW32S Series 1210/3225(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Tape	1500
в	Bulk(Bag)	500

Equivalent Circuit

Rated Value (: packaging code)

Part N	Part Number		Dated Comment	Rated Voltage	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	Common Mode Inductance	Rated Current	Rateu Voltage	(Min.)	Voltage	Resistance
-	DLW32SH110XK2	11µH-30%/+50% (at 0.1MHz)	300mA	80Vdc	10ΜΩ	200Vdc	0.4Ω max.
-	DLW32SH220XK2	22µH-30%/+50% (at 0.1MHz)	250mA	80Vdc	10ΜΩ	200Vdc	0.5Ω max.
-	DLW32SH510XK2	51µH-30%/+50% (at 0.1MHz)	200mA	80Vdc	10ΜΩ	200Vdc	0.7Ω max.
_	DLW32SH101XK2	100µH-30%/+50% (at 0.1MHz)	150mA	80Vdc	10ΜΩ	200Vdc	1.5Ω max.

Operating Temp. Range: -40°C to 125°C

Z-f characteristics: DLW32SH_XK2 series

Chip Common Mode Choke Coil SMD Type DLW43M Series 1812/4532(inch/mm)

Appearance/Dimensions

Chip EMIFIL® SMD Type

Chip Ferrite Bead SMD Type

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	2500
L	ø180mm Embossed Tape	500
В	Bulk(Bag)	100

Equivalent Circuit

Rated Value (: packaging code)

Part Number		Common Mode Inductance	Rated Current	Pated Voltage	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	Common Mode Inductance	Rateu Current	Raleu voltage	(Min.)	Voltage	Resistance
—	DLW43MH201XK2	200µH-25%/+50% (at 0.1MHz)	110mA	20Vdc	10ΜΩ	50Vdc	4.5Ω max.

(in mm)

Operating Temp. Range: -40°C to 105°C

Z-f characteristics: DLW43MH_XK2 series

SMD Type Chip Ferrite Bead

Chip EMIFIL®

Lead Type EMI Suppression Filters

(0.8) 3.2±0.2 (1) (

(in mm)

(0:30)

(0:30)

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	2500
L	ø180mm Embossed Tape	500
В	Bulk(Bag)	100

Equivalent Circuit

Appearance/Dimensions

DLW43SH_XP2

Rated Value (: packaging code)

Part Number		Common Mada Industrana	Detect Original	Detectively	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	Common Mode Inductance F	Rated Current	Rateu voltage	(Min.)	Voltage	Resistance
—	DLW43SH110XK2	11µH-30%/+50% (at 0.1MHz)	360mA	50Vdc	10ΜΩ	125Vdc	0.5Ω max.
—	DLW43SH220XK2	22µH-30%/+50% (at 0.1MHz)	310mA	50Vdc	10ΜΩ	125Vdc	0.6Ω max.
_	DLW43SH510XK2	51µH-30%/+50% (at 1MHz)	230mA	50Vdc	10ΜΩ	125Vdc	1.0Ω max.
_	DLW43SH101XK2	100µH-30%/+50% (at 1MHz)	200mA	50Vdc	10ΜΩ	125Vdc	2.0Ω max.
—	DLW43SH101XP2	100µH-30%/+80% (at 0.1MHz)	170mA	50Vdc	10ΜΩ	125Vdc	2.0Ω max.

Operating Temp. Range: -40°C to 125°C

Continued on the following page. 🌶

DLW43S Series 1812/4532(inch/mm)

Appearance/Dimensions

Continued from the preceding page. \searrow

Z-f characteristics: DLW43SH_XK2 series

Z-f characteristics: DLW43SH_XP2 series

Chip Ferrite Bead SMD Type

Chip EMIFIL[®] SMD Type

150

muRata

Packaging

κ

L

в

Equivalent Circuit

(1) (

(4) 🔿

Packaging

ø330mm Embossed Tape

ø180mm Embossed Tape

Bulk(Bag)

Q Q Q

000

No Polarity.

•

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

2500

700

100

-(2)

-O (3)

Chip Common Mode Choke Coil SMD Type DLW5AT Series 2014/5036(inch/mm)

Appearance/Dimensions

Appearance/Dimensions

Rated Value (\Box : packaging code)

Part N	lumber	Common Mode Impedance	Common Mode Impedance	Rated Current		Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	at 10MHz	at 100MHz	Raled Current	Rated Voltage	(Min.)	Voltage	Resistance
DLW5ATZ450TQ2	DLW5ATH450TQ2	4.7Ω±25%	45Ω(Typ.)	4A	50Vdc	10ΜΩ	125Vdc	0.013Ω max.
DLW5ATZ500MQ2	DLW5ATH500MQ2	4.6Ωmin.	50Ω(Тур.)	4A	50Vdc	10ΜΩ	125Vdc	0.013Ω max.
DLW5ATZ111TQ2	DLW5ATH111TQ2	12Ω±25%	110Ω(Typ.)	ЗA	50Vdc	10ΜΩ	125Vdc	0.020Ω max.
DLW5ATZ151MQ2	DLW5ATH151MQ2	11Ωmin.	150Ω(Typ.)	ЗA	50Vdc	10ΜΩ	125Vdc	0.020Ω max.
DLW5ATZ231TQ2	DLW5ATH231TQ2	22Ω±25%	230Ω(Typ.)	2.5A	50Vdc	10ΜΩ	125Vdc	0.027Ω max.
DLW5ATZ331MQ2	DLW5ATH331MQ2	20Ωmin.	330Ω(Тур.)	2.5A	50Vdc	10ΜΩ	125Vdc	0.027Ω max.
DLW5ATZ401TQ2	DLW5ATH401TQ2	35Ω±25%	400Ω(Typ.)	2A	50Vdc	10ΜΩ	125Vdc	0.034Ω max.
DLW5ATZ501MQ2	DLW5ATH501MQ2	35Ωmin.	500Ω(Тур.)	2A	50Vdc	10ΜΩ	125Vdc	0.034Ω max.
DLW5ATZ501TQ2	DLW5ATH501TQ2	55Ω±25%	500Ω(Тур.)	1.5A	50Vdc	10ΜΩ	125Vdc	0.056Ω max.
DLW5ATZ112MQ2	DLW5ATH112MQ2	50Ωmin.	1100Ω(Typ.)	1.5A	50Vdc	10ΜΩ	125Vdc	0.056Ω max.

Operating Temp. Range: -40°C to 105°C/-40°C to 125°C

Continued on the following page. earrow

Continued from the preceding page. \searrow

Z-f characteristics: DLW5ATZ_TQ2 series

Z-f characteristics: DLW5ATH_TQ2 series

Z-f characteristics: DLW5ATZ_MQ2 series

Z-f characteristics: DLW5ATH_MQ2 series

Continued on the following page. earrow network net

muRata

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +105°C, derating of current is necessary for DLW5ATH_TQ2 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Derating of Rated Current

In operating temperature exceeding +105°C, derating of current is necessary for DLW5ATH_MQ2 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip Common Mode Choke Coil SMD Type DLW5BS Series 2020/5050(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Tape	1500
L	ø180mm Embossed Tape	400
В	Bulk(Bag)	100

Equivalent Circuit

Rated Value (\Box : packaging code)

Part Number		Common Mode Impedance	Common Mode Impedance	Dated Current	Rated Voltage	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	at 10MHz	at 100MHz	Raleu Current	Rateu voltage	(Min.)	Voltage	Resistance
DLW5BSZ501TQ2	—	2800Ω±40%	500Ω(Тур.)	700mA	50Vdc	10ΜΩ	125Vdc	0.23Ω max.
DLW5BSZ601TQ2	—	1200Ω±40%	600Ω(Тур.)	1A	50Vdc	10ΜΩ	125Vdc	0.12Ω max.
DLW5BSZ801TQ2	—	550Ω±40%	800Ω(Тур.)	1.5A	50Vdc	10ΜΩ	125Vdc	0.056Ω max.

Operating Temp. Range: -40°C to 105°C

Z-f characteristics: DLW5BSZ_TQ2 series

10000 Common mode 1000 DLW5BSZ501TQ2 Impedance (Ω) 100 DLW5BSZ601TQ2 W5BSZ801TQ2 10 DLW5BSZ501TQ2 DI W5857601T02 1 ~ 11 2801TQ2 DLW Differential mode 0.1 10 100 1000 Frequency (MHz)

Chip Ferrite Bead SMD Type

Chip EMIFIL® SMD Type

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

Chip Common Mode Choke Coil SMD Type DLW5BT Series 2020/5050(inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
к	ø330mm Embossed Tape	2500	
L	ø180mm Embossed Tape	700	
В	Bulk(Bag)	100	

Equivalent Circuit

Rated Value (\Box : packaging code)

Part N	Part Number		Impedance Common Mode Impedance	Rated Current	Datad Valtage	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	at 10MHz	at 100MHz	Raleu Current	Rateu voltage	(Min.)	Voltage	Resistance
DLW5BTZ101TQ2	DLW5BTH101TQ2	10Ωmin.	100Ω(Typ.)	4A	50Vdc	10ΜΩ	125Vdc	0.013Ω max.
DLW5BTZ251TQ2	DLW5BTH251TQ2	20Ωmin.	250Ω(Typ.)	ЗA	50Vdc	10ΜΩ	125Vdc	0.020Ω max.
DLW5BTZ501TQ2	DLW5BTH501TQ2	30Ωmin.	500Ω(Тур.)	2.5A	50Vdc	10ΜΩ	125Vdc	0.027Ω max.
DLW5BTZ102TQ2	DLW5BTH102TQ2	60Ωmin.	1000Ω(Typ.)	2A	50Vdc	10ΜΩ	125Vdc	0.034Ω max.
DLW5BTZ142TQ2	DLW5BTH142TQ2	100Ωmin.	1400Ω(Тур.)	1.5A	50Vdc	10ΜΩ	125Vdc	0.056Ω max.

Operating Temp. Range: -40°C to 105°C/-40°C to 125°C

Z-f characteristics: DLW5BTZ_TQ2 series

Z-f characteristics: DLW5BTH_TQ2 series

Continued on the following page. $earrow \earrow \ea$

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +105°C, derating of current is necessary for DLW5BTH_TQ2 series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip EMIFIL[®] SMD Type

156

muRata

£∏-L

: Electrode

(in mm)

SMD Type Chip Ferrite Bead

Chip Common Mode Choke Coil SMD Type PLT5BP Series 2020/5050(inch/mm)

Appearance/Dimensions

(1.5)

Packaging

Code	Packaging	Minimum Quantity						
L	ø180mm Embossed Tape	300	oe Fill®					
В	B Bulk(Bag) 50							
Equivalent C	Equivalent Circuit							

Equivalent Circuit

Rated Value (: packaging code)

(3.5)

Part Number		Common Mode Impedance Rated Current Rat		Datad Valtaga	Insulation Resistance	Withstanding	DC
Infotainment	Powertrain/Safety	at 10MHz	Rateu Current	Rated Voltage	(Min.)	Voltage	Resistance
—	PLT5BPH1015R6SN	100Ω(Тур.)	5.6A	80Vdc	10ΜΩ	200Vdc	4mΩ±30%
—	PLT5BPH2014R4SN	200Ω(Тур.)	4.4A	80Vdc	10ΜΩ	200Vdc	7mΩ±30%
_	PLT5BPH3013R7SN	300Ω(Тур.)	3.7A	80Vdc	10ΜΩ	200Vdc	11mΩ±30%
_	PLT5BPH5013R1SN	500Ω(Тур.)	3.1A	80Vdc	10ΜΩ	200Vdc	17mΩ±30%

Operating Temp. Range: -55°C to 150°C

Z-f characteristics: PLT5BPH series

Continued on the following page. $earrow \earrow \ea$

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +125°C, derating of current is necessary for PLT5BP series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

Chip Ferrite Bead SMD Type

muRata

SMD Type Chip Ferrite Bead

Chip Common Mode Choke Coil SMD Type PLT10H Series

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
к	ø330mm Embossed Tape	500	oe FIL®
L	ø180mm Embossed Tape	125	T
В	Bulk(Bag)	50	SME thip I
		·	C

Equivalent Circuit

Rated Value (: packaging code)

Part N	lumber	Common Mode Impedance	Ce Common Mode Inductance Rated Current		Insulation Resistance	Withstanding	DC	Operating	
Infotainment	Powertrain/Safety	at 10MHz	Common Mode Inductance	Rated Current	Rateu Voltage	(Min.)	Voltage	Resistance	Temp. Range
_	PLT10HH450180PN	45Ω(Тур.)	0.8µHmin.	18A	300Vdc	10ΜΩ	750Vdc	1.3mΩ±0.5mΩ	-55°C to 125°C
—	PLT10HH101150PN	100Ω(Typ.)	2.0µHmin.	15A	300Vdc	10ΜΩ	750Vdc	$1.8m\Omega\pm0.5m\Omega$	-55°C to 125°C
—	PLT10HH401100PN	400Ω(Тур.)	6µHmin.	10A	100Vdc	10ΜΩ	250Vdc	$3.6m\Omega\pm0.5m\Omega$	-55°C to 125°C
—	PLT10HH501100PN	500Ω(Тур.)	9µHmin.	10A	100Vdc	10ΜΩ	250Vdc	$3.6m\Omega\pm0.5m\Omega$	-55°C to 105°C
_	PLT10HH9016R0PN	900Ω(Typ.)	14µHmin.	6A	100Vdc	10ΜΩ	250Vdc	$8.0m\Omega\pm0.5m\Omega$	-55°C to 125°C
—	PLT10HH1026R0PN	1000Ω(Тур.)	20µHmin.	6A	100Vdc	10ΜΩ	250Vdc	8.0mΩ±0.5mΩ	-55°C to 105°C

Operating temperature should include self-temperature rise.

Z-f characteristics: PLT10HH series

Continued on the following page. earrow

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +65°C, derating of current is necessary for PLT10H series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

muRata

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

Chip Common Mode Choke Coil SMD Type UCMH0907 Series 3527/9070(inch/mm)

0.9

Appearance/Dimensions

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Tape	750	

Equivalent Circuit

Rated Value (\Box : packaging code)

Part Number		Common Mode Impedance		Pated Voltage	Insulation Resistance	Withstanding	DC	
Infotainment	Powertrain/Safety	at 100MHz	Rateu Current	Rateu voltage	(Min.)	Voltage	Resistance	
1259CM-0001	_	700Ω(Тур.)	5A	50Vdc	100ΜΩ	100Vdc	0.01Ω max.	

(in mm)

Operating Temp. Range: -40°C to 125°C

Operating temperature should include self-temperature rise.

Z-f characteristics: UCMH0907 series

Insertion loss: UCMH0907 series

Chip Common Mode Choke Coil (DL \Box Series) \triangle Caution/Notice

Rating

Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance. Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure our product.

Soldering and Mounting

1. Self-heating

Please provide special attention when mounting chip common mode choke coils DLW5 series in close proximity to other products that radiate heat.

The heat generated by other products may deteriorate the insulation resistance and cause excessive heat in this component.

2. Mounting Direction

Mount Chip Common Mode Choke Coils in right direction. Wrong direction, which is 90 degrees rotated from right

Notice

Storage and Operating Condition

<Operating Environment>

Do not use products in the corrodible atmosphere such as acidic gases, alkaline gases, chlorine, sulfur gases, organic gases. (the sea breeze, Cl₂, H₂S, NH₃, SO₂, NO₂,etc) Do not use products in the environment close to the organic solvent.

<Storage and Handling Requirements>

1. Storage Period

The DL series should be used within 12 months. Solderability should be checked if this period is exceeded.

Notice (Soldering and Mounting)

1. Cleaning

Failure and degradation of a product are caused by the cleaning method. When you clean in conditions that are not in mounting information, please contact Murata engineering.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.

3. Other

Noise suppression levels resulting from Murata's EMI suppression filters EMIFIL[®] may vary, depending on the circuits and ICs used, type of noise, mounting pattern, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

.....

Continued on the following page. $earrow \earrow \ea$

Chip Ferrite Bead SMD Type

Vicrochip Transformer (Balun)

SMD Type

direction, causes not only open or short circuit but also flames or other serious trouble.

.....

- 2. Storage Conditions
 - (1) Storage temperature: -10 to +40°C Relative humidity: 15 to 85%
 - Avoid sudden changes in temperature and humidity.(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

Chip Common Mode Choke Coil (DL \Box Series) \triangle Caution/Notice

Continued from the preceding page.

Handling

 Resin Coating (Except for DLW Series.) Using resin for coating/molding products may affect the products performance.

So please pay careful attention in selecting resin. Prior to use, please make the reliability evaluation with the product mounted in your application set.

- Resin Coating (DLW31S Series)
 Do not make any resin coating DLW31S series.
 The impedance value may change due to high cure-stress of resin to be used for coating/molding products.
 An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire of coil, leading to open circuit.
 So, please pay your careful attention in selecting resin in case of coating/molding the products with the resin.
- 3. Resin Coating (Except DLW31S Series)

The impedance value may change due to high cure-stress of resin to be used for coating/molding products. An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire of coil, leading to open circuit.

So, please pay your careful attention in selecting resin in case of coating/molding the products with the resin. Prior to use the coating resin, please make sure no reliability issue is observed by evaluating products mounted on your board.

4. Caution for Use (DLW Series)

When you hold products with a tweezer, please hold by the sides. Sharp materials, such as a pair of tweezers, should not touch the winding portion to prevent breaking the wire. Mechanical shock should not be applied to the products mounted on the board to prevent breaking the core.

- 5. Brushing (DLW21S/31S/32S/43S/43M Series) When you clean the neighborhood of products such as connector pins, bristles of cleaning brush shall not be touched to the winding portion of this product to prevent the breaking of wire.
- 6. Handling of a Substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate. Excessive mechanical stress may cause cracking in the Product.

Bending Æ

muRata

Twisting 4-4

Block Type EMIFIL® SMD Type

SMD Type Chip Ferrite Beac

SMD Type Chip EMIFIL®

163

Chip Common Mode Choke Coil (PL Series) ACaution/Notice

Chip Ferrite Bead SMD Type

Chip EMIFIL® SMD Type

Rating

▲ ①Caution

- 1. Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.
- 2. Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure our product.

Soldering and Mounting

1. Self-heating

Please provide special attention when mounting chip common mode choke coils in close proximity to other products that radiate heat.

The heat generated by other products may deteriorate the insulation resistance and cause excessive heat in this component.

2. Mounting Direction

Mount Chip Common Mode Choke Coils in right direction.

Notice

Storage and Operating Condition

<Operating Environment>

Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

- Do not use products in the environment close to the organic solvent.
- <Storage and Handling Requirements>

1. Storage Period

PLT10H series, PLT5BP series should be used within 12 months.

Notice (Soldering and Mounting)

1. Cleaning

Failure and degradation of a product are caused by the cleaning method. When you clean in conditions that are not in mounting information, please contact Murata engineering.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.

Handling

1. Handling of a Substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate. Wrong direction, which is 90 degrees rotated from right direction, causes not only open or short circuit but also flames or other serious trouble.

Solderability should be checked if this period is exceeded.

- 2. Storage Conditions
 - (1) Storage temperature: -10 to +40°C
 Relative humidity: 15 to 85%
 Avoid sudden changes in temperature and humidity.
 - (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- 3. Other

Noise suppression levels resulting from Murata's EMI suppression filters EMIFIL[®] may vary, depending on the circuits and ICs used, type of noise, mounting pattern, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

Excessive mechanical stress may cause cracking in the Product.

Bending 11

Twisting 11

mmon Mode Choke Coil SMD Tyme

EMI Suppression Filters Lead Type

Vicrochip Transformer (Balun)

SMD Type

Chip Common Mode Choke Coil (UCMH Series) ①Caution/Notice

Rating

Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance. Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure our product.

Soldering and Mounting

1. Self-heating

Please provide special attention when mounting this product close to other products that radiate heat. The heat generated by other products may deteriorate the insulation resistance and cause excessive heat in this component.

2. Mounting Direction

muRata

Mount Chip Common Mode Choke Coils in right direction. Wrong direction, which is 90 degrees rotated from right direction, causes not only open or short circuit but also flames or other serious trouble.

Notice

Handling

1. Resin Coating

The inductance value may change and / or it may affect on the product's performance due to high cure-stress of resin to be used for coating / molding products. So please pay your careful attention when you select resin. In prior to use, please make the reliability evaluation with the product mounted in your application set. C51E.pdf

Land Pattern + Solder Resist

Chip Common Mode Choke Coil (DL Series) Soldering and Mounting

1. Standard Land Pattern Dimensions

PCB Warping

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

Products should be located in the sideways direction (Length: a<b) to the mechanical stress.

Poor example

muRata

Good example

Continued on the following page. 🖊

DNote • Please read rating and CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Chip Common Mode Choke Coil (DL Series) Soldering and Mounting

Continued from the preceding page. \searrow

2. Solder Paste Printing and Adhesive Application

When reflow soldering the chip common mode choke coils, the printing must be conducted in accordance with the following cream solder printing conditions.

If too much solder is applied, the chip will be prone to damage by mechanical and thermal stress from the PCB and may crack.

Standard land dimensions should be used for resist and copper foil patterns.

When flow soldering the chip common mode choke coils, apply the adhesive in accordance with the following conditions.

If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering process.

							(in mm)
Series		Solder Paste Printin	g				Adhesive Application
DLW DLM	 Guideline of solder paste 100-150µm: DLW21S/3 150µm: DLW43S 150-200µm: DLW5A/5E *Solderability is subject to Please make sure that you specifications with our pro- 	115/325, DLM115 3 reflow conditions ur product has bee	and the en evalu	lated ir	n view c		DLW5AT_MQ2 Apply 0.3mg of bonding agent at each chip. DLW5AT_MQ2
	DLM11S						Coating Position of Bonding Agent
	DLW215/315/325						
		Series	a	b	с	d	
		DLW21S	0.8	2.6	0.5	1.2	
	a	DLW31S	1.6	3.7	0.4	1.6	
	∢ b	DLW32S	2.0	4.1	0.4	1.6	
	DLW5A/5B						

Continued on the following page. earrow

SMD Type Chip EMIFIL®

SMD Type

Microchip Transformer (Balun)

SMD Type

Chip Common Mode Choke Coil (DL Series) Soldering and Mounting

Continued from the preceding page. \searrow

3. Standard Soldering Conditions

(1) Soldering Methods

Use flow and reflow soldering methods only.

Use standard soldering conditions when soldering chip common mode choke coils.

In cases where several different parts are soldered, each having different soldering conditions, use those

conditions requiring the least heat and minimum time.

Solder: Use Sn-3.0Ag-0.5Cu solder. Use of Sn-Zn based solder will deteriorate performance of products. If using DLM series with Sn-Zn based solder, please contact Murata in advance.

Flux:

Use Rosin-based flux.
 In case of DLW21/31/43 series, use Rosin-based flux with converting chlorine content of 0.06 to 0.1wt%.

In case of using RA type solder, products should be cleaned completely with no residual flux.

- Do not use strong acidic flux (with chlorine content exceeding 0.20wt%)
- Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

 Reflow Soldering Profile (Sn-3.0Ag-0.5Cu Solder)

		Standar	d Profile		Limit Profile			
Series	Heating		Peak Temperature	Cycle	Hea	ting	Peak Temperature	Cycle
	Temp. (T1)	Time. (t1)	(T2)	of Reflow	Temp. (T3)	Time. (t2)	(T4)	of Reflow
DLM/ DLW21S/31S/43MH	220°C min.	30 to 60s	245±3°C	2 times max.	230°C min.	60s max.	260°C/10s	2 times max.
DLW325/435	220°C min.	30 to 60s	245±3°C	2 times max.	240°C min.	30s max.	260°C/10s	2 times max.
DLW5A/5B	220°C min.	30 to 60s	250±3°C	2 times max.	230°C min.	60s max.	260°C/10s	2 times max.

Chip Common Mode Choke Coil (DL Series) Soldering and Mounting

Continued from the preceding page. \searrow

(3) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron.

Pre-heating: 150°C 60s min.

Soldering iron power output / Tip diameter:

30W max. / ø3mm max.

Temperature of soldering iron tip / Soldering time / Times:

350°C max. / 3-4s / 2 times*1

4. Cleaning

Following conditions should be observed when cleaning chip EMI filter.

Do not clean DLW series.

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol type cleaner)
- (2) Ultrasonic

Output: 20W/liter max. Duration: 5 minutes max. Frequency: 28 to 40kHz *1 DLW31S/DLW43S: 350°C max. / 3s / 2 times Do not allow the tip of the soldering iron to directly contact the chip.

For additional methods of reworking with a soldering iron, please contact Murata engineering.

(3) Cleaning agent

The following list of cleaning agents have been tested on the individual components. Evaluation of final assembly should be completed prior to production.

- Before cleaning, please contact Murata engineering. (a) Alcohol cleaning agent
- Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agent Pine Alpha ST-100S
- (4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agent has been removed with deionized water.

muRata

SMD Type Chip EMIFIL®

(in mm)

Chip Common Mode Choke Coil (PL Series) Soldering and Mounting

1. Standard Land Pattern Dimensions

8.0

4.0

4.0

PCB Warping

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

Products should be located in the sideways direction (Length: a
b) to the mechanical stress.

7.0

Poor example

Good example

2. Solder Paste Printing and Adhesive Application

When reflow soldering the chip common mode choke coils, the printing must be conducted in accordance with the following cream solder printing conditions. If too much solder is applied, the chip will be prone to

damage by mechanical and thermal stress from the PCB and may crack.

Standard land dimensions should be used for resist and copper foil patterns.

Series	Solder Paste Printing
PLT10H PLT5BP	 Guideline of solder paste thickness: 150-200µm: PLT10H 150µm: PLT5BP For the solder paste printing pattern, use standard land dimensions. *Solderability is subject to reflow conditions and thermal conductivity. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

Continued on the following page. $earrow \earrow \ea$

170

SMD Type

171

Note • Please read rating and ()CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering

Chip Common Mode Choke Coil (PL \Box Series) Soldering and Mounting

Continued from the preceding page. \searrow

3. Standard Soldering Conditions

(1) Soldering Methods

Use reflow soldering methods only.

Use standard soldering conditions when soldering chip common mode choke coils.

In cases where several different parts are soldered, each having different soldering conditions, use those

conditions requiring the least heat and minimum time.

Solder: Use Sn-3.0Ag-0.5Cu solder. Use of Sn-Zn based solder will deteriorate performance of products.

Flux:

- Use Rosin-based flux.
- Do not use strong acidic flux (with chlorine content exceeding 0.20wt%)
- Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

(2) Soldering Profile

(3) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron.

Pre-heating: 150°C 60s min.

Soldering iron power output / Tip diameter:

80W max. / ø3mm max.: PLT10HH

30W max. / ø3mm max.: PLT5BP

Temperature of soldering iron tip / Soldering time / Times: 400°C max. / 5s / 2 times: PLT10HH 350°C max. / 3 to 4s / 2 times: PLT5BP

4. Cleaning

Do not clean after soldering.

Do not allow the tip of the soldering iron to directly contact the product.

For additional methods of reworking with a soldering iron, please contact Murata engineering.

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

Chip Common Mode Choke Coil (UCMH Series) Soldering and Mounting

1. Standard Land Pattern Dimensions

Chip Ferrite Bead SMD Type

Chip EMIFIL[®] SMD Type

Block Type EMIFIL® SMD Type

EMI Suppression Filters Lead Type

Microchip Transformer (Balun)

SMD Type

(in mm)

2. Standard Soldering Conditions

muRata

A Note
 • Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

> SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Chip Common Mode Choke Coil (DL Series) Packaging

Minimum Quantity and Dimensions of 8mm Width Embossed Tape

c: Depth of Cavity (Embossed Tape)

Dimension of the cavity of embossed tape is measured at the bottom side.

		Dimensions				Minimum Qty. (pcs.)					
Part Number)mm Reel	ø330				
	a	b	с	d	Paper Tape	Embossed Tape	Paper Tape	Embossed Tape	Bulk		
DLM11S	1.4	1.15	0.65	0.25	-	4000	-	-	500		
DLW21S	2.25	1.45	1.4	0.3	-	2000	-	-	500		
DLW31S	3.6	2.0	2.1	0.3	-	2000	-	-	500		
DLW32S	3.6	2.9	2.65	0.3	-	1500	-	-	500		

Minimum Quantity and Dimensions of 12mm Width Embossed Tape

Part Number	Di	mensic	ons	Minimum Qty. (pcs.)				
Part Number	a	b	с	ø180mm Reel	ø330mm Reel	Bulk		
DLW43SH_XK	4.9	3.6	2.7	500	2500	100		
DLW43SH_XP	4.9	3.6	2.9	500	2500	100		
DLW5AT	5.4 4.1 2.7		700	2500	100			
DLW5BS	5.5	5.4	4.7	400	1500	100		
DLW5BT	5.5	5.5	2.7	700	2500	100		
DLW43MH	4.9	3.6	3.0	500	2500	100		
						(in ı		

(in mm)

"Minimum Quantity" means the number of units of each delivery or order. The quantity should be an integral multiple of the "Minimum Quantity."

Chip Common Mode Choke Coil (PL Series) Packaging

Minimum Quantity and Dimensions of 12mm Width Embossed Tape

Part Number	a	b	с	d	ø180mm Reel	ø330mm Reel	Bulk
PLT5BP	6.5	5.35	5.1	0.4	300	-	50
							(in

Minimum Quantity and Dimensions of 24mm Width Embossed Tape

(in mm)

PLT10H

muRata

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Chip Common Mode Choke Coil (UCMH Series) Packaging

C51E.pdf Apr. 27,2018

SMD Type Chip Common Mode Choke Coil

Block Type EMIFIL® BNX02 Series

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	400
к	ø330mm Embossed Taping	1500
В	Packing in Bulk	100

Equivalent Circuit

(1)-(4): Terminal Number PSG: Power Supply Ground CG: Circuit Ground CB: Circuit+B

Rated Value (\Box : packaging code)

Part N	Part Number		Withstand	Rated	Insulation	Insertion Loss	
For Infotainment	For Powertrain/Safety	Voltage	Voltage	Current	Resistance (min.)		
—	BNX024H01	50Vdc	125Vdc	20A	100ΜΩ	100kHz to 1GHz:35dB min. (Line impedance=50 Ω)	
_	BNX025H01	25Vdc	62.5Vdc	20A	50MΩ	50kHz to 1GHz:35dB min. (Line impedance=50Ω)	
_	BNX026H01	50Vdc	125Vdc	20A	10ΜΩ	50kHz to 1GHz:35dB min. (Line impedance=50Ω)	
—	BNX027H01	16Vdc	40Vdc	20A	1ΜΩ	40kHz to 1GHz:35dB min. (Line impedance=50Ω)	

Operating Temperature Range: -55°C to +125°C

In operating temperatures exceeding +85°C, derating of current is necessary.

Insertion Loss Characteristics (Main Items)

Continued on the following page. earrow

Chip EMIFIL® SMD Type
 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. \searrow

Derating of Rated Current

In operating temperature exceeding +85°C, derating of current is necessary for BNX024H/025H/026H/027H series. Please apply the derating curve shown in chart according to the operating temperature.

Derating of Rated Current

muRata

Block Type EMIFIL[®] SMD Type (BNX Series) **Caution/Notice**

Rating

Chip Ferrite Bead SMD Type

Chip EMIFIL® SMD Type

Chip Common Mode Choke Coil

SMD Type

Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.

Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

ESD

ESD to this product, exceeding condition of IEC61000-4-2 with 30kV, may cause short circuit and fuming or firing.

Notice

Storage and Operating Conditions

<Operating Environment>

Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas. Do not use products in the environment close to the organic solvent.

<Storage and Handling Requirements>

1. Storage Period BNX series should be used within 12 months.

Notice (Soldering and Mounting)

- 1. Cleaning
 - Do not clean BNX series (SMD Type).
- 2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.

3. Other

Noise suppression levels resulting from Murata's EMI

Handling

 Resin Coating Using resin for coating/molding products may affect the

products performance. So please pay careful attention in selecting resin. Prior to use, please make the reliability evaluation with the product mounted in your application set.

 Handling of a Substrate (for BNX02^[]) After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to

- Solderability should be checked if this period is exceeded.
- 2. Storage Conditions
 - (1) Storage temperature: -10 to +40°CRelative humidity: 15 to 85%Avoid sudden changes in temperature and humidity.

.....

(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

suppression filters EMIFIL[®] may vary, depending on the circuits and ICs used, type of noise, mounting pattern, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Bending A H

Twisting

Vicrochip Transformer (Balun)

SMD Type
DNote • Please read rating and CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering

(in mm)

Block Type EMIFIL[®] SMD Type (BNX Series) Soldering and Mounting

Ocg

10.3 13.2 C

17.5 13.7

1. Standard Land Pattern Dimensions

Series BNX02

same also in a multilayer case) by the through hole. And a surface to ground electrode layer may also take a large area as much as possible.

- (4) It is recommended to use a double-sided printed circuit board with BNX mounting on one side and the ground pattern on the other in order to maximize filtering performance, multiple feed through holes are required to maximize the BNX's connection to ground.
- (5) The ground pattern should be designed to be as large as possible to achieve maximum filtering performance.

PCB Warping (for BNX02¹)

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

125

10.2 9.9 9.6

7.1 6.2 5.3

2.8

0

ò

а. В. 5.8

> Products should be located in the sideways direction (Length: a<b) to the mechanical stress.

Standard land dimensions should be used for resist and

Poor example

copper foil patterns.

2. Solder Paste Printing and Adhesive Application

When reflow soldering the block type EMIFIL[®], the printing must be conducted in accordance with the following cream solder printing conditions.

If too much solder is applied, the chip will be prone to damage by mechanical and thermal stress from the PCB and may crack.

Series Solder Paste Printing Adhesive Application BNX02 Guideline of solder paste thickness: 150-200µm 12.5 CG 10.2 9.6 СВ В 7.1 5.3 PSG CG 2.8 2.3 CG 0 10.3-Ó 3.8 00 17.5 13.7

Microchip Transformer (Balun)

SMD Type

Block Type EMIFIL[®] SMD Type (BNX Series) Soldering and Mounting

Continued from the preceding page. \searrow

3. Standard Soldering Conditions

(1) Soldering Methods

Use reflow soldering methods only.

Use standard soldering conditions when soldering block type ${\sf EMIFIL}^{\textcircled{B}}~{\sf SMD}$ type.

In cases where several different parts are soldered, each having different soldering conditions, use those

conditions requiring the least heat and minimum time.

Solder: Use Sn-3.0Ag-0.5Cu solder. Use of Sn-Zn based solder will deteriorate performance of products.

Flux:

Use Rosin-based flux.
 In case of using RA type solder, products should be

- cleaned completely with no residual flux.
 Do not use strong acidic flux (with chlorine content exceeding 0.20wt%)
- Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

(2) Soldering Profile

Reflow Soldering Profile (Sn-3.0Ag-0.5Cu solder)

		905±.	503	Time (s)				
	Standard Profile			Limit Profile				
Series	Hea	ting	Peak Temperature	Cycle	Hea	ting	Peak Temperature	Cycle
	Temp. (T1)	Time. (t1)	(T2)	of Reflow	Temp. (T3)	Time. (t2)	(T4)	of Reflow
BNX02	220°C min.	30 to 60s	250±3°C	2 times max.	230°C min.	60s max.	260°C/10s	2 times max.

(3) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron.

Pre-heating: 150°C 60s min.

Soldering iron power output: 100W max.

Temperature of soldering iron tip / Soldering time / Times:

450°C max. / 5s max. / 2 time

Do not allow the tip of the soldering iron to directly contact the chip.

For additional methods of reworking with a soldering iron, please contact Murata engineering.

4. Cleaning

Do not clean BNX02 series, or inner humidity protect material will be damaged, results product's insulation resistance getting worse.

muRata

Block Type EMIFIL[®] SMD Type (BNX Series) Packaging

Minimum Quantity and Dimensions of 24mm Width Embossed Tape

"Minimum Quantity" means the number of units of each delivery or order. The quantity should be an integral multiple of the "Minimum Quantity."

Part Numbering

Leaded Multilayer Ferrite Beads for Automotive

Product ID

Product ID

BL

Ferrite Beads

2Туре

Code	Туре
L	Lead Type

Built-in Chip Dimensions

Code	Dimensions (LxW)	Size Code (inch)
18	1.6x0.8mm	0603

Output Characteristics/Applications

Code	Characteristics/Applications
AG	For General Signal

GImpedance

Typical impedance at 100MHz is expressed by three figures. The unit is in ohm $\left(\Omega\right).$

The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

6 Lead Type/ Packaging

Co	de	Land Trues	Lead	Deslassian	
6	10	Lead Type	Length* (mm)	Packaging	
A2	В	Chusialat	28.0±1.0	Bulk	
DB	А	Straight	20.0±1.0	Ammo Pack	

*Lead distance between reference and bottom planes except for Bulk.

Category

Code	Category
E1	Expressed by a letter and numbers

8Features

Code	Circuit		
н	For Automotive	Powertrain, Safety	

Individual Specification Code

Code	Lead Material
01	CP Line
02	Cu Line

Chip EMIFIL[®] SMD Type

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

Disc Type EMIFI	Disc Type EMIFIL [®] for Automotive				
(Part Number)	DS S 1	Z B3	2A	220 Q	55 B
	000	45	6	0	39
Product ID					

Product ID DS Three-terminal Capacitor

2 Structure

Code	Structure
S	Built-in Ferrite Beads Type

Style

Code	Style
1	Expressed by a letter.

4Category

Code	Category		
Z	For Automotive	Infotainment	

8Lead Type/9Packaging

ve Infotainment

Code Lead Type Lead Length* (mm) Packaging Series 25.0 min. Bulk Q55B Q91A 20.0±1.0 Straight DSS1 Q92A 16.5±1.0 Ammo Pack Q93A 18.5±1.0

*Lead Distance between Reference and Bottom Planes Except for Bulk.

Temperature Characteristics

Code	Capacitance Change	
В3	±10% (Temperature Range: -25°C to +85°C)	

6 Rated Voltage

Code	Rated Voltage	
1H	50V	
2A	100V	

Capacitance

Expressed by three alphanumerics. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Chip Ferrite Bead	SMD Type

(Part Number)	VF C 2 H R7 1D 105 K 2 M1 A 1 2 3 4 5 6 7 3 9 1 4
1Product ID	
Product ID	
VF	EMIGUARD [®] Lead Type
2 Structure	
Code	Structure
С	Built-in Capacitor

EMIGUARD[®] (EMIFIL[®] with Varistor Function) for Automotive

Style

Ustric			
Code	Style		
2	Size is expressed by a digit		

4 Features

Code	Features	
н	For Automotive Powertrain, Safety	

⑤Temperature Characteristics

Code	Capacitance Change
R7	±15% (-55°C to +125°C)

Dead Type/Deackaging

Code	Lead Type	Lead Length*	Packaging	Series
M1A	Inside Crimp	18.0±1.0mm	Ammo Pack	VFC2

GRated Voltage Code

1D

8 Capacitance Tolerance Code

κ

9Varistor Voltage

Code

2

Capacitance

Rated Voltage

22V

Capacitance Tolerance

±10%

Varistor Voltage

27V

Expressed by three alphanumerics. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

*From bottom of the crimp.

Leaded Multilayer Ferrite Beads Lead Type BLL18AG Series

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
В	Packing in Bulk	500
А	Ammo Pack	2000

Equivalent Circuit

(Resistance element becomes dominant at high frequencies.)

(in mm)

Rated Value (: packaging code)

Par	t Number	Impedance			Operating Temperature Range
For Infotainment	For Powertrain/Safety	(at 100MHz/20°C)	Rated Current	DC Resistance	
_	BLL18AG121A2E1H01B	120Ω±40%	200mA	0.5Ω max.	-40°C to +150°C
_	BLL18AG121DBE1H01A	120Ω±40%	200mA	0.5Ω max.	-40°C to +150°C
_	BLL18AG151A2E1H01B	150Ω±40%	200mA	0.55Ω max.	-40°C to +150°C
_	BLL18AG151DBE1H01A	150Ω±40%	200mA	0.55Ω max.	-40°C to +150°C
_	BLL18AG221A2E1H01B	220Ω±40%	200mA	0.55Ω max.	-40°C to +150°C
_	BLL18AG221DBE1H01A	220Ω±40%	200mA	0.55Ω max.	-40°C to +150°C
_	BLL18AG331A2E1H01B	330Ω±40%	200mA	0.6Ω max.	-40°C to +150°C
_	BLL18AG331DBE1H01A	330Ω±40%	200mA	0.6Ω max.	-40°C to +150°C
_	BLL18AG471A2E1H01B	470Ω±40%	200mA	0.65Ω max.	-40°C to +150°C
_	BLL18AG471DBE1H01A	470Ω±40%	200mA	0.65Ω max.	-40°C to +150°C
_	BLL18AG601A2E1H01B	600Ω±40%	200mA	0.7Ω max.	-40°C to +150°C
_	BLL18AG601DBE1H01A	600Ω±40%	200mA	0.7Ω max.	-40°C to +150°C
_	BLL18AG102A2E1H01B	1000Ω±40%	200mA	0.8Ω max.	-40°C to +150°C
_	BLL18AG102DBE1H01A	1000Ω±40%	200mA	0.8Ω max.	-40°C to +150°C

muRata

Number of Circuits: 1

Impedance-Frequency Characteristics (Main Items)

Continued on the following page. 🖊

185

Continued from the preceding page. \searrow

Chip Ferrite Bead

Chip Common Mode Choke Coil

Block Type EMIFIL®

SMD Type

186

muRata

SMD Type Chip Ferrite Bead

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
В	Packing in Bulk	250	oe FIL®
А	Ammo Pack	1500	0 Typ
Equivalent C	lircuit	·	SME Chip E

Equivalent Circuit

No Polarity.

Rated Value (\Box : packaging code)

Rated Value (L: packaging code)					
Part Number		Capacitance	Rated Current	Rated Voltage	Operating
For Infotainment	For Powertrain/Safety				Temperature Range
DSS1ZB32A220Q55B	-	22pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A220Q91A	-	22pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A220Q92A	—	22pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A220Q93A	—	22pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A330Q55B	—	33pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A330Q91A	—	33pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A330Q92A	—	33pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A330Q93A	—	33pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A470Q55B	—	47pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A470Q91A	-	47pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A470Q92A	-	47pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A470Q93A	—	47pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A680Q55B	_	68pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A680Q91A	_	68pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A680Q92A	_	68pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A680Q93A	_	68pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A101Q55B	_	100pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A101Q91A	_	100pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A101Q92A	_	100pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A101Q93A	_	100pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A121Q55B	_	120pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A121Q91A	_	120pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A121Q92A	-	120pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A121Q93A	_	120pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A151Q55B	_	150pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A151Q91A	_	150pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A151Q92A	_	150pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A151Q93A	-	150pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A221Q55B	-	220pF±10%	6A	100Vdc	-40°C to +85°C
SS1ZB32A221Q91A	—	220pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A221Q92A	-	220pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A221Q93A	_	220pF±10%	6A	100Vdc	-40°C to +85°C

muRata

Continued on the following page. 🎢

SMD Type Microchip Transformer (Balun)

🖞 Note • Please read rating and 🏠 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Chip EMIFIL [®] SMD Type		
	ip EN	SMD Type

Chip Ferrite Bead SMD Type

Part N	lumber	Capacitance	Rated Current	Rated Voltage	Operating
For Infotainment	For Powertrain/Safety	Capacitance		Hated Voltage	Temperature Range
DSS1ZB32A271Q55B	—	270pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A271Q91A	—	270pF±10% 6A 100Vdc		-40°C to +85°C	
DSS1ZB32A271Q92A	—	270pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A271Q93A	—	270pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A331Q55B	_	330pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A331Q91A	_	330pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A331Q92A	_	330pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A331Q93A	—	330pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A471Q55B	—	470pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A471Q91A	_	470pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A471Q92A	_	470pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A471Q93A	_	470pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A681Q55B	_	680pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A681Q91A	_	680pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A681Q92A	_	680pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A681Q93A	_	680pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A102Q55B	_	1000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A102Q91A	_	1000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A102Q92A	_	1000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A102Q93A		1000pF±10%	6A	100Vdc	-40°C to +85°C
DSS12B32A152Q55B	_	1500pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A152Q91A		1500pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A152Q92A		1500pF±10%	6A	100Vdc	-40°C to +85°C
DSS12B32A152Q93A		1500pF±10%	6A	100Vdc	-40°C to +85°C
DSS12B32A132Q35A		2200pF±10%	6A	100Vdc	-40°C to +85°C
DSS12B32A222Q91A		2200pF±10%	6A	100Vdc	-40°C to +85°C
DSS12B32A222Q92A		2200pF±10%	6A	100Vdc	-40°C to +85°C
DSS12B32A222Q92A		2200pF±10%	6A 6A	100Vdc	-40°C to +85°C
DSS1ZB32A222Q55A		3300pF±10%	6A 6A	100Vdc	-40°C to +85°C
DSS12B32A332Q91A		3300pF±10%	6A 6A	100Vdc	-40°C to +85°C
			6A 6A	100Vdc	-40°C to +85°C
DSS1ZB32A332Q92A		3300pF±10%	6A 6A	100Vdc	-40°C to +85°C
DSS1ZB32A332Q93A		3300pF±10%			
DSS1ZB32A472Q55B		4700pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A472Q91A		4700pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A472Q92A	—	4700pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A472Q93A	—	4700pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A682Q55B		6800pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A682Q91A		6800pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A682Q92A	—	6800pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A682Q93A	—	6800pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A103Q55B	—	10000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A103Q91A	—	10000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A103Q92A	—	10000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A103Q93A	—	10000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A153Q55B	—	15000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A153Q91A	—	15000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A153Q92A	—	15000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A153Q93A	—	15000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A223Q55B	-	22000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A223Q91A	_	22000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A223Q92A	—	22000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB32A223Q93A	_	22000pF±10%	6A	100Vdc	-40°C to +85°C
DSS1ZB31H333Q55B	—	33000pF±10%	6A	50Vdc	-40°C to +85°C

Number of Circuit: 1

Continued on the following page. earrow

muRata

ANote • Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C51E.pdf Apr. 27,2018

Continued from the preceding page. \searrow

Part Number		Capacitance	Rated Current	Rated Voltage	Operating	
For Infotainment	For Powertrain/Safety	Capacitance	Raled Current	Rated Voltage	Temperature Range	
DSS1ZB31H333Q91A	—	33000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H333Q92A	—	33000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H333Q93A	—	33000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H473Q55B	—	47000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H473Q91A	_	47000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H473Q92A	—	47000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H473Q93A	—	47000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H104Q55B	—	100000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H104Q91A	_	100000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H104Q92A	_	100000pF±10%	6A	50Vdc	-40°C to +85°C	
DSS1ZB31H104Q93A	_	100000pF±10%	6A	50Vdc	-40°C to +85°C	

Number of Circuit: 1

Insertion Loss Characteristics (Main Items)

SMD Type Chip EMIFIL®

SMD Type Chip Ferrite Bead

EMIGUARD® (EMIFIL® with Varistor Function) Lead Type VFC2 Series

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
А	Ammo Pack	2000

Equivalent Circuit

Rated Value (\Box : packaging code)

Part		Number	Varistor	Capacitance	Temperature	Rated	Insulation
For Infot	ainment	For Powertrain/Safety	Voltage	Capacitance	Characteistics	Voltage	Resistance (min.)
_	-	VFC2HR71D105K2M1	27Vdc +5/-3V	1.0µF ±10%	R7 (±15%)	22Vdc	1ΜΩ

Operating Temperature Range: -55°C to +125°C

muRata

Chip EMIFIL[®] SMD Type

190

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

Block Type EMIFIL® Lead Type BNX012 Series

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
-	Box	150

Equivalent Circuit

Rated Value (: packaging code)

Part Number		Rated	Withstand	Rated	Insulation	Insertion Loss
For Infotainment	For Powertrain/Safety	Voltage	Voltage	Current	Resistance (min.)	
—	BNX012H01	50Vdc	125Vdc	15A	500ΜΩ	1MHz to 1GHz:40dB min. (Line impedance=50Ω)

Operating Temperature Range: -55°C to +125°C

In operating temperatures exceeding +85°C, derating of current is necessary.

Insertion Loss Characteristics (Main Items)

Continued on the following page. earrow

A Note • Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. \searrow

Derating of Rated current

Rating

In operating temperatures exceeding +85°C, derating of current is necessary for BNX012H series. Please apply the derating curve shown in chart according to the operating temperature.

Connecting ± Power Line

In case of using ± power line, please connect to each terminal as shown.

Power Supply (BNX Input)	BNX	Circuit (BNX Output)
Power Supply + Bias	B	CB — Load Circuit + Bias
Power Supply Ground	PSG	CG — Load Circuit Ground
Power Supply — Bias ——	B	CB — Load Circuit — Bias
Power Supply Ground ——	PSG	CG — Load Circuit Ground

muRata

Microchip Transformer (Balun)

SMD Type

Chip EMIFIL[®] SMD Type

Leaded Multilayer Ferrite Beads (BLL Series) ①Caution/Notice

Caution

Rating

Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

Soldering and Mounting

1. Bonding, resin molding and coating

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment. In case the amount of application, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor may be damaged by the organic solvents and may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin or coating may cause an outer coating resins cracking and / or ceramic element cracking of this product in a temperature cycling.

- Treatment after bonding, resin molding and coating When the outer coating is hot (over 100 degrees centigrade) after soldering, it becomes soft san fragile, so please be careful not to give it mechanical stress.
- Mounting holes Mounting holes should be designed as specified in this specifications.

Or different design from this specifications may cause cracks in ceramics which may lead to smoking / firing.

4. Caution for the product angle adjust work Take care not to apply any mechanical stress to product body at the lead terminal bending process for product angle adjustment after insertion.

Notice

Storage and Operating Condition

- 1. Operating Environment
 - (1) Do not use products in corrosive gases such as chlorine gas, acid or sulfide gas.
 - (2) Do not use products in the environment where water, oil or organic solvents may adhere to products.
 - (3) Do not adhere any resin to products, coat nor mold products with any resin (including adhesive) to prevent mechanical and chemical stress on products.

Soldering and Mounting

1. Washing

Failure and degradation of a product are causedby the washing method. When you wash in conditions that are not in the mounting information, please contact Murata engineering. Storage period
 Use the products within 12 months after delivered.
 Solderability should be checked if this period is exceeded.

.....

- 3. Storage Conditions
 - (1) Storage temperature: -10 to +40 degree C
 Relative humidity: 15 to 85%
 Avoid sudden changes in temperature and humidity.
 - (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in the mounting information. SMD Type Chip Ferrite Bead

muRata

EMIFIL[®] Lead Type (DS \Box /VF \Box Series) \triangle Caution/Notice

Rating

Chip Ferrite Bead SMD Type

- 1. Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.
- 2. Products should not be applied for the absorption of surge which have large energy (ex. Included lighting surge, switching surges) because it is designed for the absorption of electrostatic surges, or it results cracks in ceramics which may lead to smoking / firing.

Soldering and Mounting

- 1. Mounting holes should be designed as specified in these specifications. Other designs than those shown in these specifications may cause cracks in ceramics that may lead to smoking or firing.
- 2. Take care not to apply any mechanical stress to product body at the lead terminal bending process for product angle adjustment after insertion.

Notice

Storage and Operating Conditions

- <Operating Environment>
- 1. Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- 2. Do not use products near water, oil or organic solvents. Avoid environments where dust or dirt may adhere to the product.
- 3. Do not adhere any resin to products, coat nor mold products with any resin (including adhesive) to prevent mechanical and chemical stress on products.
- <Storage and Handling Requirements>
- 1. Storage Period
 - Use the products within 12 months after delivery. Solderability should be checked if this period is exceeded.

2. Storage Conditions

- (1) Storage temperature: -10 to 40 degrees C Relative humidity: 15 to 85% Avoid sudden changes in temperature and humidity.
- (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- <Using EMIGUARD® effectively>
- 1. Products should be used at rated voltage or less and rated current or less.

Soldering and Mounting

1. Washing

Failure and degradation of a product are causedby the washing method. When you wash in conditions that are not in the mounting information, please contact Murata engineering.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in the mounting information.

3. Other

Noise suppression levels resulting from Murata's EMI suppression filters EMIFIL[®] may vary, depending on the circuits and ICs used, type of noise, mounting pattern, lead wire length, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

Chip Common Mode Choke Coil

SMD Type

Block Type EMIFIL[®] Lead Type (BNX Series) ①Caution/Notice

Caution

Rating

Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.

Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Notice

Storage and Operating Conditions

<Operating Environment>

- 1. Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- 2. Do not use products near water, oil or organic solvents.
- <Storage and Handling Requirements>
- Storage Period BNX Series should be used within 12 months.
 Solderability should be checked if this period is exceeded.

Notice (Soldering and Mounting)

1. Cleaning

Failure and degradation of a product are caused by the cleaning method. When you clean in conditions that are not in mounting information, please contact Murata engineering.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.

Notice (Appearance)

Although some part of the product surface seems to be white in some cases, do not care because it is the result of waxing process for humidity resistance improvement. This wax does not make bad affection to mechanical or electrical performance, reliability of the product.

- 2. Storage Conditions
 - (1) Storage temperature: -10 to +40°C Relative humidity: 15 to 85%
 - Avoid sudden changes in temperature and humidity.(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- 3. Other

Noise suppression levels resulting from Murata's EMI suppression filters "EMIFIL" may vary, depending on the circuits and ICs used, type of noise, mounting pattern, lead wire length, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design. SMD Type Chip EMIFIL®

Leaded Multilayer Ferrite Beads (BLL Series) Soldering and Mounting

Bedded Fracting yer Ferrice Deads (DEL

Chip EMIFIL® SMD Type

2. Soldering

- (1) Use Sn-3.0Ag-0.5Cu solder.
- (2) Use Rosin-based flux. Do not use strong acidic flux with halide content exceeding 0.2wt% (chlorine conversion value).
- (3) Products and the leads should not be subjected to any mechanical stress during the soldering process, or while subjected to the equivalent high temperatures.
- (4) Standard flow soldering profile.

3. Cleaning Conditions

(1) Do not clean after soldering. If cleaning, please contact us.

Chip Common Mode Choke Coil

SMD Type

EMIFIL[®] Lead Type (DS \Box /VF \Box Series) Soldering and Mounting

1. Mounting Hole

Mounting holes should be designed as specified below.

Part Number	Bulk Type (in mm)	Taping Type (in mm)
DSS1	2.5±0.2 2.5±0.2	<u>3-ø1.0</u> 2.5±0.2
VFC2H	<u>2-ø0.8</u> 5.2±0.4	2-ø1.0 5.2±0.4

2. Soldering

- (1) Use Sn-3.0Ag-0.5Cu solder.
- (2) Use Rosin-based flux. Do not use strong acidic flux with halide content exceeding 0.2wt% (chlorine conversion value).
- (3) Products and the leads should not be subjected to any mechanical stress during the soldering process, or while subjected to the equivalent high temperatures.
- (4) Standard flow soldering profile.

3. Cleaning Conditions

Clean other parts in the following conditions.

- Cleaning temperature should be limited to 60°C max.
 (40°C max for alcohol type cleaner).
- (2) Ultrasonic cleaning should comply with the following conditions, avoiding the resonance phenomenon at the mounted products and PCB.

Power: 20 W / I max. Frequency: 28 to 40kHz Time: 5 min. max.

- (3) Cleaner
 - (a) Alcohol type cleaner Isopropyl alcohol (IPA)
 - (b) Aqueous agent (VFC2 series cannot be cleaned) PINE ALPHA ST-100S

(4) There should be no residual flux or residual cleaner left after cleaning.

In the case of using aqueous agent, products should be dried completely after rinsing with de-ionized water in order to remove the cleaner.

- (5) The surface of products may become dirty after cleaning, but there is no deterioration on mechanical, electrical characteristics and reliability.
- (6) Other cleaning: Please contact us.

muRata

Block Type EMIFIL[®] Lead Type (BNX Series) Soldering and Mounting

1. Mounting Hole

Mounting holes should be designed as specified below.

muRata

2. Using the Block Type $\mathsf{EMIFIL}^{\textcircled{B}}$ (Lead Type) Effectively

(1) How to use effectively

- This product effectively prevents undesired radiation and external noise from going out / entering the circuit by grounding the high frequency components which cause noise problems. Therefore, grounding conditions may affect the performance of the filter and attention should be paid to the following for effective use.
- (a) Design maximized grounding area in the P.C. board, and grounding pattern for all the grounding terminals of the product to be connected. (Please follow the specified recommendations.)
- (b) Minimize the distance between ground of the P.C. board and the ground plate of the product.
 (Recommend using the through hole connection between grounding area both of component side and bottom side.)
- (c) Insert the terminals into the holes on P.C. board completely.
- (d) Don't connect PSG terminal with CG terminal directly. (See the item 1. Terminal Layout)

(2) Self-heating

- Though this product has a large rated current, localized selfheating may be caused depending on soldering conditions. To avoid this, attention should be paid to the following:
- (a) Use P.C. board with our recommendation on hole diameter / land pattern dimensions, mentioned in the right hand drawing, especially for 4 terminals which pass current.
- (b) Solder the terminals to the P.C. board with soldercover area at least 90%. Otherwise, excess self-heating at connection between terminals and P.C. board may lead to smoke and / or fire of the product even when operating at rated current.
- (c) After installing this product in your product, please make sure the self-heating is within the rated current recommended.

P. C. Board Patterns

Use a bilateral P.C. board. Insert the BNX into the P.C.board until the root of the terminal is secured, then solder.

Continued on the following page. 🖊

SMD Type

SMD Type

SMD Type

Chip Ferrite Bead SMD Type

SMD Type

Block Type EMIFIL[®] Lead Type (BNX Series) Soldering and Mounting

Continued from the preceding page. \searrow

3. Soldering

- (1) Use Sn-3.0Ag-0.5Cu solder.
- (2) Use Rosin-based flux. Do not use strong acidic flux with halide content exceeding 0.2wt% (chlorine conversion value).
- (3) Products and the leads should not be subjected to any mechanical stress during the soldering process, or while subjected to the equivalent high temperatures.
- (4) Standard flow soldering profile

4. Cleaning

Clean the block Type $\mathsf{EMIFIL}^{\textcircled{B}}(\mathsf{Lead}\ \mathsf{Type})$ in the following conditions.

- Cleaning temperature should be limited to 60°C max.
 (40°C max for alcohol type cleaner).
- (2) Ultrasonic cleaning should comply with the following conditions, avoiding the resonance phenomenon at the mounted products and P.C.B.

Power: 20W/liter max.

Frequency: 28 to 40kHz

- Time: 5 min. max.
- (3) Cleaner
 - (a) Alcohol type cleaner Isopropyl alcohol (IPA)
 - (b) Aqueous agent Pine Alpha ST-100S

(4) There should be no residual flux or residual cleaner left after cleaning.

In the case of using aqueous agent, products should be dried completely after rinsing with de-ionized water in order to remove the cleaner.

- (5) The surface of products may become dirty after cleaning, but there is no deterioration on mechanical, electrical characteristics and reliability.
- (6) Other cleaning: Please contact us.

muRata

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Leaded Multilayer Ferrite Beads (BLL Series) Packaging

Minimum Quantity

Part Number	Minimum Order Quantity (order in sets only) (pcs.)			
	Ammo Pack	Bulk (Bag)		
BLL Series	2000	500		
		(in I	mm)	

Lead Type Code

Lead Type Code Straight Type / Packaging	Lead Length * (mm)	Packaging
A2 / B	28.0±1.0	Bulk
DB / A	20.0±1.0	Ammo Pack

*Lead distance between reference and bottom planes except for Bulk.

Taping Dimensions

Microchip Transformer (Balun)

SMD Type

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C51E.pdf Apr. 27,2018

> SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

SMD Type Chip Common Mode Choke Coil

SMD Type Block Type EMIFIL®

Lead Type EMI Suppression Filters

Disc Type EMIFIL[®]/EMIGUARD[®] Lead Type (DS \Box /VF \Box Series) Packaging

Minimum Quantity

Part Number	Minimum Order Quantity (order in sets only) (pcs.)		
Part Number	Ammo Pack	Bulk (Bag)	
VFC2H Series	2000	500	
DSS1 Series	1500	250	

Lead Type Code	
Lead Type Code	
Straight Type	Lead Length (H)
Q55B	25.0mm min.
Q91A	20.0±1.0mm
Q92A	16.5±1.0mm
Q93A	18.5±1.0mm
Lead Type Code	Lead Length
Inside Crimp	(from bottom of the crimp)

26.0±1.0mm

18.0±1.0mm

K1B

M1A

_	-		

muRata

SMD Type Microchip Transformer (Balun)

Part Numbering

Micro Chip Transformer for Automotive

Product ID

Product ID	
DX	Micro Chip Transformer

2 Structure

Code	Structure
W	Winding Type

ODimensions (LxW)

	·	
Code	Dimensions (LxW)	Size Code (inch)
21	2.0x1.2mm	0805

4Type of Transformer

Code	Type of Transformer
В	Balun

GCategory

Code	Category	
Z	For Automotive	Infotainment

6 Port Impedance

Code	Port Impedance
75	75Ω

Characteristics

Code	Impedance Ratio
11	one to one

8 Rough Frequency Range

Code	Rough Frequency Range
т	50MHz to 870MHz
s	950MHz to 2150MHz

Packaging

• · · · · · · · · · · · · · · · · · · ·						
Code Packaging						
к	Embossed Taping (ø330mm Reel)					
L	Embossed Taping (ø180mm Reel)					
В	Bulk					

Chip EMIFIL[®] SMD Type

SMD Type

202

SMD Type Chip EMIFIL®

e Coil

Microchip Transformer (Balun) DXW21B Series 0805/2012 (inch/mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	2000
к	ø330mm Embossed Taping	10000
в	Packing in Bulk	500

Equivalent Circuit

Rated Value (\Box : packaging code)

Part N	Part Number				Port Impedance	Insertion Loss	CMRR	Rated Power	
For Infotainment	For Powertrain/Safety	Frequency Range	Port impedance	at Freq. Range (max.)	at Freq. Range (min.)				
DXW21BZ7511S	—	1 to 1.5GHz	75Ω - 75Ω	1.4dB	20dB	27dBm			
DXW21BZ7511T	1BZ7511T —		75Ω - 75Ω	1.0dB	20dB	27dBm			

Operating Temperature Range: -40°C to +105°C Only for reflow soldering.

Insertion Loss Characteristics

Insertion Loss Characteristics

CMRR Characteristics

CMRR Characteristics

.....

Microchip Transformer (Balun) (DX Series) ACaution/Notice

▲ ①Caution

Rating

Chip Ferrite Bead SMD Type

Chip EMIFIL® SMD Type Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.

Soldering and Mounting

1. Self-heating

Please provide special attention when mounting chip Micro Chip Transformer (DXW) series in close proximity to other products that radiate heat.

The heat generated by other products may deteriorate the insulation resistance and cause excessive heat in this component.

2. Mounting Direction

Mount Micro Chip Transformer in right direction. Wrong direction, which is 90 degree rotated from right direction,

Notice

Storage and Operating Conditions

<Operating Environment>

Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

<Storage and Handling Requirements>

1. Storage Period

DXW series should be used within 12 months. Solderability should be checked if this period is exceeded.

Handling

1. Resin Coating

The impedance value may change due to high curestress of resin to be used for coating/molding products. An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire of coil, leading to open circuit. So, please pay your careful attention in selecting resin in case of coating/molding the products with the resin. Prior to use the coating resin, please make sure no reliability issue is observed by evaluating products mounted on your board.

the characteristics does not come out as Micro Chip Transformer or causes not only open or short circuit but also flames or other serious trouble.

.....

2. Storage Conditions

(1) Storage temperature: -10 to +40 degree C Relative humidity: 15 to 85%

.....

Avoid sudden changes in temperature and humidity.

(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

2. Handling of a Substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Bending 4

Twisting 4 -11

EMI Suppression Filters Lead Type

SMD Type

C51E.pdf (1)Note • Please read rating and (2)CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering Apr. 27,2018 Microchip Transformer (Balun) (DX Series) Soldering and Mounting Chip Ferrite Bead SMD Type 1. Standard Land Pattern Dimensions Land Pattern + Solder Resist Land Pattern (in mm) Solder Resist Standard Land Pattern Dimensions Series DXW21 Reflow Soldering Chip EMIFIL® DXW21 SMD Type * 1 : If the pattern is made with wider than 1.2mm (DXW21) it may result in components turning around, because melting speed is different. In the worst ŗ case, short circuit between lines may occur. 4.0 1.2 * 2 : If the pattern is made with less than 0.4mm, in the worst case, short circuit between lines may occur due to spread of soldering paste or mount placing accuracy. * 3 : If the pattern is made with wider than 0.8mm (DXW21), the bending strength will be reduced. 0.8 Do not use gild pattern; excess soldering heat may dissolve metal of a copper wire. 2.6 Chip Common Mode Choke Coil SMD Type 2. Solder Paste Printing and Adhesive Application and may crack. In contrast, if too little solder is applied, When reflow soldering the Micro Chip Transformer, the there is the potential that the termination strength will be printing must be conducted in accordance with the following cream solder printing conditions. insufficient, creating the potential for detachment. If too much solder is applied, the chip will be prone to Standard land dimensions should be used for resist and copper foil patterns. damage by mechanical and thermal stress from the PCB (in mm) Block Type EMIFIL® Series Solder Paste Printing SMD Type **DXW21** ●Coat the solder paste a thickness: 100-150µm 0.5 1.2 0.8 2.6 **EMI Suppression Filters** Lead Type 3. Standard Soldering Conditions (1) Soldering Methods Solder: Use Sn-3.0Ag-0.5Cu solder. Use reflow soldering methods only. Flux: Use standard soldering conditions when soldering Micro Use Rosin-based flux, (with converting chlorine content) 0.06 to 0.1(wt)%.), but not highly acidic flux (with Chip Transformer. In cases where several different parts are soldered, each Halogen content exceeding 0.2(wt)% conversion to

Do not use water-soluble flux.

chlorine).

Continued on the following page. earrow

muRata

having different soldering conditions, use those

conditions requiring the least heat and minimum time.

Microchip Transformer (Balun) (DX \Box Series) Soldering and Mounting

Continued from the preceding page. \searrow

(2) Soldering profile

(3) Reworking with Solder Iron

using a soldering iron.

Soldering iron power output

please contact Murata engineering.

Pre-heating

4. Cleaning Do not clean.

The following conditions must be strictly followed when

For additional methods of reworking with a soldering iron,

Temperature of soldering iron tip / Soldering time : 350°C max./3s max.

: 150°C 60s min.

: 30W max.

Series		Stand	lard Profile		Limit Profile				
	Heating		Peak temperature	0	Heating		Peak temperature		
	Temp. (T1)	Time. (t1)	(T2)	Cycle of reflow	Temp. (T3)	Time. (t2)	(T4)	Cycle of reflow	
DXW	220°C min.	30 to 60s	245±3°C	2 times max.	230°C min.	60s max.	260°C/10s	2 times max.	

Chip Ferrite Bead SMD Type

Chip EMIFIL® SMD Type

muRata

SMD Type Chip Ferrite Bead

SMD Type Chip EMIFIL®

Microchip Transformer (Balun) (DX Series) Packaging

Minimum Quantity and Dimensions of 8mm Width Embossed Tape

Dimension of the cavity is measured at the bottom side.

		D:				Minimum Qty. (pcs.)	
Part Number	Dimensions				ø180mm reel	ø330mm reel	
	a	b	c d		Embossed Tape	Embossed Tape	Bulk
DXW21B	2.25	1.45	1.40	0.30	2000	10000	500

(in mm)

muRata

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

SMU IYPe	MEMO
2	
ымы туре	
siviu iype	
Λ	
siviu iype	
a	
Lead Type	
e	

Chip Ferrite Bead

Chip EMIFIL®

Chip Common Mode Choke Coil

Block Type EMIFIL®

EMI Suppression Filters

muRata

 Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C51E.pdf Apr. 27,2018

Product Guide ······p210

Inductors for Power Lines

Part Numbering p212
Product Detail p214
Soldering and Mounting
Packaging ····· p314

Inductors for General Circuits

Part Numbering ······ p317
Product Detail ······ p318
Caution/Notice ······ p327
Soldering and Mounting p329
Packaging ······ p334

RF Inductors

Part Numbering
Product Detail ······ p338
Soldering and Mounting p388
Packaging p391

muRata

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Product Guide

	Ctructure	Series		Applications	Size Code	Inductan	ice Range	Rated Cur	rent Range
	Structure	Series		Applications	in inch (in mm)	Min.	Max.	Min.	Max.
		DFE201612P_D	p214	Info- tainment	0806 (2016)	150nH	2.2µH	1.7A	6.2A
		DFE252012P_D	p216	Info- tainment	1008 (2520)	330nH	4.7µH	1.9A	6A
	Wire Wound Metal Alloy Core	DFEG7030D	p218	Power- train	2726 (7066)	1µH	22µH	2A	9.1A
		DFEH7030D	p220	Power- train	2726 (7066)	1µH	22µH	2A	9.1A
	Туре	DFEG10040D	p222	Power- train	4339 (109100)	1µH	47µH	2.9A	18A
		DFEH10040D	p224	Power- train	4339 (109100)	1µH	47µH	2.9A	18A
		DFEG12060D	p226	Power- train	5150 (130126)	1µH	47µH	3.6A	20A
		DFEH12060D	p228	Power- train	5150 (130126)	1µH	47µH	3.6A	20A
		LQH2MPZ_GR	p230	Info- tainment	0806 (2016)	330nH	82µH	210mA	2.2A
		LQH2HPZ_DR	p232	Info- tainment	1008 (2520)	470nH	22µH	270mA	1.67A
		LQH2HPZ_GR	p234	Info- tainment	1008 (2520)	470nH	22µH	460mA	2.9A
		LQH2HPZ_JR	p236	Info- tainment	1008 (2520)	470nH	22µH	540mA	3.5A
		LQH32CH_23	p238	Power- train	1210 (3225)	1µH	22µH	250mA	800mA
		LQH32CH_33	p239	Power- train	1210 (3225)	150nH	10µH	450mA	1.45A
		LQH32CH_53	p240	Power- train	1210 (3225)	1µH	22µH	250mA	1A
		LQH32DZ_23	p241	Info- tainment	1210 (3225)	1µH	470µH	60mA	800mA
		LQH32DZ_53	p242	Info- tainment	1210 (3225)	1µH	100µH	100mA	1A
		LQH32PZ_N0	p243	Info- tainment	1210 (3225)	470nH	120µH	200mA	3.4A
		LQH32PH_N0	p243	Power- train	1210 (3225)	470nH	10µH	750mA	3.4A
		LQH32PZ_NC	p245	Info- tainment	1210 (3225)	470nH	22µH	650mA	4.4A
		LQH32PH_NC	p245	Power- train	1210 (3225)	470nH	22µH	650mA	4.4A
		LQH3NPZ_GR	p247	Info- tainment	1212 (3030)	470nH	47µH	460mA	2.82A
	Wire Wound Ferrite Core Type	LQH3NPZ_JR	p249	Info- tainment	1212 (3030)	680nH	47µH	570mA	2.86A
		LQH3NPZ_ME	p251	Info- tainment	1212 (3030)	1µH	100µH	430mA	ЗA
es		LQH44PZ_GR	p253	Info- tainment	1515 (4040)	680nH	47µH	410mA	2.5A
r Lin		LQH43PZ_26	p255	Info- tainment	1812 (4532)	1µH	220µH	240mA	3.4A
owe		LQH43PH_26	p255	Power- train	1812 (4532)	1µH	220µH	240mA	3.4A
Inductors for Power Lines		LQH5BPZ_T0	p257	Info- tainment	2020 (5050)	470nH	22µH	1.4A	7.7A
ors f		MBH6045C High Current	p259	Power- train	2424 (6262)	1.5µH	220µH	480mA	6.3A
luct		MBH6045C Low Rdc	p261	Power- train	2424 (6262)	1µH	470µH	410mA	4.4A
lnc		MDH6045C High Current	p263	Power- train	2524 (6360)	1µH	220µH	440mA	5.8A
		MDH6045C Low Rdc	p265	Power- train	2524 (6360)	1.2µH	470µH	340mA	5.5A
		MBH7045C High Current	p267	Power- train	2828 (7272)	3.3µH	220µH	550mA	3.4A
		MBH7045C Low Rdc	p269	Power- train	2828 (7272)	3.3µH	1mH	310mA	3.5A
		MDH7045C	p271	Power- train	2928 (7470)	1µH	470µH	360mA	8.8A
		MDH10060C	p273	Power- train	4039 (101100)	4.7µH	470µH	560mA	5.9A
		MBH10145C	p275	Power- train	4141 (104104)	3.3µH	1.5mH	330mA	4.9A
		MBH12282C	p277	Power- train	4949 (125125)	2µH	1mH	590mA	13A
		MDH12577C	p279	Power- train	5049 (128125)	4.7µH	470µH	1A	11A
		MBH12575C	p281	Power- train	5050 (128128)	2.7µH	220µH	1.2A	10A
		LQM18PZ_CH	p283	Info- tainment	0603 (1608)	1µH	2.5µH	750mA	950mA
		LQM18PZ_DH	p285	Info- tainment	0603 (1608)	2.2µH	2.2µH	650mA	650mA
		LQM18PZ_FH	p286	Info- tainment	0603 (1608)	2.2µH	2.2µH	700mA	700mA
		LQM21PZ_C0	p287	Info- tainment	0805 (2012)	470nH	2.2µH	600mA	1.1A
		LQM21PZ_G0	p289	Info- tainment	0805 (2012)	470nH	3.3µH	800mA	1.3A
		LQM21PZ_GC	p291	Info- tainment	0805 (2012)	1µH	2.2µH	800mA	900mA
		LQM21PH_GC	p291	Power- train	0805 (2012)	2.2µH	2.2µH	800mA	800mA
	Multilayer Type	LQM21PZ_GR	p293	Info- tainment	0805 (2012)	1µH	4.7µH	800mA	1.3A
		LQM2MPZ_G0	p295	Info- tainment	0806 (2016)	470nH	4.7µH	1.1A	1.6A
		LQM2MPZ_JH	p297	Info- tainment	0806 (2016)	100nH	100nH	4A	4A
		LQM2HPZ_E0	p298	Info- tainment	1008 (2520)	560nH	560nH	1.5A	1.5A
		LQM2HPZ_G0	p299	Info- tainment	1008 (2520)	470nH	4.7µH	1.1A	1.8A
		LQM2HPZ_GC	p301	Info- tainment	1008 (2520)	1µH	4.7µH	800mA	1.5A
		LQM2HPZ_GS	p302	Info- tainment	1008 (2520)	2.2µH	4.7µH	1A	1.1A
		LQM2HPZ_J0	p303	Info- tainment	1008 (2520)	1µH	3.3µН	1A	1.5A
		_					Continuo		

Continued on the following page. 🖊

				Size Code	Inductan	ce Range	Rated Cur	rent Range
	Structure	Series	Applications	in inch (in mm)	Min.	Max.	Min.	Max.
		LQG15HZ_02 P338	Info- tainment	0402 (1005)	1nH	270nH	110mA	1A
		LQG15HH_02 P338	Power- train	0402 (1005)	1nH	270nH	110mA	1A
	Multilayer Type	LQG15WZ_02 p341	Info- tainment	0402 (1005)	0.7nH	150nH	110mA	1.2A
		LQG15WH_02 p341	Power- train	0402 (1005)	0.7nH	150nH	110mA	1.2A
		LQG18HH_00 p347	Power- train	0603 (1608)	1.2nH	270nH	200mA	1.1A
	Film Type	LQP03TN_Z2 p349	Info- tainment	0201 (0603)	0.6nH	120nH	80mA	850mA
		LQW15AN_0Z p353	Info- tainment	0402 (1005)	1.5nH	120nH	110mA	1A
RF Inductors		LQW15AN_1Z p359	Info- tainment	0402 (1005)	1.3nH	8.4nH	640mA	1.2A
onpu	Wire Wound Non-Magnetic Core Type	LQW15AN_8Z p361	Info- tainment	0402 (1005)	1.3nH	75nH	320mA	3.15A
RF Ir		LQW18AN_0Z p368	Info- tainment	0603 (1608)	2.2nH	470nH	75mA	850mA
		LQW18AN_1Z p371	Info- tainment	0603 (1608)	2.2nH	33nH	550mA	1.4A
		LQW18AN_8Z p372	Info- tainment	0603 (1608)	2.2nH	390nH	190mA	3.2A
		LQW18AS_0Z p376	Info- tainment	0603 (1608)	1.6nH	390nH	100mA	700mA
	Wire Wound Ferrite Core Type	LQW15CN_0Z p379	Info- tainment	0402 (1005)	18nH	200nH	390mA	1.4A
		LQW15CN_1Z p381	Info- tainment	0402 (1005)	20nH	560nH	300mA	2.2A
		LQW18CN_0Z p383	Info- tainment	0603 (1608)	4.9nH	650nH	430mA	2.6A
		LQH31HZ_03 p385	Info- tainment	1206 (3216)	54nH	880nH	180mA	920mA
		LQH32NZ_23 p318	Info- tainment	1210 (3225)	1µH	470µH	45mA	445mA
ts ,		LQH32NH_23 p318	Power- train	1210 (3225)	1µH	560µH	40mA	780mA
s for ircui	Wire Wound	LQH43NZ_03 p320	Info- tainment	1812 (4532)	1µH	2.4mH	25mA	500mA
ctor al Ci	Ferrite Core	HEAWS p323	Info- tainment	4241 (107104)	10µH	10µH	5A	5A
Inductors for General Circuits	Туре	HEAW p324	Info- tainment	5551 (140130)	10µH	10µH	7.2A	7.2A
G		5CCEG p325	Info- tainment	2222 (5656)	Diasso	rofor to the	product detai	10000
		FSDVA p326	Info- tainment	2323 (5858)	Please		product detai	i page.

muRata

Part Numbering

Inductors for Power Lines for Automotive

1Product ID

Product ID	
LQ	Chip Inductors (Chip Coils)

2 Structure

Code	Structure
н	Wire Wound Type (Ferrite Core)
М	Multilayer Type (Ferrite Core)
W	Wire Wound Type (Ferrite Core)

Oimensions (LxW)

Code	Nominal Dimensions (LxW)	Size Code (in inch)
18	1.6x0.8mm	0603
21	2.0x1.25mm	0805
2M	2.0x1.6mm	0806
2H	2.5x2.0mm	1008
ЗN	3.0x3.0mm	1212
32	3.2x2.5mm	1210
43	4.5x3.2mm	1812
44	4.0x4.0mm	1515
5B	5.0x5.0mm	2020

Applications and Characteristics

Code	Series	Applications and Characteristics
D	LQH	for Choke
с		for Choke (Coating Type)
Р	LQM/LQH	for Power Line
F	LQW	for Choke

GCategory

Code	Series	Category	
Z	LQH/LQM	A t t	Infotainment
н		Automotive	Powertrain/Safety
т	LQW	Standard Type	

6 Inductance

Expressed by three-digit alphanumerics. The unit is micro-henry (µH). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If there is a decimal point, it is expressed by the capital letter "**R**." In this case, all figures are significant digits. If inductance is less than 0.1µH, the inductance code is expressed by a combination of two figures and the capital letter "**N**," and the unit of inductance is nano-henry (nH). The capital letter "**N**" indicates the unit of "nH," and also expresses a decimal point. In this case, all figures are significant digits. For those products whose inductance values are specified using three designated digits, these values may be indicated using the closest two digits instead.

Inductance Tolerance

Code	Inductance Tolerance	
к	±10%	
М	±20%	
N	±30%	

③Features (Except for LQH□□P/LQM□□P)

Code	Features	Series
0	Standard Type	LQW
2	Standard Type	
3	Low DC Resistance	LQH32C/32D
5	Low Profile Type	

8Thickness

(LQH P/LQM P Only • Except for LQH43P)

Code	Nominal Dimensions (T)
с	0.5mm
D	0.6mm
E	0.7mm
F	0.8mm
G	0.9mm
J	1.1mm
М	1.4mm
N	1.55mm
т	2.0mm

Selectrode (Except for LQH P/LQM P)

Lead (Pb) Free

Code	Electrode	Series
0	Sn	LQM
3	LF Solder	LQH
н	Automotive Powertrain/Safety	LQW

Specification

(LQH P/LQM P Only • Except for LQH43P)

Code	Specification	
0/5	Standard Type	
С	Good Bias Current Characteristics Type	
H/E	High Spec Type (Low DC Resistance; Good Bias Current Characteristics Type)	
R	Low DC Resistance Type	

Continued on the following page. \checkmark

Continued from the preceding page. \searrow

89Thickness (LQH43P Only)

Code	Dimensions (T)
26	2.6mm

Packaging

Code	Packaging
к	Embossed Taping (ø330mm Reel)
L	Embossed Taping (ø180mm Reel)
В	Bulk
D	Paper Taping (ø180mm Reel)

RF Inductors

Inductors for Power Lines DFE201612P_D Series 0806 (2016) inch (mm)

1.2 max.

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P2	ø180mm Embossed Taping	3000	

Rated Value (\Box : packaging code)

Part Number		Inductance	Inductance		Dated Current (Itema)*	Max. of DC Resistance
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance
DFE201612PD-R15M	-	0.15µH ±20%	1MHz	6200mA	5200mA	0.018Ω
DFE201612PD-R24M	-	0.24µH ±20%	1MHz	5000mA	4000mA	0.022Ω
DFE201612PD-R33M	-	0.33µH ±20%	1MHz	4500mA	3800mA	0.026Ω
DFE201612PD-R47M	-	0.47µH ±20%	1MHz	3800mA	3200mA	0.032Ω
DFE201612PD-R68M	-	0.68µH ±20%	1MHz	3100mA	2500mA	0.046Ω
DFE201612PD-1R0M	-	1.0µH ±20%	1MHz	2700mA	2200mA	0.060Ω
DFE201612PD-1R5M	-	1.5µH ±20%	1MHz	2000mA	1700mA	0.098Ω
DFE201612PD-2R2M	—	2.2µH ±20%	1MHz	1700mA	1200mA	0.172Ω

Operating temp.range (Self-temp.rise included): -40 to 125°C

Absolute maximum voltage: 10V DC

Inductance:

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 30%. (The ambient reference temperature is 20°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 20°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. \checkmark
Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

RF Inductors

Inductors for Power Lines DFE252012P_D Series 1008 (2520) inch (mm)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P2	ø180mm Embossed Taping	3000

Rated Value (\Box : packaging code)

Part Number		Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current (Isat)"	Rated Current (itemp)"	Max. of DC Resistance
DFE252012PD-R33M	—	0.33µH ±20%	1MHz	6000mA	4600mA	0.023Ω
DFE252012PD-R47M	—	0.47µH ±20%	1MHz	5200mA	4000mA	0.027Ω
DFE252012PD-R68M	—	0.68µH ±20%	1MHz	4300mA	3500mA	0.037Ω
DFE252012PD-1R0M	—	1.0µH ±20%	1MHz	3800mA	3200mA	0.042Ω
DFE252012PD-1R5M	-	1.5µH ±20%	1MHz	3300mA	2600mA	0.060Ω
DFE252012PD-2R2M	-	2.2µH ±20%	1MHz	2800mA	2200mA	0.084Ω
DFE252012PD-3R3M	-	3.3µH ±20%	1MHz	2100mA	1700mA	0.140Ω
DFE252012PD-4R7M	—	4.7µH ±20%	1MHz	1900mA	1400mA	0.200Ω

Operating temp.range (Self-temp.rise included): -40 to 125°C

Absolute maximum voltage: 20V DC

Inductance:

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 30%. (The ambient reference temperature is 20°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 20°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Continued on the following page. \checkmark

Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

Inductors for Power Lines DFEG7030D Series 2726 (7066) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	1000

Rated Value (\Box : packaging code)

Part N	lumber	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)	Rated Current (itemp)*	Max. of DC Resistance
—	DFEG7030D-1R0M	1.0µH ±20%	0.1MHz	9000mA	9100mA	0.0099Ω
—	DFEG7030D-1R5M	1.5µH ±20%	0.1MHz	7300mA	7600mA	0.0150Ω
—	DFEG7030D-2R2M	2.2µH ±20%	0.1MHz	6900mA	7100mA	0.0180Ω
—	DFEG7030D-3R3M	3.3µH ±20%	0.1MHz	5300mA	5400mA	0.0290Ω
—	DFEG7030D-4R7M	4.7µH ±20%	0.1MHz	4200mA	4200mA	0.0410Ω
—	DFEG7030D-5R6M	5.6µH ±20%	0.1MHz	4100mA	3800mA	0.0540Ω
—	DFEG7030D-6R8M	6.8µH ±20%	0.1MHz	3900mA	3500mA	0.0590Ω
—	DFEG7030D-8R2M	8.2µH ±20%	0.1MHz	3200mA	3100mA	0.0780Ω
_	DFEG7030D-100M	10µH ±20%	0.1MHz	3200mA	3000mA	0.0820Ω
—	DFEG7030D-150M	15µH ±20%	0.1MHz	2400mA	2200mA	0.1470Ω
_	DFEG7030D-220M	22µH ±20%	0.1MHz	2000mA	1900mA	0.1980Ω

Operating temp.range (Self-temp.rise included): -40 to 125°C

Absolute maximum voltage: 50V DC

Inductance:

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 20%. (The ambient reference temperature is 25°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

muRata

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. $earrow \earrow \ea$

Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

RF Inductors

Inductors for Power Lines DFEH7030D Series 2726 (7066) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	1000

Rated Value (\Box : packaging code)

Part N	lumber	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current (Isat)	Rated Current (itemp)	
_	DFEH7030D-1R0M	1.0µH ±20%	0.1MHz	9000mA	9100mA	0.0099Ω
_	DFEH7030D-1R5M	1.5µH ±20%	0.1MHz	7300mA	7600mA	0.0150Ω
_	DFEH7030D-2R2M	2.2µH ±20%	0.1MHz	6900mA	7100mA	0.0180Ω
—	DFEH7030D-3R3M	3.3µH ±20%	0.1MHz	5300mA	5400mA	0.0290Ω
—	DFEH7030D-4R7M	4.7µH ±20%	0.1MHz	4200mA	4200mA	0.0410Ω
—	DFEH7030D-5R6M	5.6µH ±20%	0.1MHz	4100mA	3800mA	0.0540Ω
—	DFEH7030D-6R8M	6.8µH ±20%	0.1MHz	3900mA	3500mA	0.0590Ω
—	DFEH7030D-8R2M	8.2µH ±20%	0.1MHz	3200mA	3100mA	0.0780Ω
_	DFEH7030D-100M	10µH ±20%	0.1MHz	3200mA	3000mA	0.0820Ω
_	DFEH7030D-150M	15µH ±20%	0.1MHz	2400mA	2200mA	0.1470Ω
_	DFEH7030D-220M	22µH ±20%	0.1MHz	2000mA	1900mA	0.1980Ω

Operating temp.range (Self-temp.rise included): -40 to 155°C

Absolute maximum voltage: 50V DC

Inductance:

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

220

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 20%. (The ambient reference temperature is 25°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. earrow

muRata

Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

RF Inductors

Inductors for Power Lines DFEG10040D Series 4339 (109100) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	500

Rated Value (\Box : packaging code)

Part N	lumber		Inductance			
Infotainment	Powertrain/Safety		Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance
-	DFEG10040D-1R0M	1.0µH ±20%	0.1MHz	18000mA	17000mA	0.0035Ω
_	DFEG10040D-1R5M	1.5µH ±20%	0.1MHz	14000mA	14000mA	0.0050Ω
_	DFEG10040D-2R2M	2.2µH ±20%	0.1MHz	11000mA	12000mA	0.0075Ω
—	DFEG10040D-3R3M	3.3µH ±20%	0.1MHz	10000mA	10000mA	0.0120Ω
—	DFEG10040D-4R7M	4.7µH ±20%	0.1MHz	7300mA	8800mA	0.0160Ω
—	DFEG10040D-5R6M	5.6µH ±20%	0.1MHz	6900mA	8000mA	0.0180Ω
—	DFEG10040D-6R8M	6.8µH ±20%	0.1MHz	6500mA	6400mA	0.0230Ω
—	DFEG10040D-8R2M	8.2µH ±20%	0.1MHz	5600mA	5900mA	0.0290Ω
—	DFEG10040D-100M	10µH ±20%	0.1MHz	5500mA	5700mA	0.0330Ω
—	DFEG10040D-150M	15µH ±20%	0.1MHz	4400mA	5200mA	0.0470Ω
—	DFEG10040D-220M	22µH ±20%	0.1MHz	4000mA	3800mA	0.0700Ω
_	DFEG10040D-330M	33µH ±20%	0.1MHz	3000mA	3300mA	0.1070Ω
_	DFEG10040D-470M	47µH ±20%	0.1MHz	2900mA	2500mA	0.1640Ω

Operating temp.range (Self-temp.rise included): -40 to 125°C

Absolute maximum voltage: 50V DC

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 20%. (The ambient reference temperature is 25°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

muRata

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. \checkmark

Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

Inductors for Power Lines DFEH10040D Series 4339 (109100) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	500

Rated Value (\Box : packaging code)

Part N	lumber		Inductance			
Infotainment	Powertrain/Safety		Test Frequency Rated Current (Isat)^	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance
-	DFEH10040D-1R0M	1.0µH ±20%	0.1MHz	18000mA	17000mA	0.0035Ω
_	DFEH10040D-1R5M	1.5µH ±20%	0.1MHz	14000mA	14000mA	0.0050Ω
_	DFEH10040D-2R2M	2.2µH ±20%	0.1MHz	11000mA	12000mA	0.0075Ω
—	DFEH10040D-3R3M	3.3µH ±20%	0.1MHz	10000mA	10000mA	0.0120Ω
—	DFEH10040D-4R7M	4.7µH ±20%	0.1MHz	7300mA	8800mA	0.0160Ω
—	DFEH10040D-5R6M	5.6µH ±20%	0.1MHz	6900mA	8000mA	0.0180Ω
—	DFEH10040D-6R8M	6.8µH ±20%	0.1MHz	6500mA	6400mA	0.0230Ω
—	DFEH10040D-8R2M	8.2µH ±20%	0.1MHz	5600mA	5900mA	0.0290Ω
—	DFEH10040D-100M	10µH ±20%	0.1MHz	5500mA	5700mA	0.0330Ω
—	DFEH10040D-150M	15µH ±20%	0.1MHz	4400mA	5200mA	0.0470Ω
_	DFEH10040D-220M	22µH ±20%	0.1MHz	4000mA	3800mA	0.0700Ω
_	DFEH10040D-330M	33µH ±20%	0.1MHz	3000mA	3300mA	0.1070Ω
_	DFEH10040D-470M	47µH ±20%	0.1MHz	2900mA	2500mA	0.1640Ω

Operating temp.range (Self-temp.rise included): -40 to 155°C

Absolute maximum voltage: 50V DC

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 20%. (The ambient reference temperature is 25°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Continued on the following page. \checkmark

muRata

Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

Inductors for Power Lines DFEG12060D Series 5150 (130126) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	500

Rated Value (\Box : packaging code)

Part N	lumber		Inductance			
Infotainment	Powertrain/Safety		Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance
_	DFEG12060D-1R0M	1.0µH ±20%	0.1MHz	19000mA	20000mA	0.0029Ω
-	DFEG12060D-1R5M	1.5µH ±20%	0.1MHz	17000mA	17000mA	0.0036Ω
-	DFEG12060D-2R2M	2.2µH ±20%	0.1MHz	16000mA	16000mA	0.0044Ω
-	DFEG12060D-3R3M	3.3µH ±20%	0.1MHz	14000mA	13000mA	0.0063Ω
-	DFEG12060D-4R7M	4.7µH ±20%	0.1MHz	11000mA	10000mA	0.0110Ω
-	DFEG12060D-5R6M	5.6µH ±20%	0.1MHz	10000mA	10000mA	0.0110Ω
-	DFEG12060D-6R8M	6.8µH ±20%	0.1MHz	8300mA	9000mA	0.0140Ω
-	DFEG12060D-8R2M	8.2µH ±20%	0.1MHz	8300mA	8000mA	0.0170Ω
-	DFEG12060D-100M	10µH ±20%	0.1MHz	6600mA	7900mA	0.0200Ω
-	DFEG12060D-150M	15µH ±20%	0.1MHz	5600mA	6600mA	0.0280Ω
_	DFEG12060D-220M	22µH ±20%	0.1MHz	4900mA	6000mA	0.0350Ω
_	DFEG12060D-330M	33µH ±20%	0.1MHz	3400mA	4200mA	0.0540Ω
_	DFEG12060D-470M	47µH ±20%	0.1MHz	3000mA	3600mA	0.0790Ω

Operating temp.range (Self-temp.rise included): -40 to 125°C

Absolute maximum voltage: 50V DC

Inductance:

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 20%. (The ambient reference temperature is 25°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

muRata

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. 🖊

Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

RF Inductors

Inductors for Power Lines DFEH12060D Series 5150 (130126) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging Minimum Quantity			
=P3	ø330mm Embossed Taping	500		

Rated Value (\Box : packaging code)

Part N	lumber		Inductance				
Infotainment	Powertrain/Safety	Inductance Test Frequency		Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance	
_	DFEH12060D-1R0M	1.0µH ±20%	0.1MHz	19000mA	20000mA	0.0029Ω	
—	DFEH12060D-1R5M	1.5µH ±20%	0.1MHz	17000mA	17000mA	0.0036Ω	
—	DFEH12060D-2R2M	2.2µH ±20%	0.1MHz	16000mA	16000mA	0.0044Ω	
-	DFEH12060D-3R3M	3.3µH ±20%	0.1MHz	14000mA	13000mA	0.0063Ω	
-	DFEH12060D-4R7M	4.7µH ±20%	0.1MHz	11000mA	10000mA	0.0110Ω	
-	DFEH12060D-5R6M	5.6µH ±20%	0.1MHz	10000mA	10000mA	0.0110Ω	
-	DFEH12060D-6R8M	6.8µH ±20%	0.1MHz	8300mA	9000mA	0.0140Ω	
-	DFEH12060D-8R2M	8.2µH ±20%	0.1MHz	8300mA	8000mA	0.0170Ω	
-	DFEH12060D-100M	10µH ±20%	0.1MHz	6600mA	7900mA	0.0200Ω	
-	DFEH12060D-150M	15µH ±20%	0.1MHz	5600mA	6600mA	0.0280Ω	
_	DFEH12060D-220M	22µH ±20%	0.1MHz	4900mA	6000mA	0.0350Ω	
_	DFEH12060D-330M	33µH ±20%	0.1MHz	3400mA	4200mA	0.0540Ω	
—	DFEH12060D-470M	47µH ±20%	0.1MHz	3000mA	3600mA	0.0790Ω	

Operating temp.range (Self-temp.rise included): -40 to 155°C

Absolute maximum voltage: 50V DC

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Resistance Hitester 3541 (HIOKI) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 20%. (The ambient reference temperature is 25°C.)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C.)

Class of Magnetic Shield: Metal Alloy

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. \checkmark

RF Inductors

muRata

Continued from the preceding page. \searrow

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

.....

Derating of Rated Current

muRata

Inductors for Power Lines LQH2MPZ_GR Series 0806 (2016) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	3000

Rated Value (\Box : packaging code)

Part N	lumber	Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
LQH2MPZR33NGR	_	0.33µH ±30%	1MHz	2200mA	1130mA(Ambient temp.85°C) 670mA(Ambient temp.105°C)	0.15Ω±20%	130MHz
LQH2MPZR47NGR	_	0.47µH ±30%	1MHz	1950mA	1060mA(Ambient temp.85°C) 630mA(Ambient temp.105°C)	0.18Ω±20%	120MHz
LQH2MPZ1R0NGR	_	1.0µH ±30%	1MHz	1550mA	900mA(Ambient temp.85°C) 540mA(Ambient temp.105°C)	0.25Ω±20%	100MHz
LQH2MPZ1R5NGR	_	1.5µH ±30%	1MHz	1330mA	790mA(Ambient temp.85°C) 470mA(Ambient temp.105°C)	0.32Ω±20%	60MHz
LQH2MPZ2R2MGR	-	2.2µH ±20%	1MHz	1180mA	680mA(Ambient temp.85°C) 400mA(Ambient temp.105°C)	0.39Ω±20%	50MHz
LQH2MPZ3R3MGR	_	3.3µН ±20%	1MHz	1020mA	640mA(Ambient temp.85°C) 380mA(Ambient temp.105°C)	0.47Ω±20%	45MHz
LQH2MPZ4R7MGR	_	4.7µH ±20%	1MHz	870mA	580mA(Ambient temp.85°C) 340mA(Ambient temp.105°C)	0.60Ω±20%	40MHz
LQH2MPZ6R8MGR	_	6.8µH ±20%	1MHz	730mA	530mA(Ambient temp.85°C) 310mA(Ambient temp.105°C)	0.72Ω±20%	35MHz
LQH2MPZ100MGR	_	10µH ±20%	1MHz	610mA	480mA(Ambient temp.85°C) 280mA(Ambient temp.105°C)	0.88Ω±20%	30MHz
LQH2MPZ150MGR	_	15µH ±20%	1MHz	490mA	340mA(Ambient temp.85°C) 200mA(Ambient temp.105°C)	1.7Ω±20%	25MHz
LQH2MPZ220MGR	_	22µH ±20%	1MHz	410mA	290mA(Ambient temp.85°C) 170mA(Ambient temp.105°C)	2.1Ω±20%	20MHz
LQH2MPZ330MGR	_	33µH ±20%	1MHz	310mA	200mA(Ambient temp.85°C) 120mA(Ambient temp.105°C)	4.3Ω±20%	15MHz
LQH2MPZ470MGR	_	47µH ±20%	1MHz	270mA	180mA(Ambient temp.85°C) 110mA(Ambient temp.105°C)	5.3Ω±20%	10MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the products, the self-temperature 85-105°C).

Class of Magnetic Shield: Ferrite Core

Only for reflow soldering

Inductanc

68µH ±20%

82µH ±20%

Inductance

Test Frequency

1MHz

1MHz

Rated Current (Isat)*

230mA

210mA

S.R.F* (min.)

7MHz

5MHz

DC Resistance

6.7Ω±20%

7.3Ω±20%

Inductors for General Circuits

RF Inductors

Continued from the preceding page.

Infotainment

LQH2MPZ680MGR

LQH2MPZ820MGR

Class of Magnetic Shield: Ferrite Core Only for reflow soldering

*S.R.F: Self Resonant Frequency

*Isat: Rated Current based on Inductance change *Itemp: Rated Current based on Temperature rise

Part Number

Operating temp.range (Self-temp.rise included): -40 to 125°C Operating temp.range (Self-temp.rise not included): -40 to 105°C

Powertrain/Safety

products,the self-temperature rise shall be limited to 20°C max. (ambient temperature 85-105°C).

Inductance-Current Characteristics (Typ.)

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the

muRata

Temperature Rise Characteristics (Typ.)

Rated Current (Itemp)*

160mA(Ambient temp.85°C)

100mA(Ambient temp.105°C)

90mA(Ambient temp.105°C)

231

Inductors for Power Lines LQH2HPZ_DR Series 1008 (2520) inch (mm)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
L	ø180mm Embossed Taping	4000	

Rated Value (\Box : packaging code)

Part Number		Inductance		Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (itemp)*	DC RESISTANCE	3.R.F" (IIIII.)
LQH2HPZR47MDR	_	0.47µH ±20%	1MHz	1670mA	1250mA(Ambient temp.85°C) 750mA(Ambient temp.105°C)	0.14Ω±20%	120MHz
LQH2HPZ1R0MDR	—	1.0µH ±20%	1MHz	1370mA	960mA(Ambient temp.85°C) 580mA(Ambient temp.105°C)	0.24Ω±20%	100MHz
LQH2HPZ1R5MDR	_	1.5µH ±20%	1MHz	1120mA	900mA(Ambient temp.85°C) 540mA(Ambient temp.105°C)	0.29Ω±20%	60MHz
LQH2HPZ2R2MDR	_	2.2µH ±20%	1MHz	850mA	820mA(Ambient temp.85°C) 500mA(Ambient temp.105°C)	0.34Ω±20%	50MHz
LQH2HPZ3R3MDR	_	3.3µH ±20%	1MHz	750mA	730mA(Ambient temp.85°C) 440mA(Ambient temp.105°C)	0.45Ω±20%	45MHz
LQH2HPZ4R7MDR	_	4.7µH ±20%	1MHz	650mA	650mA(Ambient temp.85°C) 390mA(Ambient temp.105°C)	0.56Ω±20%	40MHz
LQH2HPZ6R8MDR	_	6.8µH ±20%	1MHz	550mA	490mA(Ambient temp.85°C) 300mA(Ambient temp.105°C)	1.0Ω±20%	35MHz
LQH2HPZ100MDR	_	10µH ±20%	1MHz	420mA	430mA(Ambient temp.85°C) 260mA(Ambient temp.105°C)	1.2Ω±20%	30MHz
LQH2HPZ150MDR	_	15µH ±20%	1MHz	340mA	290mA(Ambient temp.85°C) 180mA(Ambient temp.105°C)	2.5Ω±20%	25MHz
LQH2HPZ220MDR	—	22µH ±20%	1MHz	260mA	270mA(Ambient temp.85°C) 170mA(Ambient temp.105°C)	3.0Ω±20%	20MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105 $^{\circ}\mathrm{C}$

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the products, the self-temperature 85-105°C).

Continued on the following page. 🖊

RF Inductors

Continued from the preceding page. \searrow

Inductors for Power Lines LQH2HPZ_GR Series 1008 (2520) inch (mm)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	3000

Rated Value (\Box : packaging code)

Part Number		Inductance		Rated Current (Isat)*	Rated Current (Itemp)*		S.R.F* (min.)
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)^	Rated Current (itemp)*	DC Resistance	S.R.F^ (MIN.)
LQH2HPZR47MGR	—	0.47µH ±20%	1MHz	2900mA	2520mA(Ambient temp.85°C) 1470mA(Ambient temp.105°C)	0.045Ω±20%	120MHz
LQH2HPZR68MGR	_	0.68µH ±20%	1MHz	2430mA	2330mA(Ambient temp.85°C) 1350mA(Ambient temp.105°C)	0.055Ω±20%	110MHz
LQH2HPZ1R0MGR	_	1.0µH ±20%	1MHz	2130mA	2100mA(Ambient temp.85°C) 1200mA(Ambient temp.105°C)	0.068Ω±20%	100MHz
LQH2HPZ1R5MGR	_	1.5µH ±20%	1MHz	1700mA	1850mA(Ambient temp.85°C) 1110mA(Ambient temp.105°C)	0.087Ω±20%	90MHz
LQH2HPZ2R2MGR	_	2.2µH ±20%	1MHz	1550mA	1470mA(Ambient temp.85°C) 850mA(Ambient temp.105°C)	0.134Ω±20%	80MHz
LQH2HPZ3R3MGR	_	3.3µH ±20%	1MHz	1230mA	1100mA(Ambient temp.85°C) 660mA(Ambient temp.105°C)	0.225Ω±20%	70MHz
LQH2HPZ4R7MGR	_	4.7µH ±20%	1MHz	1090mA	1000mA(Ambient temp.85°C) 570mA(Ambient temp.105°C)	0.300Ω±20%	50MHz
LQH2HPZ6R8MGR	-	6.8µH ±20%	1MHz	830mA	860mA(Ambient temp.85°C) 490mA(Ambient temp.105°C)	0.395Ω±20%	40MHz
LQH2HPZ100MGR	-	10µH ±20%	1MHz	700mA	710mA(Ambient temp.85°C) 430mA(Ambient temp.105°C)	0.560Ω±20%	30MHz
LQH2HPZ150MGR	_	15µH ±20%	1MHz	570mA	560mA(Ambient temp.85°C) 310mA(Ambient temp.105°C)	0.925Ω±20%	20MHz
LQH2HPZ220MGR	_	22µH ±20%	1MHz	460mA	430mA(Ambient temp.85°C) 250mA(Ambient temp.105°C)	1.360Ω±20%	15MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the products, the self-temperature 85 to 105°C).

muRata

Continued on the following page. \checkmark

Inductors for Power Lines

Continued from the preceding page. \searrow

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

RF Inductors

muRata

Inductors for Power Lines LQH2HPZ_JR Series 1008 (2520) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	2000

Rated Value (\Box : packaging code)

Part Number		Inductance		Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)"	Rated Current (itemp)"	DC Resistance	S.R.F" (MIN.)
LQH2HPZR47NJR	—	0.47µH ±30%	1MHz	3500mA	2750mA(Ambient temp.85°C) 1650mA(Ambient temp.105°C)	0.031Ω±20%	190MHz
LQH2HPZ1R0NJR	_	1.0µH ±30%	1MHz	2600mA	2400mA(Ambient temp.85°C) 1440mA(Ambient temp.105°C)	0.048Ω±20%	120MHz
LQH2HPZ1R2NJR	_	1.2µH ±30%	1MHz	2450mA	2070mA(Ambient temp.85°C) 1240mA(Ambient temp.105°C)	0.055Ω±20%	100MHz
LQH2HPZ1R5NJR	_	1.5µH ±30%	1MHz	2200mA	1810mA(Ambient temp.85°C) 1080mA(Ambient temp.105°C)	0.075Ω±20%	95MHz
LQH2HPZ2R2MJR	_	2.2µH ±20%	1MHz	1700mA	1650mA(Ambient temp.85°C) 990mA(Ambient temp.105°C)	0.092Ω±20%	50MHz
LQH2HPZ3R3MJR	_	3.3µH ±20%	1MHz	1450mA	1420mA(Ambient temp.85°C) 850mA(Ambient temp.105°C)	0.13Ω±20%	45MHz
LQH2HPZ4R7MJR	_	4.7µH ±20%	1MHz	1230mA	1290mA(Ambient temp.85°C) 770mA(Ambient temp.105°C)	0.17Ω±20%	40MHz
LQH2HPZ6R8MJR	_	6.8µH ±20%	1MHz	1050mA	1000mA(Ambient temp.85°C) 600mA(Ambient temp.105°C)	0.26Ω±20%	35MHz
LQH2HPZ100MJR	_	10µH ±20%	1MHz	830mA	830mA(Ambient temp.85°C) 490mA(Ambient temp.105°C)	0.38Ω±20%	30MHz
LQH2HPZ150MJR	_	15µH ±20%	1MHz	690mA	710mA(Ambient temp.85°C) 420mA(Ambient temp.105°C)	0.55Ω±20%	20MHz
LQH2HPZ220MJR	_	22µH ±20%	1MHz	530mA	540mA(Ambient temp.85°C) 320mA(Ambient temp.105°C)	0.84Ω±20%	20MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the products, the self-temperature 85-105°C).

muRata

Continued on the following page. 🖊

Class of Magnetic Shield: Magnetic Resin

Continued from the preceding page. \searrow

Inductance-Frequency Characteristics (Typ.)

RF Inductors

muRata

Inductors for Power Lines QH32CH_23 Series 1210 (3225) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000
В	Packing in Bulk	500

Rated Value (: packaging code)

Part Number		Inductance	Inductance	Rated Current	DC Resistance		
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)	
—	LQH32CH1R0M23	1.0µH ±20%	1MHz	800mA	0.09Ω±30%	96MHz	
—	LQH32CH2R2M23	2.2µH ±20%	1MHz	600mA	0.13Ω±30%	64MHz	
—	LQH32CH4R7M23	4.7µH ±20%	1MHz	450mA	0.20Ω±30%	43MHz	
—	LQH32CH100K23	10µH ±10%	1MHz	300mA	0.44Ω±30%	26MHz	
_	LQH32CH220K23	22µH ±10%	1MHz	250mA	0.71Ω±30%	19MHz	

Operating temp.range (Self-temp.rise not included): -40 to 85°C

Class of Magnetic Shield: No Shield

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

(in mm)

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Inductors for Power Lines LQH32CH_33 Series 1210 (3225) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000
В	Packing in Bulk	500

Rated Value (\Box : packaging code)

Part	Part Number		Inductance	Rated Current	DC Resistance	S.R.F* (min.)	
Infotainment	Powertrain/Safety	inductance	Inductance Test Frequency		DCRESIStance	3.K.i (IIIII.)	
-	LQH32CHR15M33	0.15µH ±20%	1MHz	1450mA	0.028Ω±30%	400MHz	
-	LQH32CHR27M33	0.27µH ±20%	1MHz	1250mA	0.034Ω±30%	250MHz	
_	LQH32CHR47M33	0.47µH ±20%	1MHz	1100mA	0.042Ω±30%	150MHz	
_	LQH32CH1R0M33	1.0µH ±20%	1MHz	1000mA	0.060Ω±30%	100MHz	
_	LQH32CH2R2M33	2.2µH ±20%	1MHz	790mA	0.097Ω±30%	64MHz	
-	LQH32CH4R7M33	4.7µH ±20%	1MHz	650mA	0.15Ω±30%	43MHz	
-	LQH32CH100K33	10µH ±10%	1MHz	450mA	0.30Ω±30%	26MHz	

Operating temp.range (Self-temp.rise not included): -40 to 85°C

Class of Magnetic Shield: No Shield

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Inductors for Power Lines LQH32CH_53 Series 1210 (3225) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000
В	Packing in Bulk	500

Rated Value (\Box : packaging code)

Part Number		Inductance	Inductance	Rated Current	DC Resistance		
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)	
-	LQH32CH1R0M53	1.0µH ±20%	1MHz	1000mA	0.060Ω±30%	100MHz	
—	LQH32CH2R2M53	2.2µH ±20%	1MHz	790mA	0.097Ω±30%	64MHz	
—	LQH32CH3R3M53	3.3µH ±20%	1MHz	710mA	0.12Ω±30%	50MHz	
_	LQH32CH4R7M53	4.7µH ±20%	1MHz	650mA	0.15Ω±30%	43MHz	
_	LQH32CH6R8M53	6.8µH ±20%	1MHz	540mA	0.25Ω±30%	32MHz	
_	LQH32CH100K53	10µH ±10%	1MHz	450mA	0.30Ω±30%	26MHz	
_	LQH32CH150K53	15µH ±10%	1MHz	300mA	0.58Ω±30%	26MHz	
—	LQH32CH220K53	22µH ±10%	1MHz	250mA	0.71Ω±30%	19MHz	

Operating temp.range (Self-temp.rise not included): -40 to 85°C

Class of Magnetic Shield: No Shield

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Inductors for Power Lines LQH32DZ_23 Series 1210 (3225) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000

Rated Value (\Box : packaging code)

Part N	umber	Induction of	Inductance	Data d Ourreat	DO Desistence		
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)	
LQH32DZ1R0M23	—	1.0µH ±20%	1MHz	800mA	0.09Ω±30%	96MHz	
LQH32DZ2R2M23	_	2.2µH ±20%	1MHz	600mA	0.13Ω±30%	64MHz	
LQH32DZ3R3M23	—	3.3µH ±20%	1MHz	530mA	0.20Ω±30%	50MHz	
LQH32DZ4R7M23	—	4.7µH ±20%	1MHz	450mA	0.20Ω±30%	43MHz	
LQH32DZ100K23	—	10µH ±10%	1MHz	300mA	0.44Ω±30%	26MHz	
LQH32DZ220K23	—	22µH ±10%	1MHz	250mA	0.71Ω±30%	19MHz	
LQH32DZ390K23	—	39µH ±10%	1MHz	200mA	1.2Ω±30%	16MHz	
LQH32DZ470K23	—	47µH ±10%	1MHz	170mA	1.3Ω±30%	15MHz	
LQH32DZ680K23	—	68µH ±10%	1MHz	130mA	2.2Ω±30%	12MHz	
LQH32DZ101K23	—	100µH ±10%	1MHz	100mA	3.5Ω±30%	10MHz	
LQH32DZ151K23	—	150µH ±10%	1MHz	80mA	5.1Ω±30%	8.0MHz	
LQH32DZ221K23	—	220µH ±10%	1MHz	70mA	8.4Ω±30%	6.8MHz	
LQH32DZ331K23	—	330µH ±10%	1MHz	60mA	10.0Ω±30%	5.6MHz	
LQH32DZ391K23	—	390µH ±10%	1MHz	60mA	12.4Ω±30%	5MHz	
LQH32DZ471K23	—	470µH ±10%	1kHz	60mA	14.1Ω±30%	5MHz	

Operating temp.range: -40 to 105°C

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Inductors for Power Lines LQH32DZ_53 Series 1210 (3225) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000

Rated Value (\Box : packaging code)

Part Number		Industry	Inductance	Dated Comment		
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)
LQH32DZ1R0M53	—	1.0µH ±20%	1MHz	1000mA	0.060Ω±30%	100MHz
LQH32DZ2R2M53	—	2.2µH ±20%	1MHz	790mA	0.097Ω±30%	64MHz
LQH32DZ3R3M53	—	3.3µH ±20%	1MHz	710mA	0.12Ω±30%	50MHz
LQH32DZ4R7M53	—	4.7µH ±20%	1MHz	650mA	0.15Ω±30%	43MHz
LQH32DZ6R8M53	—	6.8µH ±20%	1MHz	540mA	0.25Ω±30%	32MHz
LQH32DZ100K53	_	10µH ±10%	1MHz	450mA	0.30Ω±30%	26MHz
LQH32DZ150K53	—	15µH ±10%	1MHz	300mA	0.58Ω±30%	26MHz
LQH32DZ220K53	_	22µH ±10%	1MHz	250mA	0.71Ω±30%	19MHz
LQH32DZ330K53	_	33µH ±10%	1MHz	200mA	1.1Ω±30%	17MHz
LQH32DZ470K53	_	47µH ±10%	1MHz	170mA	1.3Ω±30%	15MHz
LQH32DZ680K53	—	68µH ±10%	1MHz	130mA	2.2Ω±30%	12MHz
LQH32DZ101K53	—	100µH ±10%	1MHz	100mA	3.5Ω±30%	10MHz

Operating temp.range: -40 to 105°C

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Impedance-Frequency Characteristics (Typ.)

muRata

(in mm)

Inductors for Power Lines QH32PZ_N0/LQH32PH_N0 Series 1210 (3225) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000

Rated Value (: packaging code)

Part N	lumber		Inductance				
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
LQH32PZR47NN0	LQH32PHR47NN0	0.47µH ±30%	1MHz	3400mA	2550mA(Ambient temp.85°C) 1600mA(Ambient temp.105°C)	0.030Ω±20%	100MHz
LQH32PZ1R0NN0	LQH32PH1R0NN0	1.0µH ±30%	1MHz	2300mA	2050mA(Ambient temp.85°C) 1320mA(Ambient temp.105°C)	0.045Ω±20%	100MHz
LQH32PZ1R5NN0	LQH32PH1R5NN0	1.5µH ±30%	1MHz	1750mA	1750mA(Ambient temp.85°C) 1010mA(Ambient temp.105°C)	0.057Ω±20%	70MHz
LQH32PZ2R2NN0	LQH32PH2R2NN0	2.2µH ±30%	1MHz	1550mA	1600mA(Ambient temp.85°C) 970mA(Ambient temp.105°C)	0.076Ω±20%	70MHz
LQH32PZ3R3NN0	LQH32PH3R3NN0	3.3µH ±30%	1MHz	1250mA	1200mA(Ambient temp.85°C) 670mA(Ambient temp.105°C)	0.12Ω±20%	50MHz
LQH32PZ4R7NN0	LQH32PH4R7NN0	4.7µH ±30%	1MHz	1000mA	1000mA(Ambient temp.85°C) 530mA(Ambient temp.105°C)	0.18Ω±20%	40MHz
LQH32PZ6R8NN0	LQH32PH6R8NN0	6.8µH ±30%	1MHz	850mA	850mA(Ambient temp.85°C) 510mA(Ambient temp.105°C)	0.24Ω±20%	40MHz
LQH32PZ100MN0	LQH32PH100MN0	10µH ±20%	1MHz	750mA	700mA(Ambient temp.85°C) 380mA(Ambient temp.105°C)	0.38Ω±20%	30MHz
LQH32PZ150MN0	-	15µH ±20%	1MHz	600mA	520mA(Ambient temp.85°C) 320mA(Ambient temp.105°C)	0.57Ω±20%	20MHz
LQH32PZ220MN0	-	22µH ±20%	1MHz	500mA	450mA(Ambient temp.85°C) 240mA(Ambient temp.105°C)	0.81Ω±20%	20MHz
LQH32PZ330MN0	-	33µH ±20%	1MHz	380mA	390mA(Ambient temp.85°C) 190mA(Ambient temp.105°C)	1.15Ω±20%	13MHz
LQH32PZ470MN0	-	47µH ±20%	1MHz	330mA	310mA(Ambient temp.85°C) 140mA(Ambient temp.105°C)	1.78Ω±20%	11MHz
LQH32PZ680MN0	-	68µH ±20%	1MHz	280mA	275mA(Ambient temp.85°C) 120mA(Ambient temp.105°C)	2.28Ω±20%	11MHz
LQH32PZ101MN0	_	100µH ±20%	1MHz	180mA	250mA(Ambient temp.85°C) 110mA(Ambient temp.105°C)	2.70Ω±20%	8MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

*Isat: Rated Current based on Inductance change *Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of nominal inductance value. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C.

RF Inductors

Only for reflow soldering

Continued from the preceding page. 🖌

Part Number		Inductance		Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S D E* (min)	
Infotainment	Powertrain/Safety		Test Frequency	Rated Current (Isat)	Rated Current (itemp)	DC Resistance	Э.К. Г" (ШШ.)	
LQH32PZ121MN0	—	120µH ±20%	1MHz	170mA	200mA(Ambient temp.85°C) 80mA(Ambient temp.105°C)	4.38Ω±20%	8MHz	

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of nominal inductance value. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

2.5±0.2

2.5±0.2

(in mm)

QH32PZ_NC/LQH32PH_NC Series 1210 (3225) inch (mm)

Packaging

Code

κ

L

Minimum

Ouantity

7500

2000

Packaging

ø330mm Embossed Taping

ø180mm Embossed Taping

Inductors for Power Lines

RF Inductors

Rated Value (\Box : packaging code)

Appearance/Dimensions

Inductors for Power Lines

2.7±0.2

3.2±0.3

 $\nabla \Omega$

0.9±0.3

1.55±0.15

0.9±0.3

ſГ

Part N	Number	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety		Test Frequency				<u> </u>
LQH32PZR47NNC	LQH32PHR47NNC	0.47µH ±30%	1MHz	4400mA	2900mA(Ambient temp.85°C) 1490mA(Ambient temp.105°C)	0.024Ω±20%	100MHz
LQH32PZ1R0NNC	LQH32PH1R0NNC	1.0µH ±30%	1MHz	3000mA	2500mA(Ambient temp.85°C) 1380mA(Ambient temp.105°C)	0.036Ω±20%	100MHz
LQH32PZ1R5NNC	LQH32PH1R5NNC	1.5µH ±30%	1MHz	2600mA	2100mA(Ambient temp.85°C) 1110mA(Ambient temp.105°C)	0.053Ω±20%	70MHz
LQH32PZ2R2NNC	LQH32PH2R2NNC	2.2µH ±30%	1MHz	2000mA	1850mA(Ambient temp.85°C) 910mA(Ambient temp.105°C)	0.064Ω±20%	70MHz
LQH32PZ3R3NNC	LQH32PH3R3NNC	3.3µH ±30%	1MHz	1900mA	1550mA(Ambient temp.85°C) 800mA(Ambient temp.105°C)	0.100Ω±20%	50MHz
LQH32PZ4R7NNC	LQH32PH4R7NNC	4.7µH ±30%	1MHz	1600mA	1200mA(Ambient temp.85°C) 610mA(Ambient temp.105°C)	0.155Ω±20%	40MHz
LQH32PZ6R8NNC	LQH32PH6R8NNC	6.8µH ±30%	1MHz	1300mA	1100mA(Ambient temp.85°C) 550mA(Ambient temp.105°C)	0.220Ω±20%	40MHz
LQH32PZ100MNC	LQH32PH100MNC	10µH ±20%	1MHz	1000mA	900mA(Ambient temp.85°C) 450mA(Ambient temp.105°C)	0.295Ω±20%	30MHz
LQH32PZ150MNC	LQH32PH150MNC	15µH ±20%	1MHz	800mA	700mA(Ambient temp.85°C) 330mA(Ambient temp.105°C)	0.475Ω±20%	20MHz
LQH32PZ220MNC	LQH32PH220MNC	22µH ±20%	1MHz	650mA	550mA(Ambient temp.85°C) 270mA(Ambient temp.105°C)	0.685Ω±20%	20MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of nominal inductance value. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C.

Continued on the following page. \checkmark

muRata

3000

wit i

4000 5000

1000 3000

8000

#LONDFORT, M. L-Garrant 20depl

#LOKOPTON NC L-Darrant 204mpl

8000

5000

Gurrent [Ak]

4000

HLOHIP/INC.M. Temp. Find HLOHIP/INC.M. Temp. Find

700

Continued from the preceding page. \searrow

18

de la

HEARDPENE M 1

·LOCOPIZIE NO 1

Free

1008

Inductance-Current Characteristics (Typ.) Temperature Rise Characteristics (Typ.) Inductance-Frequency Characteristics (Typ.) 10 Ï 100 ł 1.0 1 ature of ł 10

000 2000

. DOPDHI N. L-Garrett 35

. DOOTSHENE L-Garrant Himpl

Inductors for General Circuits

喃

REPORTED ALL

Inductors for Power Lines

muRata

_QH3NPZ_GR Series 1212 (3030) inch (mm)

(in mm)

Packaging

Code

L

Minimum

Ouantity

3000

Packaging

ø180mm Embossed Taping

RF Inductors

Rated Value (\Box : packaging code)

3.0±0.1

0.9±0.2

Appearance/Dimensions

Inductors for Power Lines

3.0±0.1

υяг

0.9±0.2

Part Number		la duatan	Inductance			DO Desiste	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
LQH3NPZR47NGR	-	0.47µH ±30%	1MHz	2820mA	2540mA(Ambient temp.85°C) 1520mA(Ambient temp.105°C)	0.047Ω±20%	180MHz
LQH3NPZ1R0MGR	_	1.0µH ±20%	1MHz	1700mA	2080mA(Ambient temp.85°C) 1240mA(Ambient temp.105°C)	0.062Ω±20%	100MHz
LQH3NPZ1R5MGR	_	1.5µH ±20%	1MHz	1400mA	2040mA(Ambient temp.85°C) 1220mA(Ambient temp.105°C)	0.074Ω±20%	80MHz
LQH3NPZ2R2MGR	_	2.2µH ±20%	1MHz	1180mA	1730mA(Ambient temp.85°C) 1030mA(Ambient temp.105°C)	0.087Ω±20%	50MHz
LQH3NPZ3R3MGR	_	3.3µH ±20%	1MHz	1050mA	1580mA(Ambient temp.85°C) 940mA(Ambient temp.105°C)	0.12Ω±20%	30MHz
LQH3NPZ4R7MGR	_	4.7µH ±20%	1MHz	850mA	1520mA(Ambient temp.85°C) 910mA(Ambient temp.105°C)	0.14Ω±20%	27MHz
LQH3NPZ6R8MGR	_	6.8µH ±20%	1MHz	720mA	1140mA(Ambient temp.85°C) 680mA(Ambient temp.105°C)	0.23Ω±20%	25MHz
LQH3NPZ100MGR	-	10µH ±20%	1MHz	570mA	1120mA(Ambient temp.85°C) 670mA(Ambient temp.105°C)	0.28Ω±20%	20MHz
LQH3NPZ150MGR	-	15µH ±20%	1MHz	480mA	900mA(Ambient temp.85°C) 540mA(Ambient temp.105°C)	0.39Ω±20%	15MHz
LQH3NPZ220MGR	-	22µH ±20%	1MHz	390mA	750mA(Ambient temp.85°C) 450mA(Ambient temp.105°C)	0.53Ω±20%	10MHz
LQH3NPZ330MGR	-	33µН ±20%	1MHz	320mA	600mA(Ambient temp.85°C) 360mA(Ambient temp.105°C)	0.86Ω±20%	8MHz
LQH3NPZ470MGR	—	47µH ±20%	1MHz	260mA	460mA(Ambient temp.85°C) 270mA(Ambient temp.105°C)	1.4Ω±20%	5MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to $105^{\circ}C$

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the products, the self-temperature 85 to 105°C).

Continued on the following page. 🖊

Continued from the preceding page. \searrow

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

QH3NPZ_JR Series 1212 (3030) inch (mm)

(in mm)

Packaging

Code

L

Packaging

ø180mm Embossed Taping

Minimum

Ouantity

2000

RF Inductors

Rated Value (\Box : packaging code)

Appearance/Dimensions

Inductors for Power Lines

υяг

3.0±0.2

3.0±0.2

3.0±0.2

0.9±0.2

 1.1 ± 0.1

0.9±0.2

Part Number			Inductance				
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
LQH3NPZR68NJR	_	0.68µH ±30%	1MHz	2700mA	2860mA(Ambient temp.85°C) 1280mA(Ambient temp.105°C)	0.032Ω±20%	130MHz
LQH3NPZ1R0MJR	-	1.0µH ±20%	1MHz	2250mA	2780mA(Ambient temp.85°C) 1230mA(Ambient temp.105°C)	0.040Ω±20%	100MHz
LQH3NPZ1R5MJR	-	1.5µH ±20%	1MHz	1950mA	2510mA(Ambient temp.85°C) 1100mA(Ambient temp.105°C)	0.049Ω±20%	60MHz
LQH3NPZ2R2MJR	-	2.2µH ±20%	1MHz	1800mA	2200mA(Ambient temp.85°C) 980mA(Ambient temp.105°C)	0.068Ω±20%	45MHz
LQH3NPZ3R3MJR[]	_	3.3µH ±20%	1MHz	1350mA	1700mA(Ambient temp.85°C) 750mA(Ambient temp.105°C)	0.095Ω±20%	45MHz
LQH3NPZ4R7MJR	-	4.7µH ±20%	1MHz	1180mA	1580mA(Ambient temp.85°C) 710mA(Ambient temp.105°C)	0.12Ω±20%	40MHz
LQH3NPZ6R8MJR	-	6.8µH ±20%	1MHz	970mA	1360mA(Ambient temp.85°C) 610mA(Ambient temp.105°C)	0.18Ω±20%	35MHz
LQH3NPZ100MJR	-	10µH ±20%	1MHz	810mA	1200mA(Ambient temp.85°C) 530mA(Ambient temp.105°C)	0.24Ω±20%	30MHz
LQH3NPZ150MJR	—	15µH ±20%	1MHz	650mA	870mA(Ambient temp.85°C) 370mA(Ambient temp.105°C)	0.38Ω±20%	25MHz
LQH3NPZ220MJR	-	22µH ±20%	1MHz	520mA	800mA(Ambient temp.85°C) 350mA(Ambient temp.105°C)	0.50Ω±20%	20MHz
LQH3NPZ330MJR	-	33µH ±20%	1MHz	420mA	630mA(Ambient temp.85°C) 280mA(Ambient temp.105°C)	0.79Ω±20%	15MHz
LQH3NPZ470MJR	—	47µH ±20%	1MHz	360mA	570mA(Ambient temp.85°C) 240mA(Ambient temp.105°C)	1.0Ω±20%	10MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the products, the self-temperature 85°C to 105°C).

Continued on the following page. 🖊

Continued from the preceding page. \searrow

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

.....

Temperature Rise Characteristics (Typ.)

_QH3NPZ_ME Series 1212 (3030) inch (mm)

(in mm)

Packaging

Code

L

Minimum

Ouantity

2000

Packaging

ø180mm Embossed Taping

RF Inductors

Rated Value (\Box : packaging code)

3.0±0.2

0.8±0.3

Appearance/Dimensions

Inductors for Power Lines

υяг

3.0±0.2

L.4±0.1

0.8±0.3

Part N	umber	Inductor	Inductance	Datad Current (heat)*	Dated Current (Items)*	DC Desistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
LQH3NPZ1R0MME	_	1.0µH ±20%	1MHz	2350mA	3000mA(Ambient temp.85°C) 1600mA(Ambient temp.105°C)	0.025Ω±20%	100MHz
LQH3NPZ2R2MME	-	2.2µH ±20%	1MHz	1800mA	2100mA(Ambient temp.85°C) 1220mA(Ambient temp.105°C)	0.065Ω±20%	60MHz
LQH3NPZ3R3MME	_	3.3µH ±20%	1MHz	1520mA	1900mA(Ambient temp.85°C) 1150mA(Ambient temp.105°C)	0.084Ω±20%	55MHz
LQH3NPZ4R7MME	_	4.7µH ±20%	1MHz	1300mA	1700mA(Ambient temp.85°C) 1000mA(Ambient temp.105°C)	0.10Ω±20%	40MHz
LQH3NPZ6R8MME	_	6.8µH ±20%	1MHz	1040mA	1450mA(Ambient temp.85°C) 900mA(Ambient temp.105°C)	0.14Ω±20%	30MHz
LQH3NPZ100MME	-	10µH ±20%	1MHz	810mA	1280mA(Ambient temp.85°C) 800mA(Ambient temp.105°C)	0.19Ω±20%	20MHz
LQH3NPZ150MME	-	15µH ±20%	1MHz	660mA	1020mA(Ambient temp.85°C) 620mA(Ambient temp.105°C)	0.29Ω±20%	15MHz
LQH3NPZ220MME	-	22µH ±20%	1MHz	570mA	860mA(Ambient temp.85°C) 540mA(Ambient temp.105°C)	0.40Ω±20%	10MHz
	-	33µH ±20%	1MHz	440mA	760mA(Ambient temp.85°C) 460mA(Ambient temp.105°C)	0.55Ω±20%	8MHz
LQH3NPZ470MME	-	47µH ±20%	1MHz	380mA	610mA(Ambient temp.85°C) 380mA(Ambient temp.105°C)	0.82Ω±20%	5MHz
LQH3NPZ560MME	-	56µH ±20%	1MHz	350mA	500mA(Ambient temp.85°C) 320mA(Ambient temp.105°C)	1.0Ω±20%	5MHz
LQH3NPZ680MME	-	68µH ±20%	1MHz	310mA	470mA(Ambient temp.85°C) 300mA(Ambient temp.105°C)	1.15Ω±20%	5MHz
LQH3NPZ101MME	-	100µH ±20%	1MHz	260mA	430mA(Ambient temp.85°C) 270mA(Ambient temp.105°C)	1.59Ω±20%	3MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C max. (ambient temperature 85°C). When rated current is applied to the products, the self-temperature 85°C to 105°C).

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

QH44PZ_GR Series 1515 (4040) inch (mm)

(in mm)

5

.1±0.2

4.0±0.1

L.0±0.1

1.1±0.2

Packaging

Code

κ

L

Packaging

ø330mm Embossed Taping

ø180mm Embossed Taping

240mA(Ambient temp.105°C)

Minimum

Ouantity

4500

1000

RF Inductors

Rated Value (\Box : packaging code)

Appearance/Dimensions

Inductors for Power Lines

	00 ,						
Part N	lumber	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety		Test Frequency				Girtin ()
LQH44PZR68NGR	-	0.68µH ±30%	1MHz	2400mA	2500mA(Ambient temp.85°C) 1500mA(Ambient temp.105°C)	0.043Ω±20%	54MHz
LQH44PZ2R2NGR	-	2.2µH ±30%	1MHz	1600mA	2000mA(Ambient temp.85°C) 1200mA(Ambient temp.105°C)	0.074Ω±20%	45MHz
LQH44PZ3R3NGR	-	3.3µH ±30%	1MHz	1500mA	1700mA(Ambient temp.85°C) 1000mA(Ambient temp.105°C)	0.11Ω±20%	25MHz
LQH44PZ4R7MGR	-	4.7µH ±20%	1MHz	1200mA	1600mA(Ambient temp.85°C) 960mA(Ambient temp.105°C)	0.13Ω±20%	17MHz
LQH44PZ6R8MGR	-	6.8µH ±20%	1MHz	850mA	1400mA(Ambient temp.85°C) 840mA(Ambient temp.105°C)	0.17Ω±20%	15MHz
LQH44PZ100MGR	-	10µH ±20%	1MHz	800mA	1100mA(Ambient temp.85°C) 660mA(Ambient temp.105°C)	0.27Ω±20%	13MHz
LQH44PZ150MGR	-	15µH ±20%	1MHz	640mA	900mA(Ambient temp.85°C) 540mA(Ambient temp.105°C)	0.42Ω±20%	10MHz
LQH44PZ220MGR	-	22µH ±20%	1MHz	500mA	750mA(Ambient temp.85°C) 450mA(Ambient temp.105°C)	0.57Ω±20%	8MHz
LQH44PZ330MGR	-	33µH ±20%	1MHz	400mA	480mA(Ambient temp.85°C) 280mA(Ambient temp.105°C)	1.4Ω±20%	6MHz
LQH44PZ470MGR	_	47µH ±20%	1MHz	360mA	410mA(Ambient temp.85°C)	1.7Ω±20%	6MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C. When rated current is applied to the products, the self-temperature rise shall be limited to 40°C Max(ambient temperature 85°C). When rated current is applied to the products, the self-temperature rise shall be limited to 40°C Max(ambient temperature 85°C). When rated current is applied to the products, the self-temperature rise shall be limited to 20°C max(ambient temperature 85-105°C).

Continued on the following page. $earrow \earrow \ea$

muRata

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

3.2±0.2

3.2±0.2

(in mm)

Inductors for Power Lines LQH43PZ_26/LQH43PH_26 Series 1812 (4532) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	2500
L	ø180mm Embossed Taping	500

Rated Value (\Box : packaging code)

Part I	Number	In decidence of	Inductance	Data d Ourreach (la shit	Date of Occurrent (Iterary) t	Dobaistanas	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
LQH43PZ1R0N26	LQH43PH1R0N26	1.0µH ±30%	1MHz	3400mA	3300mA(Ambient temp.85°C) 1410mA(Ambient temp.105°C)	0.026Ω±20%	100MHz
LQH43PZ2R2M26	LQH43PH2R2M26	2.2µH ±20%	1MHz	2300mA	2500mA(Ambient temp.85°C) 1120mA(Ambient temp.105°C)	0.042Ω±20%	45MHz
LQH43PZ3R3M26	LQH43PH3R3M26	3.3µH ±20%	1MHz	1800mA	2100mA(Ambient temp.85°C) 1000mA(Ambient temp.105°C)	0.052Ω±20%	40MHz
LQH43PZ4R7M26	LQH43PH4R7M26	4.7µH ±20%	1MHz	1400mA	1600mA(Ambient temp.85°C) 780mA(Ambient temp.105°C)	0.075Ω±20%	35MHz
LQH43PZ6R8M26	LQH43PH6R8M26	6.8µH ±20%	1MHz	1200mA	1400mA(Ambient temp.85°C) 760mA(Ambient temp.105°C)	0.098Ω±20%	30MHz
LQH43PZ8R2M26	LQH43PH8R2M26	8.2µH ±20%	1MHz	1100mA	1300mA(Ambient temp.85°C) 670mA(Ambient temp.105°C)	0.128Ω±20%	25MHz
LQH43PZ100M26	LQH43PH100M26	10µH ±20%	1MHz	1050mA	1170mA(Ambient temp.85°C) 620mA(Ambient temp.105°C)	0.147Ω±20%	20MHz
LQH43PZ220M26	LQH43PH220M26	22µH ±20%	1MHz	700mA	780mA(Ambient temp.85°C) 400mA(Ambient temp.105°C)	0.327Ω±20%	15MHz
LQH43PZ470M26	LQH43PH470M26	47µH ±20%	1MHz	470mA	520mA(Ambient temp.85°C) 280mA(Ambient temp.105°C)	0.718Ω±20%	8MHz
LQH43PZ101M26	LQH43PH101M26	100µH ±20%	1MHz	320mA	320mA(Ambient temp.85°C) 180mA(Ambient temp.105°C)	1.538Ω±20%	4MHz
LQH43PZ151M26	LQH43PH151M26	150µH ±20%	1MHz	280mA	260mA(Ambient temp.85°C) 140mA(Ambient temp.105°C)	2.362Ω±20%	3MHz
LQH43PZ221M26	LQH43PH221M26	220µH ±20%	1MHz	220mA	240mA(Ambient temp.85°C) 130mA(Ambient temp.105°C)	2.900Ω±20%	2MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of nominal inductance value. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C.

Continued on the following page. earrow

Inductance-Frequency Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

_QH5BPZ_T0 Series 2020 (5050) inch (mm)

(0.2)

(in mm)

Packaging

Code

K L Minimum

Ouantity

3000

500

Packaging

ø330mm Embossed Taping

ø180mm Embossed Taping

RF Inductors

Rated Value (\Box : packaging code)

Appearance/Dimensions

Inductors for Power Lines

2.0±0.2

5.0±0.2

<u>1.5±0.2</u>

5.0±0.2

5.0±0.2

1.5±0.2

Part N	lumber		Inductance				
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F* (min.)
LQH5BPZR47NT0	-	0.47µH ±30%	100kHz	7.7A	4.0A(Ambient temp.85°C) 2.05A(Ambient temp.105°C)	0.012Ω±20%	220MHz
LQH5BPZ1R0NT0	-	1.0µH ±30%	100kHz	5.8A	3.1A(Ambient temp.85°C) 1.68A(Ambient temp.105°C)	0.019Ω±20%	90MHz
LQH5BPZ1R2NT0	-	1.2µH ±30%	100kHz	5.4A	3.1A(Ambient temp.85°C) 1.68A(Ambient temp.105°C)	0.019Ω±20%	90MHz
LQH5BPZ1R5NT0	-	1.5µH ±30%	100kHz	5.0A	3.0A(Ambient temp.85°C) 1.63A(Ambient temp.105°C)	0.024Ω±20%	70MHz
LQH5BPZ2R2NT0	-	2.2µH ±30%	100kHz	4.0A	2.6A(Ambient temp.85°C) 1.37A(Ambient temp.105°C)	0.030Ω±20%	55MHz
LQH5BPZ2R7NT0	-	2.7µH ±30%	100kHz	3.8A	2.5A(Ambient temp.85°C) 1.23A(Ambient temp.105°C)	0.035Ω±20%	50MHz
LQH5BPZ3R3NT0	-	3.3µH ±30%	100kHz	3.5A	2.3A(Ambient temp.85°C) 1.21A(Ambient temp.105°C)	0.044Ω±20%	40MHz
LQH5BPZ4R7NT0	_	4.7µH ±30%	100kHz	3.0A	2.0A(Ambient temp.85°C) 1.09A(Ambient temp.105°C)	0.058Ω±20%	40MHz
LQH5BPZ6R8NT0	_	6.8µH ±30%	100kHz	2.5A	1.65A(Ambient temp.85°C) 0.96A(Ambient temp.105°C)	0.083Ω±20%	30MHz
LQH5BPZ100MT0	-	10µH ±20%	100kHz	2.0A	1.60A(Ambient temp.85°C) 0.87A(Ambient temp.105°C)	0.106Ω±20%	25MHz
LQH5BPZ150MT0	-	15µH ±20%	100kHz	1.6A	1.20A(Ambient temp.85°C) 0.62A(Ambient temp.105°C)	0.187Ω±20%	18MHz
LQH5BPZ220MT0	_	22µH ±20%	100kHz	1.4A	1.05A(Ambient temp.85°C) 0.55A(Ambient temp.105°C)	0.259Ω±20%	15MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 105°C

Class of Magnetic Shield: Magnetic Resin

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of initial inductance value. When rated current is applied to the products, self-temperature rise shall be limited to 40°C max. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C.

Continued on the following page. earrow

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

muRata

Inductors for Power Lines MBH6045C High Current Series 2424 (6262) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	1000	

Rated Value (\Box : packaging code)

Part	Number	Inductance	Inductance		Dated Compart (Hama)*	DC Resistance
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance
—	MBH6045C-1R5NA	1.5µH ±30%	0.1MHz	6300mA	4300mA	0.017Ω±30%
—	MBH6045C-3R3NA	3.3µH ±30%	0.1MHz	4100mA	3400mA	0.024Ω±30%
_	MBH6045C-4R7NA	4.7µH ±30%	0.1MHz	3300mA	2800mA	0.029Ω±30%
_	MBH6045C-6R8NA	6.8µH ±30%	0.1MHz	2700mA	2100mA	0.051Ω±30%
_	MBH6045C-100MA	10µH ±20%	0.1MHz	2300mA	2000mA	0.063Ω±20%
_	MBH6045C-150MA	15µH ±20%	0.1MHz	1800mA	1500mA	0.099Ω±20%
_	MBH6045C-220MA	22µH ±20%	0.1MHz	1500mA	1200mA	0.139Ω±20%
_	MBH6045C-330MA	33µH ±20%	0.1MHz	1200mA	1100mA	0.178Ω±20%
—	MBH6045C-470MA	47µH ±20%	0.1MHz	1100mA	1000mA	0.256Ω±20%
_	MBH6045C-680MA	68µH ±20%	0.1MHz	900mA	840mA	0.347Ω±20%
_	MBH6045C-101MA	100µH ±20%	0.1MHz	710mA	700mA	0.487Ω±20%
_	MBH6045C-151MA	150µH ±20%	0.1MHz	580mA	510mA	0.772Ω±20%
_	MBH6045C-221MA	220µH ±20%	0.1MHz	470mA	480mA	1.080Ω±20%

(in mm)

Operating temp.range (Self-temp.rise included): -40 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 10%. (The ambient reference temperature is 25°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C) Class of Magnetic Shield: Ferrite Core

Inductance-Current Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. $earrow \earrow \ea$

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

Inductors for Power Lines MBH6045C Low Rdc Series 2424 (6262) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	1000	

Rated Value (: packaging code)

Part	Number	Inductance	Inductance		Dated Compart (Items)	DC Resistance	
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	
_	MBH6045C-1R0ND	1.0µH ±30%	0.1MHz	4400mA	4400mA	0.014Ω±30%	
_	MBH6045C-1R5NB	1.5µH ±30%	0.1MHz	3500mA	4400mA	0.015Ω±30%	
_	MBH6045C-3R3NB	3.3µH ±30%	0.1MHz	2300mA	3500mA	0.019Ω±30%	
-	MBH6045C-4R7NB	4.7µH ±30%	0.1MHz	2000mA	3200mA	0.023Ω±30%	
_	MBH6045C-6R8NB	6.8µH ±30%	0.1MHz	1600mA	2600mA	0.027Ω±30%	
_	MBH6045C-100MB	10µH ±20%	0.1MHz	1200mA	2500mA	0.038Ω±20%	
-	MBH6045C-150MB	15µH ±20%	0.1MHz	900mA	2100mA	0.055Ω±20%	
-	MBH6045C-220MB	22µH ±20%	0.1MHz	900mA	1700mA	0.078Ω±20%	
-	MBH6045C-330MB	33µH ±20%	0.1MHz	700mA	1500mA	0.103Ω±20%	
-	MBH6045C-470MB	47µH ±20%	0.1MHz	560mA	1100mA	0.130Ω±20%	
-	MBH6045C-680MB	68µH ±20%	0.1MHz	480mA	940mA	0.215Ω±20%	
-	MBH6045C-101MB	100µH ±20%	0.1MHz	400mA	830mA	0.340Ω±20%	
_	MBH6045C-151MB	150µH ±20%	0.1MHz	320mA	710mA	0.480Ω±20%	
-	MBH6045C-221MB	220µH ±20%	0.1MHz	260mA	560mA	0.780Ω±20%	
-	MBH6045C-331MB	330µH ±20%	0.1MHz	230mA	480mA	0.970Ω±20%	
_	MBH6045C-471MB	470µH ±20%	0.1MHz	180mA	410mA	1.420Ω±20%	

(in mm)

Operating temp.range (Self-temp.rise included): -40 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 10%. (The ambient reference temperature is 25°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C)

Class of Magnetic Shield: Ferrite Core

Continued on the following page. 🖊

anati-stated from

1140

Inductance-Frequency Characteristics (Typ.)

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

embelogic-ditmit L-Garrant 20mpl

Derating of Rated Current

Saidt Inerial-1 Midd-14408

Inductors for Power Lines MDH6045C High Current Series 2524 (6360) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	1000

Rated Value (: packaging code)

Part	Number	Inductance	Inductance	Rated Current (Isat)*	Dated Compart (Hama)*	DC Resistance
Infotainment	Powertrain/Safety	Inductance	Test Frequency		Rated Current (Itemp)*	DC Resistance
_	MDH6045C-1R0NA	1.0µH ±30%	0.1MHz	5800mA	3900mA	0.011Ω±30%
_	MDH6045C-1R5NA	1.5µH ±30%	0.1MHz	5000mA	3600mA	0.013Ω±30%
_	MDH6045C-2R2NA	2.2µH ±30%	0.1MHz	4200mA	3400mA	0.015Ω±30%
_	MDH6045C-3R3NA	3.3µH ±30%	0.1MHz	3600mA	3000mA	0.019Ω±30%
_	MDH6045C-4R7NA	4.7µH ±30%	0.1MHz	2900mA	2700mA	0.023Ω±30%
_	MDH6045C-6R8NA	6.8µH ±30%	0.1MHz	2500mA	2500mA	0.027Ω±30%
_	MDH6045C-100MA	10µH ±20%	0.1MHz	2000mA	1900mA	0.040Ω±30%
_	MDH6045C-150MA	15µH ±20%	0.1MHz	1600mA	1700mA	0.060Ω±30%
_	MDH6045C-220MA	22µH ±20%	0.1MHz	1400mA	1400mA	0.082Ω±30%
_	MDH6045C-330MA	33µH ±20%	0.1MHz	1000mA	1200mA	0.130Ω±30%
_	MDH6045C-470MA	47µH ±20%	0.1MHz	880mA	1000mA	0.160Ω±30%
_	MDH6045C-680MA	68µH ±20%	0.1MHz	720mA	800mA	0.220Ω±30%
_	MDH6045C-101MA	100µH ±20%	0.1MHz	600mA	640mA	0.340Ω±30%
_	MDH6045C-151MA	150µH ±20%	0.1MHz	520mA	540mA	0.520Ω±30%
—	MDH6045C-221MA	220µH ±20%	0.1MHz	400mA	440mA	0.720Ω±30%

Operating temp.range (Self-temp.rise included): -55 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

The saturation allowable DC current value is specified when the decrease of the nominal Inductance value at 30%. (The ambient reference temperature is 20°C)

Rated Current (Based on Temperature rise) is specified when temperature of the inductor on our PCB for test purpose is raised 40°C by DC current. (The ambient reference temperature is 20°C)

Class of Magnetic Shield: Ferrite Core

Continued on the following page. 🖊

Inductors for General Circuits

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Derating of Rated Current

Inductors for General Circuits

Inductors for Power Lines

264

muRata

ę

(in mm)

Inductors for Power Line:

RF Inductors

Rated Value (
: packaging code)

Inductors for Power Lines

6.0±0.2

Polarity Marki

Appearance/Dimensions

Part N	lumber	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current (Isat)"	Rated Current (itemp)*	DC Resistance
—	MDH6045C-1R2NB	1.2µH ±30%	0.1MHz	5500mA	3800mA	0.011Ω±30%
—	MDH6045C-100MB	10µH ±20%	0.1MHz	1800mA	2000mA	0.038Ω±30%
_	MDH6045C-150MB	15µH ±20%	0.1MHz	1400mA	1800mA	0.055Ω±30%
—	MDH6045C-220MB	22µH ±20%	0.1MHz	1200mA	1400mA	0.080Ω±30%
-	MDH6045C-330MB	33µH ±20%	0.1MHz	960mA	1300mA	0.105Ω±30%
-	MDH6045C-470MB	47µH ±20%	0.1MHz	760mA	1100mA	0.130Ω±30%
_	MDH6045C-680MB	68µH ±20%	0.1MHz	680mA	840mA	0.200Ω±30%
-	MDH6045C-101MB	100µH ±20%	0.1MHz	560mA	680mA	0.340Ω±30%
_	MDH6045C-151MB	150µH ±20%	0.1MHz	440mA	580mA	0.500Ω±30%
_	MDH6045C-221MB	220µH ±20%	0.1MHz	360mA	480mA	0.700Ω±30%
_	MDH6045C-331MB	330µH ±20%	0.1MHz	300mA	380mA	0.970Ω±30%
—	MDH6045C-471MB	470µH ±20%	0.1MHz	240mA	340mA	1.450Ω±30%

Operating temp.range (Self-temp.rise included): -55 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

The saturation allowable DC current value is specified when the decrease of the nominal Inductance value at 30%. (The ambient reference temperature is 20°C)

Rated Current (Based on Temperature rise) is specified when temperature of the inductor on our PCB for test purpose is raised 40°C by DC current. (The ambient reference temperature is 20°C)

Class of Magnetic Shield: Ferrite Core

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. 🎢

MDH6045C Low Rdc Series 2524 (6360) inch (mm)

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	1000

Continued from the preceding page. 🖌

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Inductors for Power Lines MBH7045C High Current Series 2828 (7272) inch (mm)

Appearance/Dimensions

max

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	1000

Rated Value (: packaging code)

Part Number		Inductors	Inductance	Rated Current (Isat)*	Debad Original (the search)	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)"	Rated Current (Itemp)*	DC Resistance
_	MBH7045C-2R2NB	2.2µH ±30%	0.1MHz	4600mA	3500mA	0.0155Ω±20%
_	MBH7045C-3R3NB	3.3µH ±30%	0.1MHz	3300mA	3400mA	0.021Ω±20%
_	MBH7045C-4R7NB	4.7µH ±30%	0.1MHz	3000mA	2900mA	0.024Ω±20%
_	MBH7045C-6R8NB	6.8µH ±30%	0.1MHz	2400mA	2800mA	0.029Ω±20%
_	MBH7045C-100MB	10µH ±20%	0.1MHz	2000mA	2700mA	0.036Ω±20%
_	MBH7045C-150MB	15µH ±20%	0.1MHz	1600mA	2100mA	0.054Ω±20%
_	MBH7045C-220MB	22µH ±20%	0.1MHz	1400mA	1800mA	0.070Ω±20%
_	MBH7045C-330MB	33µH ±20%	0.1MHz	1100mA	1500mA	0.105Ω±20%
_	MBH7045C-470MB	47µH ±20%	0.1MHz	900mA	1100mA	0.150Ω±20%
_	MBH7045C-680MB	68µH ±20%	0.1MHz	750mA	1000mA	0.210Ω±20%
_	MBH7045C-101MB	100µH ±20%	0.1MHz	630mA	840mA	0.310Ω±20%
_	MBH7045C-151MB	150µH ±20%	0.1MHz	510mA	670mA	0.460Ω±20%
_	MBH7045C-221MB	220µH ±20%	0.1MHz	400mA	550mA	0.690Ω±20%

(in mm)

Operating temp.range (Self-temp.rise included): -40 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 10%. (The ambient reference temperature is 25°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C) Class of Magnetic Shield: Ferrite Core

Inductance-Current Characteristics (Typ.)

muRata

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. 🆊

Continued from the preceding page. 🖌

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Inductors for Power Lines MBH7045C Low Rdc Series 2828 (7272) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	1000	

Rated Value (: packaging code)

Part Number		Inductance	Inductance		Dated Comment (Hama)	DC Resistance
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance
_	MBH7045C-3R3NA	3.3µH ±30%	0.1MHz	2500mA	3500mA	0.019Ω±20%
_	MBH7045C-4R7NA	4.7µH ±30%	0.1MHz	2000mA	3200mA	0.023Ω±20%
_	MBH7045C-6R8NA	6.8µH ±30%	0.1MHz	1700mA	2700mA	0.028Ω±20%
_	MBH7045C-100MA	10µH ±20%	0.1MHz	1300mA	2500mA	0.036Ω±20%
_	MBH7045C-150MA	15µH ±20%	0.1MHz	1100mA	2100mA	0.052Ω±20%
_	MBH7045C-220MA	22µH ±20%	0.1MHz	1000mA	1900mA	0.061Ω±20%
_	MBH7045C-330MA	33µH ±20%	0.1MHz	800mA	1400mA	0.096Ω±20%
_	MBH7045C-470MA	47µH ±20%	0.1MHz	700mA	1300mA	0.125Ω±20%
_	MBH7045C-680MA	68µH ±20%	0.1MHz	590mA	1100mA	0.175Ω±20%
_	MBH7045C-101MA	100µH ±20%	0.1MHz	480mA	1000mA	0.250Ω±20%
_	MBH7045C-151MA	150µH ±20%	0.1MHz	390mA	790mA	0.340Ω±20%
_	MBH7045C-221MA	220µH ±20%	0.1MHz	340mA	650mA	0.520Ω±20%
_	MBH7045C-331MA	330µH ±20%	0.1MHz	250mA	540mA	0.740Ω±20%
—	MBH7045C-471MA	470µH ±20%	0.1MHz	220mA	430mA	1.050Ω±20%
—	MBH7045C-681MA	680µH ±20%	0.1MHz	200mA	360mA	1.480Ω±20%
_	MBH7045C-102MA	1000µH ±20%	0.1MHz	140mA	310mA	2.280Ω±20%

(in mm)

Operating temp.range (Self-temp.rise included): -40 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 10%. (The ambient reference temperature is 25°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C)

Class of Magnetic Shield: Ferrite Core

Continued on the following page. 🎢

Inductors for Power Lines

Inductors for General Circuits

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Derating of Rated Current

Inductors for Power Lines MDH7045C Series 2928 (7470) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	1000	

Rated Value (: packaging code)

Part Number		Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current (ISat)"	Rated Current (itemp)"	DC Resistance
—	MDH7045C-1R0NB	1.0µH ±30%	0.1MHz	8800mA	4700mA	0.009Ω±30%
—	MDH7045C-1R5NB	1.5µH ±30%	0.1MHz	7100mA	4300mA	0.010Ω±30%
—	MDH7045C-2R2NB	2.2µH ±30%	0.1MHz	5800mA	4100mA	0.013Ω±30%
—	MDH7045C-3R3NB	3.3µH ±30%	0.1MHz	5000mA	3400mA	0.016Ω±30%
—	MDH7045C-4R7NB	4.7µH ±30%	0.1MHz	4200mA	3000mA	0.018Ω±30%
—	MDH7045C-6R8NB	6.8µH ±30%	0.1MHz	3400mA	2800mA	0.022Ω±30%
—	MDH7045C-100MA	10µH ±20%	0.1MHz	2500mA	2600mA	0.033Ω±30%
—	MDH7045C-150MA	15µH ±20%	0.1MHz	2000mA	1800mA	0.055Ω±30%
—	MDH7045C-220MA	22µH ±20%	0.1MHz	1600mA	1700mA	0.069Ω±30%
—	MDH7045C-330MA	33µH ±20%	0.1MHz	1400mA	1300mA	0.097Ω±30%
—	MDH7045C-470MA	47µH ±20%	0.1MHz	1100mA	1100mA	0.13Ω±30%
—	MDH7045C-680MA	68µH ±20%	0.1MHz	960mA	880mA	0.20Ω±30%
—	MDH7045C-101MA	100µH ±20%	0.1MHz	750mA	800mA	0.29Ω±30%
—	MDH7045C-151MA	150µH ±20%	0.1MHz	640mA	600mA	0.43Ω±30%
—	MDH7045C-221MA	220µH ±20%	0.1MHz	530mA	510mA	0.55Ω±30%
—	MDH7045C-331MA	330µH ±20%	0.1MHz	420mA	490mA	0.80Ω±30%
-	MDH7045C-471MA	470µH ±20%	0.1MHz	360mA	350mA	1.20Ω±30%

Operating temp.range (Self-temp.rise included): -55 to 150°C

Inductance:

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

The saturation allowable DC current value is specified when the decrease of the nominal Inductance value at 30%. (The ambient reference temperature is 20°C)

Rated Current (Based on Temperature rise) is specified when temperature of the inductor on our PCB for test purpose is raised 40°C by DC current. (The ambient reference temperature is

20°C)

Class of Magnetic Shield: Ferrite Core

Continued on the following page. \checkmark

Inductors for General Circuits

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature

(derating curve).

Inductors for Power Lines

MDH10060C Series 4039 (101100) inch (mm)

RF Inductors

Packaging

ø330mm Embossed Taping

Packaging

Code

=P3

Rated Value (\Box : packaging code)

Inductors for Power Lines

10±0.3

Polarity Marking

f

L0.1±0.3

(4.8)

65±0.1

(in mm)

3.5±0.1

Appearance/Dimensions

Part	Number	In duration of	Inductance		Rated Current (Itemp)*	DO Desistence
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*		DC Resistance
—	MDH10060C-4R7NA	4.7µH ±30%	0.1MHz	5900mA	4900mA	0.010Ω±30%
—	MDH10060C-6R8NA	6.8µH ±30%	0.1MHz	5000mA	4300mA	0.013Ω±30%
_	MDH10060C-100MA	10µH ±20%	0.1MHz	4100mA	3800mA	0.017Ω±30%
—	MDH10060C-150MA	15µH ±20%	0.1MHz	3400mA	3100mA	0.027Ω±30%
—	MDH10060C-220MA	22µH ±20%	0.1MHz	2800mA	2700mA	0.040Ω±30%
_	MDH10060C-330MA	33µH ±20%	0.1MHz	2200mA	2200mA	0.061Ω±30%
_	MDH10060C-470MA	47µH ±20%	0.1MHz	1900mA	2000mA	0.074Ω±30%
_	MDH10060C-680MA	68µH ±20%	0.1MHz	1600mA	1700mA	0.091Ω±30%
_	MDH10060C-101MA	100µH ±20%	0.1MHz	1300mA	1300mA	0.150Ω±30%
_	MDH10060C-151MA	150µH ±20%	0.1MHz	1000mA	1000mA	0.240Ω±30%
_	MDH10060C-221MA	220µH ±20%	0.1MHz	880mA	880mA	0.350Ω±30%
_	MDH10060C-331MA	330µH ±20%	0.1MHz	720mA	720mA	0.480Ω±30%
_	MDH10060C-471MA	470µH ±20%	0.1MHz	560mA	560mA	0.750Ω±30%

Operating temp.range (Self-temp.rise included): -55 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

The saturation allowable DC current value is specified when the decrease of the nominal Inductance value at 30%. (The ambient reference temperature is 20°C)

Rated Current (Based on Temperature rise) is specified when temperature of the inductor on our PCB for test purpose is raised 40°C by DC current. (The ambient reference temperature is 20°C)

Class of Magnetic Shield: Ferrite Core

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. 🎢

Minimum

Ouantity

500

muRata

Continued from the preceding page. 🖌

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Inductors for Power Lines MBH10145C Series 4141 (104104) inch (mm)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	500	

Rated Value (\Box : packaging code)

Part Number		Induction	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance
Infotainment	Powertrain/Safety	3NA 3.3µH ±30% SNA 5.6µH ±30% SNA 10µH ±20% DMA 15µH ±20% DMA 22µH ±20% DMA 33µH ±20% DMA 47µH ±20% DMA 68µH ±20% DMA 100µH ±20%	Test Frequency	Rated Current (Isat)	Rated Current (itemp)	DC Resistance
_	MBH10145C-3R3NA	3.3µH ±30%	0.1MHz	4900mA	4300mA	0.017Ω±20%
_	MBH10145C-5R6NA	5.6µH ±30%	0.1MHz	4100mA	3700mA	0.022Ω±20%
_	MBH10145C-100MA	10µH ±20%	0.1MHz	3100mA	3000mA	0.037Ω±20%
_	MBH10145C-150MA	15µH ±20%	0.1MHz	2600mA	2500mA	0.048Ω±20%
_	MBH10145C-220MA	22µH ±20%	0.1MHz	2200mA	2300mA	0.060Ω±20%
_	MBH10145C-330MA	33µH ±20%	0.1MHz	1700mA	2100mA	0.082Ω±20%
—	MBH10145C-470MA	47µH ±20%	0.1MHz	1600mA	1700mA	0.100Ω±20%
_	MBH10145C-680MA	68µH ±20%	0.1MHz	1200mA	1500mA	0.140Ω±20%
_	MBH10145C-101MA	100µH ±20%	0.1MHz	980mA	1200mA	0.200Ω±20%
_	MBH10145C-151MA	150µH ±20%	0.1MHz	750mA	930mA	0.350Ω±20%
_	MBH10145C-221MA	220µH ±20%	0.1MHz	680mA	850mA	0.470Ω±20%
_	MBH10145C-331MA	330µH ±20%	0.1MHz	560mA	730mA	0.680Ω±20%
_	MBH10145C-471MA	470µH ±20%	0.1MHz	450mA	560mA	1.030Ω±20%
_	MBH10145C-681MA	680µH ±20%	0.1MHz	380mA	480mA	1.600Ω±20%
_	MBH10145C-102MA	1000µH ±20%	0.1MHz	300mA	350mA	2.800Ω±20%
_	MBH10145C-152MA	1500µH ±20%	0.1MHz	260mA	330mA	3.400Ω±20%

Operating temp.range (Self-temp.rise included): -40 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 10%. (The ambient reference temperature is 25°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C)

Class of Magnetic Shield: Ferrite Core

Continued on the following page. earrow

Inductors for General Circuits

Continued from the preceding page. 🖌

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Derating of Rated Current

Inductors for Power Lines

Inductors for Power Lines

RF Inductors

Inductors for Power Lines
MBH12282C Series 4949 (125125) inch (mm)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	300	

Rated Value (: packaging code)

Part N	Part Number		Inductance	Rated Current (Isat)*	Dated Comment (Items)*	DC Resistance
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)"	Rated Current (Itemp)*	DC Resistance
-	MBH12282C-2RONA	2.0µH ±30%	0.1MHz	13000mA	7300mA	0.0091Ω±20%
_	MBH12282C-3R9NA	3.9µH ±30%	0.1MHz	9100mA	6200mA	0.012Ω±20%
—	MBH12282C-4R7NA	4.7µH ±30%	0.1MHz	7900mA	5900mA	0.013Ω±20%
—	MBH12282C-6R8NA	6.8µH ±30%	0.1MHz	7000mA	5700mA	0.015Ω±20%
—	MBH12282C-100MA	10µH ±20%	0.1MHz	5700mA	5300mA	0.019Ω±20%
_	MBH12282C-150MA	15µH ±20%	0.1MHz	4400mA	4700mA	0.021Ω±20%
_	MBH12282C-220MA	22µH ±20%	0.1MHz	3800mA	4000mA	0.029Ω±20%
_	MBH12282C-330MA	33µH ±20%	0.1MHz	3000mA	3000mA	0.047Ω±20%
_	MBH12282C-470MA	47µH ±20%	0.1MHz	2500mA	2600mA	0.066Ω±20%
—	MBH12282C-680MA	68µH ±20%	0.1MHz	2100mA	2200mA	0.083Ω±20%
—	MBH12282C-820MA	82µH ±20%	0.1MHz	1900mA	2200mA	0.091Ω±20%
—	MBH12282C-101MA	100µH ±20%	0.1MHz	1700mA	1900mA	0.110Ω±20%
—	MBH12282C-151MA	150µH ±20%	0.1MHz	1400mA	1600mA	0.160Ω±20%
—	MBH12282C-221MA	220µH ±20%	0.1MHz	1100mA	1200mA	0.250Ω±20%
—	MBH12282C-331MA	330µH ±20%	0.1MHz	900mA	1100mA	0.350Ω±20%
—	MBH12282C-471MA	470µH ±20%	0.1MHz	840mA	930mA	0.460Ω±20%
—	MBH12282C-681MA	680µH ±20%	0.1MHz	660mA	760mA	0.720Ω±20%
—	MBH12282C-102MA	1000µH ±20%	0.1MHz	560mA	590mA	1.050Ω±20%

Operating temp.range (Self-temp.rise included): -40 to 150°C

Inductance:

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 10%. (The ambient reference temperature is 25°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C)

Class of Magnetic Shield: Ferrite Core

Continued on the following page. \nearrow

 ANote
 • Please read rating and
 ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. \searrow

Inductance-Current Characteristics (Typ.) Temperature Rise Characteristics (Typ.) (a) mine 2000 4000 6000 Gurrent[ink] 8000 10000 12000 2000 400 rent1ad3 8008 30000 18 MENT20420-MONA L-Current 25dept #MENT20420 10084 1-Garrant History added 20020-Adding Target wine. autorizitiz-total form rise maint20420-Altika L

Inductance-Frequency Characteristics (Typ.)

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Derating of Rated Current

Inductors for Power Lines MDH12577C Series 5049 (128125) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	300	

Rated Value (\Box : packaging code)

Part I	Number	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)"	Rated Current (itemp)"	DCRESIStance	
—	MDH12577C-4R7NA	4.7µH ±30%	0.1MHz	11000mA	5400mA	0.009Ω±30%	
—	MDH12577C-6R8NA	6.8µH ±30%	0.1MHz	8600mA	4800mA	0.012Ω±30%	
—	MDH12577C-100MA	10µH ±20%	0.1MHz	7700mA	4700mA	0.014Ω±30%	
—	MDH12577C-150MA	15µH ±20%	0.1MHz	5700mA	3600mA	0.022Ω±30%	
—	MDH12577C-220MA	22µH ±20%	0.1MHz	4900mA	3000mA	0.033Ω±30%	
—	MDH12577C-330MA	33µH ±20%	0.1MHz	4000mA	2700mA	0.039Ω±30%	
—	MDH12577C-470MA	47µH ±20%	0.1MHz	3400mA	2100mA	0.066Ω±30%	
—	MDH12577C-680MA	68µH ±20%	0.1MHz	2800mA	1800mA	0.090Ω±30%	
—	MDH12577C-101MA	100µH ±20%	0.1MHz	2300mA	1600mA	0.108Ω±30%	
—	MDH12577C-151MA	150µH ±20%	0.1MHz	1900mA	1400mA	0.17Ω±30%	
—	MDH12577C-221MA	220µH ±20%	0.1MHz	1500mA	1100mA	0.25Ω±30%	
—	MDH12577C-331MA	330µH ±20%	0.1MHz	1300mA	900mA	0.41Ω±30%	
—	MDH12577C-471MA	470µH ±20%	0.1MHz	1000mA	700mA	0.54Ω±30%	

Operating temp.range (Self-temp.rise included): -55 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

The saturation allowable DC current value is specified when the decrease of the nominal Inductance value at 30%. (The ambient reference temperature is 20°C)

Rated Current (Based on Temperature rise) is specified when temperature of the inductor on our PCB for test purpose is raised 40°C by DC current. (The ambient reference temperature is 20°C)

Class of Magnetic Shield: Ferrite Core

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. 🖊

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Inductors for Power Lines MBH12575C Series 5050 (128128) inch (mm)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	300	

Rated Value (: packaging code)

Part	Number	Inductors	Inductance	Data d Cumant (last)*	Dated Compart (Hama)*	DC Resistance	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	
-	MBH12575C-2R7NA	2.7µH ±30%	0.1MHz	10000mA	7100mA	0.010Ω±20%	
_	MBH12575C-3R9NA	3.9µH ±30%	0.1MHz	8000mA	6500mA	0.011Ω±20%	
_	MBH12575C-5R6NA	5.6µH ±30%	0.1MHz	7000mA	6000mA	0.012Ω±20%	
_	MBH12575C-6R8NA	6.8µH ±30%	0.1MHz	5900mA	5600mA	0.014Ω±20%	
_	MBH12575C-100MA	10µH ±20%	0.1MHz	4900mA	5200mA	0.016Ω±20%	
_	MBH12575C-150MA	15µH ±20%	0.1MHz	3800mA	4700mA	0.019Ω±20%	
_	MBH12575C-220MA	22µH ±20%	0.1MHz	3100mA	4000mA	0.027Ω±20%	
_	MBH12575C-330MA	33µH ±20%	0.1MHz	2800mA	3400mA	0.040Ω±20%	
_	MBH12575C-470MA	47µH ±20%	0.1MHz	2100mA	2700mA	0.053Ω±20%	
_	MBH12575C-680MA	68µH ±20%	0.1MHz	1700mA	2100mA	0.077Ω±20%	
-	MBH12575C-101MA	100µH ±20%	0.1MHz	1500mA	1700mA	0.120Ω±20%	
_	MBH12575C-151MA	150µH ±20%	0.1MHz	1300mA	1400mA	0.170Ω±20%	
—	MBH12575C-221MA	220µH ±20%	0.1MHz	1000mA	1200mA	0.250Ω±20%	

Operating temp.range (Self-temp.rise included): -40 to 150°C

Inductance

Measured with an LCR meter 4284A (Keysight) or equivalent.

RDC:

Measured with a Digital Multimeter TR6871 (Advantest) or equivalent.

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 10%. (The ambient reference temperature is 25°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 25°C) Class of Magnetic Shield: Ferrite Core

Temperature Rise Characteristics (Typ.)

Inductance-Frequency Characteristics (Typ.)

Continued on the following page. 🎢

Inductors for Power Lin

RF Inductors

muRata

Continued from the preceding page. 🖌

Notice (Rating)

Max. current (DC, AC) as function of ambient temperature (derating curve).

Inductors for Power Lines LQM18PZ_CH Series 0603 (1608) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
В	Packing in Bulk	1000

Rated Value (\Box : packaging code)

	00 /						
Part N	lumber	Inductance		Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	inductance	Test Frequency				J.N.1 (11111.)
LQM18PZ1R0MCH	_	1.0µH ±20%	1MHz	600mA	950mA(Ambient temp.85°C) 650mA(Ambient temp.125°C)	0.29Ω	80MHz
LQM18PZ2R2MCH	_	2.2µH ±20%	1MHz	200mA	750mA(Ambient temp.85°C) 500mA(Ambient temp.125°C)	0.48Ω	50MHz
LQM18PZ2R5NCH	_	2.5µH ±30%	1MHz	100mA	900mA(Ambient temp.85°C) 640mA(Ambient temp.125°C)	0.30Ω	50MHz

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM18PZ_CH series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, Inductance will be within ±30% of initial Inductance value range. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°Cmax.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Continued on the following page. earrow
ea

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

RF Inductors

Inductors for Power Lines

QM18PZ_DH Series 0603 (1608) inch (mm)

0.6±0.15

(in mm)

0.8±0.15

Minimum

Ouantity

4000

1000

RF Inductors

D ø180mm Paper Taping B Packing in Bulk

Packaging

Packaging

Code

Rated Value (\Box : packaging code)

Inductors for Power Lines

0.4±0.2

1.6±0.15

Part Number		Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance	S D E* (min)
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current (Isat)	Rated Current (itemp)	Max. Of DC Resistance	э.к.і (піп.)
LQM18PZ2R2MDH	_	2.2µH ±20%	1MHz	250mA	650mA(Ambient temp.85°C) 450mA(Ambient temp.125°C)	0 470	80MHz

Operating temp.range: -55 to 125°C

Appearance/Dimensions

Class of Magnetic Shield: Ferrite Core

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM18PZ_DH series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, Inductance will be within ±30% of initial Inductance value range. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°Cmax.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Inductors for Power Lines LQM18PZ_FH Series 0603 (1608) inch (mm)

Appearance/Dimensions

Inductors for General Circuits

RF Inductors

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
В	B Packing in Bulk	

Rated Value (\Box : packaging code)

Part Number		Inductance		Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance	S D E* (min)
Infotainment	Powertrain/Safety		Test Frequency	Rated Current (Isat)"	Rated Current (itemp)"	Max. Of DC Resistance	3.R.F" (IIIII.)
LQM18PZ2R2MFH	_	2.2µH ±20%	1MHz	300mA	700mA(Ambient temp.85°C) 500mA(Ambient temp.125°C)	0.47Ω	80MHz

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

Only for reflow soldering

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM18PZ_FH series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, Inductance will be within ±30% of initial Inductance value range. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°Cmax.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

QM21PZ_C0 Series 0805 (2012) inch (mm)

1.25±0.2

(in mm)

0.5±0.0

0.5±0.2

2.0±0.2

RF Inductors

Rated Value (
: packaging code)

Appearance/Dimensions

Inductors for Power Lines

Part Number		Inductance	Inductance	Rated Current	DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current	DC Resistance	5.R.F" (IIIII.)
LQM21PZR47MC0	-	0.47µH ±20%	1MHz	1.1A(Ambient temp.85°C) 0.82A(Ambient temp.125°C)	0.12Ω±25%	100MHz
LQM21PZ1R0MC0	_	1.0µH ±20%	1MHz	0.8A(Ambient temp.85°C) 0.60A(Ambient temp.125°C)	0.19Ω±25%	90MHz
LQM21PZ1R5MC0	_	1.5µH ±20%	1MHz	0.7A(Ambient temp.85°C) 0.52A(Ambient temp.125°C)	0.26Ω±25%	70MHz
LQM21PZ2R2MC0	_	2.2µH ±20%	1MHz	0.6A(Ambient temp.85°C) 0.45A(Ambient temp.125°C)	0.34Ω±25%	50MHz

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Continued on the following page. 🖊

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
В	Packing in Bulk	1000

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

.QM21PZ_G0 Series 0805 (2012) inch (mm)

0.9±0.1

(in mm)

1.25±0.15

Packaging

Code

D

в

Packaging

ø180mm Paper Taping

Packing in Bulk

Minimum

Ouantity

4000

1000

RF Inductors

Rated Value (: packaging code)

Appearance/Dimensions

Inductors for Power Lines

0.5±0.2

2.0±0.15

Part Number		Inductance	Inductance	Rated Current	DC Resistance	S.R.F* (min.)		
Infotainment	Powertrain/Safety	inductance	Test Frequency	Nated Current	De Resistance	5.10.1 (1111.)		
LQM21PZR47MG0	_	0.47µH ±20%	1MHz	1.3A(Ambient temp.85°C) 0.95A(Ambient temp.125°C)	0.075Ω(typ.)	100MHz		
LQM21PZR54MG0	_	0.54µH ±20%	1MHz	1.3A(Ambient temp.85°C) 0.95A(Ambient temp.125°C)	0.075Ω(typ.)	100MHz		
LQM21PZ3R3MG0	_	3.3µH ±20%	1MHz	0.8A(Ambient temp.85°C) 0.55A(Ambient temp.125°C)	0.165Ω(typ.)	30MHz		
LQM21PZ3R3NG0	_	3.3µH ±30%	1MHz	0.8A(Ambient temp.85°C) 0.55A(Ambient temp.125°C)	0.165Ω(typ.)	30MHz		

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM21P_GO series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Continued on the following page. $earrow \earrow \ea$

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

Inductors for Power Lines

0.9±0.1

(in mm)

1.25±0.15

Inductors for Power Lines

RF Inductors

Rated Value (\Box : packaging code)

Appearance/Dimensions

Inductors for Power Lines

0.5±0.2

2.0±0.15

Part Number			Inductance			
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)
LQM21PZ1R0NGC	-	1.0µH ±30%	1MHz	0.9A(Ambient temp.85°C) 0.65A(Ambient temp.125°C)	0.10Ω±25%	50MHz
-	LQM21PH2R2MGC	2.2µH ±20%	1MHz	0.8A(Ambient temp.85°C) 0.6A(Ambient temp.125°C)	0.23Ω±25%	40MHz
LQM21PZ2R2NGC	LQM21PH2R2NGC	2.2µH ±30%	1MHz	0.8A(Ambient temp.85°C) 0.6A(Ambient temp.125°C)	0.23Ω±25%	40MHz

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM21P_GC series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Continued on the following page. earrow

QM21PZ_GC/LQM21PH_GC Series 0805 (2012) inch (mm)

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
В	Packing in Bulk	1000

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

QM21PZ_GR Series 0805 (2012) inch (mm)

0.9±0.1

(in mm)

1.25±0.15

Packaging

Code

D

в

Packaging

ø180mm Paper Taping

Packing in Bulk

Minimum

Ouantity

4000

1000

RF Inductors

Rated Value (\Box : packaging code)

Appearance/Dimensions

Inductors for Power Lines

0.5±0.2

2.0±0.15

Part N	Part Number		Inductance	Rated Current	DC Resistance	S.R.F* (min.)		
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	Э.К.Г " (ШШ.)		
LQM21PZ1R0NGR	_	1.0µH ±30%	1MHz	1.3A(Ambient temp.85°C) 0.95A(Ambient temp.125°C)	0.066Ω±25%	50MHz		
LQM21PZ3R3MGR	_	3.3µH ±20%	1MHz	1.0A(Ambient temp.85°C) 0.75A(Ambient temp.125°C)	0.15Ω±25%	30MHz		
LQM21PZ3R3NGR	_	3.3µH ±30%	1MHz	1.0A(Ambient temp.85°C) 0.75A(Ambient temp.125°C)	0.15Ω±25%	30MHz		
LQM21PZ4R7MGR	_	4.7µH ±20%	1MHz	0.8A(Ambient temp.85°C) 0.6A(Ambient temp.125°C)	0.23Ω±25%	30MHz		
LQM21PZ4R7NGR	_	4.7µH ±30%	1MHz	0.8A(Ambient temp.85°C) 0.6A(Ambient temp.125°C)	0.23Ω±25%	30MHz		

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Continued on the following page. earrow

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

Inductors for Power Lines LQM2MPZ_G0 Series 0806 (2016) inch (mm)

1.6±0.15

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	3000
В	Packing in Bulk	1000

Rated Value (\Box : packaging code)

Part N	umber		Inductance			
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)
LQM2MPZR47MG0	-	0.47µH ±20%	1MHz	1.6A(Ambient temp.85°C) 1.2A(Ambient temp.125°C)	0.060Ω(typ.)	100MHz
LQM2MPZR47NG0	_	0.47µH ±30%	1MHz	1.6A(Ambient temp.85°C) 1.2A(Ambient temp.125°C)	0.060Ω(typ.)	100MHz
LQM2MPZ1R0NG0	_	1.0µH ±30%	1MHz	1.4A(Ambient temp.85°C) 1.0A(Ambient temp.125°C)	0.085Ω(typ.)	60MHz
LQM2MPZ1R5MG0	_	1.5µH ±20%	1MHz	1.2A(Ambient temp.85°C) 0.9A(Ambient temp.125°C)	0.11Ω(typ.)	50MHz
LQM2MPZ1R5NG0	_	1.5µH ±30%	1MHz	1.2A(Ambient temp.85°C) 0.9A(Ambient temp.125°C)	0.11Ω(typ.)	50MHz
LQM2MPZ2R2MG0	_	2.2µH ±20%	1MHz	1.2A(Ambient temp.85°C) 0.9A(Ambient temp.125°C)	0.11Ω(typ.)	40MHz
LQM2MPZ2R2NG0	_	2.2µH ±30%	1MHz	1.2A(Ambient temp.85°C) 0.9A(Ambient temp.125°C)	0.11Ω(typ.)	40MHz
LQM2MPZ3R3NG0	_	3.3µH ±30%	1MHz	1.2A(Ambient temp.85°C) 0.9A(Ambient temp.125°C)	0.12Ω(typ.)	30MHz
LQM2MPZ4R7MG0	_	4.7µH ±20%	1MHz	1.1A(Ambient temp.85°C) 0.8A(Ambient temp.125°C)	0.14Ω(typ.)	20MHz
LQM2MPZ4R7NG0	_	4.7µH ±30%	1MHz	1.1A(Ambient temp.85°C) 0.8A(Ambient temp.125°C)	0.14Ω(typ.)	20MHz

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM2MPN_G0 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Continued on the following page. earrow

muRata

Inductance-Frequency Characteristics (Typ.)

MLARSWITHIT, SILL-Corrent Ethiopt **LARSWITHIT, OILL-Corrent Ethiopt #LARSWITHIT, SILL-Corrent Ethiopt

Temperature Rise Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

.....

Derating of Rated Current

QM2MPZ_JH Series 0806 (2016) inch (mm)

w

Inductanc

0.1µH ±20%

(in mm)

Inductance

est Frequer

1MHz

Packaging

Code

L

в

Minimum

Ouantity

3000

1000

S.R.F* (min.)

200MHz

RF Inductors

Rated Current (Isat)* Rated Current (Itemp)* 4000mA 4000mA(Ambient temp.85°C) 3000mA(Ambient temp.125°C)

Packaging

ø180mm Embossed Taping

Packing in Bulk

Operating temp.range: -55 to 125°C

Infotainment

LQM2MPZR10MJH

Appearance/Dimensions

Class of Magnetic Shield: Ferrite Core *Isat: Rated Current based on Inductance change

sat. Rated Current based on Inductance change *Itemp: Rated Current based on Temperature rise

Rated Value (
: packaging code)
Part Number

owertrain/Safetv

Inductors for Power Lines

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM2MPZ_JH series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, inductance will be within ±30% of initial inductance value range. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°Cmax.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Max. of DC Resistan

0.019Ω

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series.

Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

Inductors for Power Lines LQM2HPZ_E0 Series 1008 (2520) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	3000
В	Packing in Bulk	1000

Rated Value (\Box : packaging code)

Part Number		Inductance	Rated Current	DC Resistance	S.R.F* (min.)	
Infotainment	Powertrain/Safety	inductance	Test Frequency	hated Current	DC Resistance	3.K.i (min.)
LQM2HPZR56ME0	_	0.56µH ±20%	1MHz	1.5A(Ambient temp.85°C) 1.1A(Ambient temp.125°C)	0.06Ω±25%	70MHz

(in mm)

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

.....

Derating of Rated Current

.QM2HPZ_G0 Series 1008 (2520) inch (mm)

0.9±0.1

0.6±0.2

2.5±0.2

Minimum

Ouantity

3000

1000

RF Inductors

Packaging

Code

L

в

Packaging

ø180mm Embossed Taping

Packing in Bulk

(in mm)

2.0±0.2

Rated Value (\Box : packaging code)

Appearance/Dimensions

Inductors for Power Lines

······································								
Part N	umber	Inductance	Inductance	Rated Current	DC Resistance	S.R.F* (min.)		
Infotainment	Powertrain/Safety		Test Frequency					
LQM2HPZR47MG0	_	0.47µH ±20%	1MHz	1.8A(Ambient temp.85°C) 1.3A(Ambient temp.125°C)	0.040Ω(typ.)	100MHz		
LQM2HPZ1R0MG0	_	1.0µH ±20%	1MHz	1.6A(Ambient temp.85°C) 1.2A(Ambient temp.125°C)	0.055Ω(typ.)	60MHz		
LQM2HPZ1R5MG0	_	1.5µH ±20%	1MHz	1.5A(Ambient temp.85°C) 1.1A(Ambient temp.125°C)	0.070Ω(typ.)	50MHz		
LQM2HPZ2R2MG0	_	2.2µH ±20%	1MHz	1.3A(Ambient temp.85°C) 0.97A(Ambient temp.125°C)	0.080Ω(typ.)	40MHz		
LQM2HPZ3R3MG0	_	3.3µH ±20%	1MHz	1.2A(Ambient temp.85°C) 0.9A(Ambient temp.125°C)	0.10Ω(typ.)	30MHz		
LQM2HPZ4R7MG0	_	4.7µH ±20%	1MHz	1.1A(Ambient temp.85°C) 0.82A(Ambient temp.125°C)	0.11Ω(typ.)	25MHz		

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQM2HP_GO series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Continued on the following page. 🖊

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

QM2HPZ_GC Series 1008 (2520) inch (mm)

2.0±0.2

(in mm)

0.9±0.1

0.6±0.2

2.5±0.2

Packaging

Code

L

в

Packaging

ø180mm Embossed Taping

Packing in Bulk

Minimum

Ouantity

3000

1000

Inductors for General Circuits

Rated Value ([]: packaging code)

Appearance/Dimensions

Inductors for Power Lines

Part Number Infotainment Powertrain/Safety		Inductance	Inductance Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)	
inocalinteric	Towererain, Sarety						
LQM2HPZ1R0MGC	—	1.0µH ±20%	1MHz	1.5A(Ambient temp.85⊠) 1.1A(Ambient temp.125⊠)	0.08Ω±25%	50MHz	
LQM2HPZ3R3MGC	_	3.3µH ±20%	1MHz	1A(Ambient temp.85°C) 0.75A(Ambient temp.125°C)	0.16Ω±25%	30MHz	
LQM2HPZ4R7MGC	_	4.7µH ±20%	1MHz	0.8A(Ambient temp.85°C) 0.6A(Ambient temp.125°C)	0.18Ω±25%	25MHz	

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

Inductors for Power Lines LQM2HPZ_GS Series 1008 (2520) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	3000
В	Packing in Bulk	1000

Rated Value (\Box : packaging code)

Part N	umber		Inductance				
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)	
LQM2HPZ2R2MGS	_	2.2µH ±20%	1MHz	1.1A(Ambient temp.85°C) 0.82A(Ambient temp.125°C)	0.18Ω±25%	40MHz	
LQM2HPZ3R3MGS	_	3.3µH ±20%	1MHz	1.05A(Ambient temp.85°C) 0.78A(Ambient temp.125°C)	0.21Ω±25%	20MHz	
LQM2HPZ4R7MGS	_	4.7µH ±20%	1MHz	1A(Ambient temp.85°C) 0.75A(Ambient temp.125°C)	0.25Ω±25%	20MHz	

(in mm)

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

RF Inductors

in.)

Inductors for Power Lines LQM2HPZ_J0 Series 1008 (2520) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
L	ø180mm Embossed Taping	3000
В	Packing in Bulk	1000

Rated Value (\Box : packaging code)

Part N Infotainment	umber Powertrain/Safety	Inductance	Inductance Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)
LQM2HPZ1R0MJ0	_	1.0µH ±20%	1MHz	1.5A(Ambient temp.85°C) 1.1A(Ambient temp.125°C)	0.09Ω±25%	70MHz
LQM2HPZ2R2MJ0	_	2.2µH ±20%	1MHz	1A(Ambient temp.85°C) 0.75A(Ambient temp.125°C	0.12Ω±25%	40MHz
LQM2HPZ3R3MJ0	_	3.3µH ±20%	1MHz	1A(Ambient temp.85°C) 0.75A(Ambient temp.125°C)	0.12Ω±25%	30MHz

Operating temp.range: -55 to 125°C

Class of Magnetic Shield: Ferrite Core

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°Cmax.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

.....

Derating of Rated Current

Inductors for Power Lines (LQ Series) ①Caution/Notice

Caution

Rating

1. About the Rated Current

Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

For the usage of powertrain and safety be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Notice

Storage and Operating Condition

- <Operating Environment>
- Do not use products in chemical atmosphere such as
- chlorine gas, acid or sulfide gas.
- <Storage Requirements>
- 1. Storage Period

LQM series should be used within 6 months; the other products should be used within 12 months. Check solderability if this period is exceeded.

- 2. Storage Conditions
 - (1) Store products in a warehouse in compliance with the following conditions:
 - Temperature: -10 to +40°C.

Humidity: 15 to 85% (relative humidity)

Handling

This item is designed to have sufficient strength, but handle with care to avoid chipping or breaking its ceramic structure.

LQH_C/D/P series

- To prevent breaking the wire, avoid touching with sharp material, such as tweezers or the bristles of a cleaning brush, to the wire wound portion of this product.
- To prevent breaking the core, avoid applying excessive mechanical shock to products mounted on the board.
- Temperature may rise up to max. 40°C when applying the rated current to Inductors for Power Lines. Be careful of the temperature rating of the circuit board and components around the chip Inductors.
- LQM series
 - There is the possibility that magnetism may change the inductance value. Do not use a magnet or tweezers with magnetism when handling chip inductors. (The tip of the tweezers should be molded with resin or pottery.)
 - When the excessive current over rated current is applied, it may cause the inductance value to change due to magnetism.

2. About Excessive Surge Current

Surge current (pulse current or rush current) greater than the specified rated current applied to the product may cause a critical failure, such as an open circuit, burnout caused by excessive temperature rise.

Please contact us in advance in case of applying the surge current.

Do not subject products to rapid changes in temperature and humidity.

Do not store them in chemical atmosphere such as one containing sulfurous acid gas or alkaline gas. This will prevent electrode oxidation, which causes poor solderability and possible corrosion of inductors.

- (2) Do not store products in bulk packaging to prevent collision among inductors, which causes core chipping and wire breakage.
- (3) Store products on pallets to protect from humidity, dust, etc.
- (4) Avoid heat shock, vibration, direct sunlight, etc.

<Transportation>

Do not apply excessive vibration or mechanical shock to products.

<Resin Coating>

When coating products with resin, the relatively high resin curing stress may change inductance values. For exterior coating, select resin carefully so that electrical and mechanical performance of the product is not affected. Prior to use, please evaluate reliability with the product mounted in your application set.

RF Inductors

Inductors for Power Lines

Inductors for Power Lines (LQ Series) ①Caution/Notice

Continued from the preceding page. \searrow

(LQH series)

An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating conditions, etc. Some resins containing impurities or chloride may possibly generate chlorine by hydrolysis under some operating conditions, causing corrosion of the inductor wire and leading to an open circuit.

<Rated Current>

(LQH2HP_JR Series·LQH44P_GR Series)

Inductance will be more than the value, which is 30% down from minimum rated Inductance value.

(Other LQH_P Series)

Inductance will be within ±30% of nominal Inductance value.

Based on Temperature Rise

For LQH_P series, rated current is set to keep temperature rise caused by self heating 40°C or less. For other Inductors for Power Lines, please refer to individual specifications.

<Handling of a Substrate>

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting the substrate when cropping the substrate, inserting and removing a connector from the substrate, or tightening a screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Bending 4-4

Twisting 4-4

Inductors for Power Lines (except for LQ Series) ①Caution/Notice

Caution

Rating

1. About the Rated Current

Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Notice

Precaution for Application

 The part must be pre-heated before soldering if reflow is applied.

The difference between pre-heat temperature and soldering temperature must be within 150°C.

(2) If a soldering iron is applied, the soldering process must be completed within 3 seconds at a soldering temperature lower than 350°C.

The tip of the soldering iron must not touch the terminal electrode in this process.

- (3) Terminals should not be handled with fingers. This is to prevent deterioration in solderability.
- (4) Soldering using a soldering iron must be done only once for each part.
- (5) PPCB mount: this part must be handled with care to minimize any physical stress to the part at the board assembly process.

2. About Excessive Surge Current

Surge current (pulse current or rush current) greater than the specified rated current applied to the product may cause a critical failure, such as an open circuit, burnout caused by excessive temperature rise. Please contact us in advance in case of applying the surge current.

- (6) To minimize the influence to the part, the thickness of PCB, land dimension, and the amount of solder must be evaluated carefully by individual application.
- (7) If a washing process is applied, please make sure there is no problem with operating.
- (8) Products should not be dropped on the floor. This is to prevent damage to the products.
- (9) Although electrical performance is satisfactory, audible noises may be made if audio frequency ingredient is contained in current.

Before using, please make sure there aren't any problem with operating.

- Handling
- OStorage and Handling Requirements
- (1) Storage period

Use the products within 6 months after delivered. Solderability should be checked if this period is exceeded.

- (2) Storage conditions
- Products should be stored in the warehouse on the following conditions.

Temperature: -10 to 40°C

Humidity: 15 to 85% relative humidity No rapid change on temperature and humidity

Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.

 Products should not be stored on bulk packaging condition to prevent the chipping of the core and the breaking of winding wire caused by the collision between the products.

- Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.
- Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.
- (3) Handling Condition

Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

OResin coating

The inductance value may change and/or it may affect on the product's performance due to high cure-stress of resin to be used for coating / molding products. So please pay your careful attention when you select resin. In prior to use, please make the reliability evaluation with the product mounted in your application set.

Inductors for Power Lines (except for LQ Series) ①Caution/Notice

Continued from the preceding page. \searrow

 \bigcirc Metal alloy inductor product*

Metal alloy inductor product* employs a core with low insulation resistance, pay strict attention when use it

- a) Do not make any through holes and copper pattern under the coil. except a copper pattern to the electrode.
- b) Design/mount any components not to contact this product.

Metal alloy inductor product*...

DFE201612P_D, DFE252012P_D, DFEG7030D, DFEH7030D, DFEG10040D, DFEH10040D, DFEG12060D, DFEH12060D OTemperature Rise

Temperature rise of power choke coil depends on the installation condition in end products.

It shall be confirmed in the actual end product that temperature rise of power choke coil is in the limit specified temperature class

RF Inductors

Inductors for Power Lines

1. Standard Land Pattern Dimensions

A high Q value is achieved when the PCB electrode land pattern is designed so that it does not project beyond the chip Inductors (chip coils) electrode.

Attention should be paid to potential magnetic coupling effects when using the Inductors (coils) as a resonator.

RF Inductors

308

Continued from the preceding page. \searrow

muRata

Attention should be paid to potential magnetic coupling effects when using the Inductors (coils) as a resonator.

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

309

Continued from the preceding page. \searrow

2. Standard Soldering Conditions

(1) Soldering method

Chip Inductors (Chip coils) can be flow or reflow soldered.

Please contact Murata regarding other soldering methods.

As for LQM18P/ LQH2HP/2MP/32D/3NP/32P/43P/ 44P/5BP series, please use reflow soldering.

(2) Soldering profile

 Flow Soldering profile (Sn-3.0Ag-0.5Cu solder)

Murata.

Solder: Use Sn-3.0Ag-0.5Cu solder.

Do not use water-soluble flux.

Flux: Use rosin-based flux, but not strongly acidic flux (with chlorine content exceeding 0.2wt%).

For additional mounting methods, please contact

	Dro b	ating	St	andard Profile	2	Limit Profile			
Series	Pre-heating -		Heating		Cycle	Heating		Cycle	
	Temp. (T1)	Time. (t1)	Temp. (T2)	Time. (t2)	of flow	Temp. (T3)	Time. (t2)	of flow	
LQM21P/2MP/2HP	150°C	60s min.	250°C	4 to 6s	2 times max.	265±3°C	5s max.	2 times max.	
LQH32C	150°C	60s min.	250°C	4 to 6s	2 times max.	265±3°C	5s max.	1 time	

muRata

Continued on the following page. 🖊

Continued from the preceding page. \searrow

*Reflow Times: 2 times max.

*We recommend an infrared ray as the heat source of the reflow bath.

However halogen lamp should not be used; the side heat would be beyond the range of resistance heat, so we do not recommend it.

(3) Reworking with Soldering Iron

Preheating at 150°C for 1 minute is required. Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the products due to the thermal shock.

Soldering iron power output: 80W max.

Temperature of soldering iron tip

: 350°C (except for LQH5BP) : 380°C (LQH5BP only)

muRata

3. Mounting Instructions

(1) Land Pattern Dimensions

Large lands reduce Q of the mounted chip. Also, large protruding land areas (bordered by lines having dimensions 'c' and 'd' shown) cause floating and electrode leaching.

(2) Land Pattern Designing (LQH series)

Please follow the recommended patterns. Otherwise, their performance, which includes electrical performance or solderability, may be affected, or result in "position shift" in the soldering process. Diameter of soldering iron end: 3.0mm max. Soldering time: within 3 s

Please keep the fix time with the soldering iron within 2 times.

(except for LQH2HP_GR, LQH2MP)

Please keep the fix time with the soldering iron within only once. (LQH2HP_GR, LQH2MP only)

Continued on the following page. 🖊

Inductors for General Circuits

Continued from the preceding page. \searrow

(3) Magnetic Coupling

Since some chip inductors (chip coils) are constructed like an open magnetic circuit, narrow spacing between inductors (coils) may cause magnetic coupling. LQM and LQH_P series have a magnetically shielded structure. The structure makes their coupling coefficient smaller than that of conventional chip inductors (chip coils).

(4) PCB Warping

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

- (5) Amount of Solder Paste
 - Excessive solder causes electrode corrosion, while insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste as shown on the right so that solder is applied.

Guideline of solder paste thickness

- · LQM, LQH2HP/2MP/3NP/32P/43P/44P/5BP: 100 to 150µm
- \cdot LQH31H/32C/32D, LQH43N: 200 to 300 μm

(6) Amount of Adhesive

If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering. Apply the adhesive in accordance with the conditions shown in the chart.

Good example

LQH2HP_DR/JR, 3NP/44P/5BP

muRata

Continued on the following page. $earrow \earrow \ea$

A Note • Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Inductors for Power Lines Soldering and Mounting

C51E.pdf Apr. 27,2018

Continued from the preceding page. \searrow

4. Cleaning

The following conditions should be observed when cleaning chip inductors (chip coils):

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol cleaning agents)
- (2) Ultrasonic

Output: 20W/l max.

Duration: 5 minutes max.

Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the PCB and mounted products.

(3) Cleaning agent

The following cleaning agents have been tested on individual components. Evaluation in complete assembly should be done prior to production.

- (a) Alcohol cleaning agents Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agents Pine Alpha ST-100S

(4) Ensure that flux residue is completely removed.Component should be thoroughly dried after aqueous agents have been removed with deionized water.

For additional cleaning methods, please contact Murata.

Inductors for Power Lines Packaging

Minimum Quantity and 8mm Width Taping Dimensions (1)

Dimension of the cavity of embossed tape is measured at the bottom side.

Paper Tape

Part Number	Dimer	nsions	Total Thickness of Tape	Packaging Code (Minimum Qty. [pcs.])				
Part Number	a	b	с	ø180mm reel	ø330mm reel	Bulk		
LQM18P_CH	1.1	1.9	0.95 max.	D (4000)	-	B (1000)		
LQM18P_DH	1.05	1.85	1.05 max.	D (4000)	-	B (1000)		
LQM18P_FH	1.05	1.85	1.15 max.	D (4000)	-	B (1000)		
LQM21P_C0	1.45	2.25	0.8 max.	D (4000)	-	B (1000)		
LQM21P_G	1.45	2.25	1.1 max.	D (4000)	-	B (1000)		

Embossed Tape

Part Number	Din	nensions (c: I	Depth of Cav	ity)	Packaging Code (Minimum Qty. [pcs.])			
Part Number	a	b	с	d	ø180mm reel	ø330mm reel	Bulk	
LQH2HP_DR	2.3	2.8	0.7	0.25	L (4000)	-	-	
LQH2HP_GR	2.3	2.8	1.1	0.25	L (3000)	-	-	
LQH2HP_JR	2.3	2.8	1.3	0.25	L (2000)	-	-	
LQH2MP_GR	1.9	2.3	1.05	0.25	L (3000)	-	-	
LQH32C_33/23	2.9	3.6	2.1	0.2	L (2000)	K (7500)	B (500)	
LQH32C_53	2.9	3.6	1.7	0.2	L (2000)	K (7500)	B (500)	
LQH32D_23	2.9	3.6	2.1	0.2	L (2000)	K (7500)	-	
LQH32D_53	2.9	3.6	1.7	0.2	L (2000)	K (7500)	-	
LQH32P	2.9	3.6	1.7	0.2	L (2000)	K (7500)	-	
LQM2HP_E0	2.3	2.8	0.9	0.25	L (3000)	-	B (1000)	
LQM2HP_G	2.3	2.8	1.1	0.25	L (3000)	-	B (1000)	
LQM2HP_J0	2.25	2.75	1.3	0.25	L (3000)	-	B (1000)	
LQM2MP_G0	1.85	2.25	1.1	0.25	L (3000)	-	B (1000)	
LQM2MP_JH	1.9	2.4	1.3	0.25	L (3000)	-	B (1000)	

(in mm)

Continued on the following page. earrow

muRata

C51E.pdf Apr. 27,2018

Inductors for Power Lines

(in mm)

Embossed Tape

Continued from the preceding page. \searrow

Inductors for Power Lines Packaging

Minimum Quantity and 8mm Width Taping Dimensions (2)

Davt Numbau	Di	mensions (c: I	Depth of Cavi	Packaging Code (Minimum Qty. [pcs.])			
Part Number	a	b	с	d	ø180mm reel	ø330mm reel	Bulk
LQH3NP_GR	3.3	3.3	1.1	0.3	L (3000)	-	-
LQH3NP_JR/ME	3.3	3.3	1.6	0.2	L (2000)	-	-

Minimum Quantity and 12mm Width Embossed Taping Dimensions

Dimension of the cavity of embossed tape is measured at the bottom side.

Embossed Tape

Daut Number	Dii	mensions (c: l	Depth of Cavi	ity)	Packaging Code (Minimum Qty. [pcs.])			
Part Number	a	b	с	d	ø180mm reel	ø330mm reel	Bulk	
LQH43P	3.6	4.9	2.7	0.3	L (500)	K (2500)	-	
LQH44P_GR	4.3	4.3	1.4	0.3	L (1000)	K (4500)	-	
LQH5BP	5.3	5.3	2.4	0.3	L (500)	K (3000)	-	

(in mm)

Continued on the following page. $earrow \earrow \ea$

Inductors for Power Lines Packaging

Continued from the preceding page. \searrow

Tape and Reel Dimensions

(in mm)

Surface Mounting Type, Reel/Tape List

Carria	Series Reel Size (mm)					Ta	ipe Size (mi	n)			Q'ty
Series	a	b1	b2	с	d	е	f	g	h	i	1 Reel
DFE252012P_D	ø180	9.0±0.3	11.4±1	8.0±0.2	3.5±0.05	2.20±0.1	2.75±0.1	1.3±0.1	0.25±0.05	4.0±0.1	3000
DFEG7030D	ø330	17.5±0.5	21.5±1	16.0±0.3	7.5±0.1	7.1±0.1	7.8±0.1	3.3±0.1	0.4±0.05	12.0±0.1	1000
DFEH7030D	ø330	17.5±0.5	21.5±1	16.0±0.3	7.5±0.1	7.1±0.1	7.8±0.1	3.3±0.1	0.4±0.05	12.0±0.1	1000
DFEG10040D	ø330	25.5±0.5	29.5±1	24.0±0.3	11.5±0.1	10.5±0.1	12.1±0.1	4.3±0.1	0.4±0.05	16.0±0.1	500
DFEH10040D	ø330	25.5±0.5	29.5±1	24.0±0.3	11.5±0.1	10.5±0.1	12.1±0.1	4.3±0.1	0.4±0.05	16.0±0.1	500
DFEG12060D	ø330	25.5±0.5	29.5±1	24.0±0.3	11.5±0.1	13.2±0.1	13.3±0.1	6.4±0.1	0.4±0.05	16.0±0.1	500
DFEH12060D	ø330	25.5±0.5	29.5±1	24.0±0.3	11.5±0.1	13.2±0.1	13.3±0.1	6.4±0.1	0.4±0.05	16.0±0.1	500
MBH6045C	ø330	17.5±0.5	21.5±1	16.0±0.3	7.5±0.1	6.3±0.1	6.3±0.1	5.1±0.1	0.4±0.1	12.0±0.1	1000
MDH6045C	ø330	17.5±0.5	21.5±1	16.0±0.3	7.5±0.1	6.3±0.1	6.3±0.1	5.1±0.1	0.4±0.1	12.0±0.1	1000
MBH7045C	ø330	17.5±0.5	21.5±1	16.0±0.3	7.5±0.1	7.3±0.1	7.3±0.1	4.9±0.1	0.4±0.05	12.0±0.1	1000
MDH7045C	ø330	17.5±0.5	21.5±1	16.0±0.3	7.5±0.1	7.7±0.1	7.4±0.1	5.3±0.1	0.4±0.1	12.0±0.1	1000
MDH10060C	ø330	25.5±0.5	29.5±1	24.0±0.1	11.5±0.1	10.5±0.1	10.4±0.1	6.4±0.1	0.5±0.1	16.0±0.1	500
MBH10145C	ø330	25.5±0.5	29.5±1	24.0±0.3	11.5±0.1	10.5±0.1	10.5±0.1	4.9±0.1	0.4±0.1	16.0±0.1	500
MBH12282C	ø330	25.5±0.5	29.5±1	24.0±0.3	11.5±0.1	12.6±0.1	12.6±0.1	8.6±0.1	0.5±0.1	16.0±0.1	300
MDH12577C	ø330	25.5±0.5	29.5±1	24.0±0.1	11.5±0.1	13.2±0.1	12.9±0.1	8.2±0.1	0.5±0.05	16.0±0.1	300
MBH12575C	ø330	25.5±0.5	29.5±1	24.0±0.3	11.5±0.1	12.9±0.1	12.9±0.1	8.0±0.1	0.5±0.1	16.0±0.1	300

Part Numbering

Inductors for General Circuits for Automotive

(Part Number)	LQ	н	43	Ν	z	4R7	М	0	3	L
	1	2	8	4	6	6	7	8	9	10

Product ID

Product ID	
LQ	Chip Inductors (Chip Coils)

2 Structure

Code	Structure
н	Wire Wound Type (Ferrite Core)

Oimensions (LxW)

Code	Nominal Dimensions (LxW)	Size Code (in inch)
32	3.2x2.5mm	1210
43	4.5x3.2mm	1812

4Applications and Characteristics

Code	Applications and Characteristics
Ν	for Resonant Circuit

GCategory

Code	Category					
н	Automotive Powertrain/Safety					
Z	Automotive Infotainment					

6 Inductance

Expressed by three-digit alphanumerics. The unit is micro-henry (µH). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If there is a decimal point, it is expressed by the capital letter "**R**". In this case, all figures are significant digits. If inductance is less than 0.1µH, the inductance code is expressed by a combination of two figures and the capital letter "**N**", and the unit of inductance is nano-henry (nH). The capital letter "**N**" indicates the unit of "nH", and also expresses a decimal point. In this case, all figures are significant digits. For those products whose inductance values are specified using three designated digits, these values may be indicated using the closest two digits instead.

Inductance Tolerance

Code	Inductance Tolerance				
J	±5%				
к	±10%				
М	±20%				

8Features

Catales	
Code	Features
0/2	Standard Type

BElectrode

•Lead (Pb) Free

Code	Electrode
3	LF Solder

Packaging

Code	Packaging				
к	Embossed Taping (ø330mm Reel)				
L	Embossed Taping (ø180mm Reel)				

Inductors for General Circuits

Inductors for General Circuits LQH32NZ_23/LQH32NH_23 Series 1210 (3225) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000

Rated Value (\Box : packaging code)

Part Number							
Infotainment	Powertrain/Safety	Inductance	Q (min.)	Rated Current	Max. of DC Resistance*	DC Resistance*	S.R.F* (min.)
LQH32NZ1R0K23	—	1.0µH ±10%	20	445mA	0.5Ω	—	100MHz
_	LQH32NH1R0M23	1.0µH ±20%	25	780mA	—	0.06Ω±20%	100MHz
_	LQH32NH1R2J23	1.2µH ±5%	25	720mA	—	0.07Ω±20%	90MHz
LQH32NZ1R2K23	—	1.2µH ±10%	20	425mA	0.6Ω	—	100MHz
—	LQH32NH1R5J23	1.5µH ±5%	25	675mA	—	0.08Ω±20%	85MHz
LQH32NZ1R5K23	—	1.5µH ±10%	20	400mA	0.6Ω	—	75MHz
—	LQH32NH1R8J23	1.8µH ±5%	25	635mA	—	0.09Ω±20%	80MHz
LQH32NZ1R8K23	—	1.8µH ±10%	20	390mA	0.7Ω	—	60MHz
—	LQH32NH2R2J23	2.2µH ±5%	25	610mA	—	0.097Ω±20%	75MHz
LQH32NZ2R2K23	—	2.2µH ±10%	20	370mA	0.8Ω	—	50MHz
—	LQH32NH2R7J23	2.7µH ±5%	25	495mA	—	0.15Ω±20%	70MHz
LQH32NZ2R7K23	—	2.7µH ±10%	20	320mA	0.9Ω	—	43MHz
—	LQH32NH3R3J23	3.3µH ±5%	25	425mA	—	0.20Ω±20%	65MHz
LQH32NZ3R3K23	—	3.3µH ±10%	20	300mA	1.0Ω	—	38MHz
—	LQH32NH3R9J23	3.9µH ±5%	25	510mA	—	0.14Ω±20%	60MHz
LQH32NZ3R9K23	—	3.9µH ±10%	20	290mA	1.1Ω	—	35MHz
—	LQH32NH4R7J23	4.7µH ±5%	25	420mA	—	0.21Ω±20%	55MHz
LQH32NZ4R7K23	—	4.7µH ±10%	20	270mA	1.2Ω	—	31MHz
—	LQH32NH5R6J23	5.6µH ±5%	25	335mA	—	0.32Ω±20%	50MHz
LQH32NZ5R6K23	—	5.6µH ±10%	20	250mA	1.3Ω	—	28MHz
—	LQH32NH6R8J23	6.8µH ±5%	25	315mA	_	0.36Ω±20%	45MHz
LQH32NZ6R8K23	—	6.8µH ±10%	20	240mA	1.5Ω	—	25MHz
—	LQH32NH8R2J23	8.2µH ±5%	25	300mA	_	0.40Ω±20%	40MHz
LQH32NZ8R2K23	—	8.2µH ±10%	20	225mA	1.6Ω	—	23MHz
LQH32NZ100J23	LQH32NH100J23	10µH ±5%	35	190mA/325mA	1.8Ω	0.34Ω±20%	20MHz/35MHz
LQH32NZ120J23	LQH32NH120J23	12µH ±5%	35	180mA/270mA	2.0Ω	0.50Ω±20%	18MHz/30MHz
LQH32NZ150J23	LQH32NH150J23	15µH ±5%	35	170mA/270mA	2.2Ω	0.50Ω±20%	16MHz/25MHz

Operating temp.range (LQH32NZ_23 series): -40 to 105°C

Operating temp.range (LQH32NH_23 series): -40 to 125°C

Inductance Test Frequency: 1MHz (1.0 μH to 390 μH), 1kHz (470 μH to 560 μH)

Q Test Frequency: 1MHz (1.0 μH to 82 $\mu\text{H})$, 796kHz (100 μH to 560 $\mu\text{H})$

*Max. of DC Resistance: LQH32NZ_23 series

*DC Resistance: LQH32NH_23 series

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

Part Number		Inductance	0 (111)	Data d Ourrent		DODuituret	
Infotainment	Powertrain/Safety	inductance	Q (min.)	Rated Current	Max. of DC Resistance*	DC Resistance*	S.R.F* (min.)
LQH32NZ180J23	LQH32NH180J23	18µH ±5%	35	165mA/235mA	2.5Ω	0.64Ω±20%	15MHz/25MHz
LQH32NZ220J23	LQH32NH220J23	22µH ±5%	35	150mA/220mA	2.8Ω	0.74Ω±20%	14MHz/20MHz
LQH32NZ270J23	LQH32NH270J23	27µH ±5%	35	125mA/190mA	3.1Ω	1.00Ω±20%	13MHz/20MHz
LQH32NZ330J23	LQH32NH330J23	33µH ±5%	40	115mA/175mA	3.5Ω	1.14Ω±20%	12MHz/20MHz
LQH32NZ390J23	LQH32NH390J23	39µH ±5%	40	110mA/170mA	3.9Ω	1.27Ω±20%	11MHz/16MHz
LQH32NZ470J23	LQH32NH470J23	47µH ±5%	40	100mA/155mA	4.3Ω	1.46Ω±20%	11MHz/15MHz
LQH32NZ560J23	LQH32NH560J23	56µH ±5%	40	85mA/130mA	4.9Ω	2.00Ω±20%	10MHz/13MHz
LQH32NZ680J23	LQH32NH680J23	68µH ±5%	40	80mA/125mA	5.5Ω	2.25Ω±20%	9.0MHz/12MHz
LQH32NZ820J23	LQH32NH820J23	82µH ±5%	40	70mA/100mA	6.2Ω	3.25Ω±20%	8.5MHz/11MHz
LQH32NZ101J23	LQH32NH101J23	100µH ±5%	40	80mA/95mA	7.0Ω	3.65Ω±20%	8.0MHz/10MHz
LQH32NZ121J23	LQH32NH121J23	120µH ±5%	40	75mA/85mA	8.0Ω	4.20Ω±20%	7.5MHz/10MHz
LQH32NZ151J23	LQH32NH151J23	150µH ±5%	40	70mA/80mA	9.3Ω	4.85Ω±20%	7.0MHz/8.0MHz
LQH32NZ181J23	LQH32NH181J23	180µH ±5%	40	65mA/60mA	10.2Ω	7.60Ω±20%	6.0MHz
LQH32NZ221J23	LQH32NH221J23	220µH ±5%	40	65mA/60mA	11.8Ω	8.45Ω±20%	5.5MHz
LQH32NZ271J23	LQH32NH271J23	270µH ±5%	40/50	65mA/55mA	12.5Ω	9.70Ω±20%	5.0MHz
LQH32NZ331J23	LQH32NH331J23	330µH ±5%	40/50	65mA/50mA	13.0Ω	11.0Ω±20%	5.0MHz
LQH32NZ391J23	LQH32NH391J23	390µH ±5%	50	50mA/45mA	22.0Ω	12.4Ω±20%	5.0MHz
LQH32NZ471J23	LQH32NH471J23	470µH ±5%	50	45mA/40mA	25.0Ω	14.1Ω±20%	5.0MHz
_	LQH32NH561J23	560µH ±5%	50	40mA	—	14.6Ω±20%	4.0MHz

Operating temp.range (LQH32NZ_23 series): -40 to 105°C

Operating temp.range (LQH32NH_23 series): -40 to 125°C

Inductance Test Frequency: 1MHz (1.0 μH to 390 μH), 1kHz (470 μH to 560 μH)

Q Test Frequency: 1MHz (1.0 μ H to 82 μ H), 796kHz (100 μ H to 560 μ H)

*Max. of DC Resistance: LQH32NZ_23 series

*DC Resistance: LQH32NH_23 series

Class of Magnetic Shield: No Shield

Only for reflow soldering *S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

Inductors for General Circuits LQH43NZ_03 Series 1812 (4532) inch (mm)

Appearance/Dimensions

(in mm)

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	2500
L	ø180mm Embossed Taping	500

Rated Value (\Box : packaging code)

Part Number			Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQH43NZ1R0M03	—	1.0µH ±20%	1MHz	20	1MHz	500mA	0.20Ω	120MHz
LQH43NZ1R2M03	_	1.2µH ±20%	1MHz	20	1MHz	500mA	0.20Ω	100MHz
LQH43NZ1R5M03	_	1.5µH ±20%	1MHz	20	1MHz	500mA	0.30Ω	85MHz
LQH43NZ1R8M03	—	1.8µH ±20%	1MHz	20	1MHz	500mA	0.30Ω	75MHz
LQH43NZ2R2M03	—	2.2µH ±20%	1MHz	20	1MHz	500mA	0.30Ω	62MHz
LQH43NZ2R7M03	—	2.7µH ±20%	1MHz	20	1MHz	500mA	0.32Ω	53MHz
LQH43NZ3R3M03	—	3.3µH ±20%	1MHz	20	1MHz	500mA	0.35Ω	47MHz
LQH43NZ3R9M03	—	3.9µH ±20%	1MHz	20	1MHz	500mA	0.38Ω	41MHz
LQH43NZ4R7K03	—	4.7µH ±10%	1MHz	30	1MHz	500mA	0.40Ω	38MHz
LQH43NZ4R7M03	—	4.7µH ±20%	1MHz	30	1MHz	500mA	0.40Ω	38MHz
LQH43NZ5R6K03	—	5.6µH ±10%	1MHz	30	1MHz	500mA	0.47Ω	33MHz
LQH43NZ5R6M03	—	5.6µH ±20%	1MHz	30	1MHz	500mA	0.47Ω	33MHz
LQH43NZ6R8K03	—	6.8µH ±10%	1MHz	30	1MHz	450mA	0.50Ω	31MHz
LQH43NZ6R8M03	—	6.8µH ±20%	1MHz	30	1MHz	450mA	0.50Ω	31MHz
LQH43NZ8R2K03	—	8.2µH ±10%	1MHz	30	1MHz	450mA	0.56Ω	27MHz
LQH43NZ8R2M03	—	8.2µH ±20%	1MHz	30	1MHz	450mA	0.56Ω	27MHz
LQH43NZ100J03	—	10µH ±5%	1MHz	35	1MHz	400mA	0.56Ω	23MHz
LQH43NZ100K03	—	10µH ±10%	1MHz	35	1MHz	400mA	0.56Ω	23MHz
LQH43NZ120J03	—	12µH ±5%	1MHz	35	1MHz	380mA	0.62Ω	21MHz
LQH43NZ120K03	—	12µH ±10%	1MHz	35	1MHz	380mA	0.62Ω	21MHz
LQH43NZ150J03	—	15µH ±5%	1MHz	35	1MHz	360mA	0.73Ω	19MHz
LQH43NZ150K03	—	15µH ±10%	1MHz	35	1MHz	360mA	0.73Ω	19MHz
LQH43NZ180J03	—	18µH ±5%	1MHz	35	1MHz	340mA	0.82Ω	17MHz
LQH43NZ180K03	—	18µH ±10%	1MHz	35	1MHz	340mA	0.82Ω	17MHz
LQH43NZ220J03	—	22µH ±5%	1MHz	35	1MHz	320mA	0.94Ω	15MHz
LQH43NZ220K03	—	22µH ±10%	1MHz	35	1MHz	320mA	0.94Ω	15MHz
LQH43NZ270J03	—	27µH ±5%	1MHz	35	1MHz	300mA	1.1Ω	14MHz
LQH43NZ270K03	—	27µH ±10%	1MHz	35	1MHz	300mA	1.1Ω	14MHz
LQH43NZ330J03	—	33µH ±5%	1MHz	35	1MHz	270mA	1.2Ω	12MHz
LQH43NZ330K03	—	33µH ±10%	1MHz	35	1MHz	270mA	1.2Ω	12MHz
LQH43NZ390J03	—	39µH ±5%	1MHz	35	1MHz	240mA	1.4Ω	11MHz

Operating temp.range: -40 to 105°C

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

RF Inductors

Inductors for Power Lines

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

Continued from the preceding page. \searrow

Part Number			Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQH43NZ390K03	_	39µH ±10%	1MHz	35	1MHz	240mA	1.4Ω	11MHz
LQH43NZ470J03	_	47µH ±5%	1MHz	35	1MHz	220mA	1.5Ω	10MHz
LQH43NZ470K03	_	47µH ±10%	1MHz	35	1MHz	220mA	1.5Ω	10MHz
LQH43NZ560J03	_	56µH ±5%	1MHz	35	1MHz	200mA	1.7Ω	9.3MHz
LQH43NZ560K03	_	56µH ±10%	1MHz	35	1MHz	200mA	1.7Ω	9.3MHz
LQH43NZ680J03	_	68µH ±5%	1MHz	35	1MHz	180mA	1.9Ω	8.4MHz
LQH43NZ680K03	_	68µH ±10%	1MHz	35	1MHz	180mA	1.9Ω	8.4MHz
LQH43NZ820J03	—	82µH ±5%	1MHz	35	1MHz	170mA	2.2Ω	7.5MHz
LQH43NZ820K03	—	82µH ±10%	1MHz	35	1MHz	170mA	2.2Ω	7.5MHz
LQH43NZ101J03	—	100µH ±5%	1MHz	40	796kHz	160mA	2.5Ω	6.8MHz
LQH43NZ101K03	—	100µH ±10%	1MHz	40	796kHz	160mA	2.5Ω	6.8MHz
LQH43NZ121J03	_	120µH ±5%	1MHz	40	796kHz	150mA	3.0Ω	6.2MHz
LQH43NZ121K03	_	120µH ±10%	1MHz	40	796kHz	150mA	3.0Ω	6.2MHz
LQH43NZ151J03	_	150µH ±5%	1MHz	40	796kHz	130mA	3.7Ω	5.5MHz
LQH43NZ151K03	_	150µH ±10%	1MHz	40	796kHz	130mA	3.7Ω	5.5MHz
LQH43NZ181J03	—	180µH ±5%	1MHz	40	796kHz	120mA	4.5Ω	5.0MHz
LQH43NZ181K03	_	180µH ±10%	1MHz	40	796kHz	120mA	4.5Ω	5.0MHz
LQH43NZ221J03	_	220µH ±5%	1MHz	40	796kHz	110mA	5.4Ω	4.5MHz
LQH43NZ221K03	_	220µH ±10%	1MHz	40	796kHz	110mA	5.4Ω	4.5MHz
LQH43NZ271J03	—	270µH ±5%	1MHz	40	796kHz	100mA	6.8Ω	4.0MHz
LQH43NZ271K03	_	270µH ±10%	1MHz	40	796kHz	100mA	6.8Ω	4.0MHz
	_	330µH ±5%	1MHz	40	796kHz	95mA	8.2Ω	3.6MHz
LQH43NZ331K03		330µH ±10%	1MHz 1MHz	40	796kHz 796kHz	95mA 90mA	8.2Ω 9.7Ω	3.6MHz 3.3MHz
LQH43NZ391503		390µH ±5% 390µH ±10%	1MHz	40	796kHz	90mA	9.7Ω	3.3MHz
LQH43NZ471J03		470µH ±5%	1kHz	40	796kHz	80mA	11.8Ω	3.0MHz
LQH43NZ471K03		470µH ±10%	1kHz	40	796kHz	80mA	11.8Ω	3.0MHz
LQH43NZ561J03		560µH ±5%	1kHz	40	796kHz	70mA	14.5Ω	2.7MHz
LQH43NZ561K03	_	560µH ±10%	1kHz	40	796kHz	70mA	14.5Ω	2.7MHz
LQH43NZ681J03	_	680µH ±5%	1kHz	40	796kHz	65mA	17.0Ω	2.5MHz
LQH43NZ681K03	_	680µH ±10%	1kHz	40	796kHz	65mA	17.0Ω	2.5MHz
LQH43NZ821J03	_	820µH ±5%	1kHz	40	796kHz	60mA	20.5Ω	2.2MHz
LQH43NZ821K03	_	820µH ±10%	1kHz	40	796kHz	60mA	20.5Ω	2.2MHz
LQH43NZ102J03	_	1000µH ±5%	1kHz	40	252kHz	50mA	25.0Ω	2.0MHz
LQH43NZ102K03	_	1000µH ±10%	1kHz	40	252kHz	50mA	25.0Ω	2.0MHz
LQH43NZ122J03	—	1200µH ±5%	1kHz	40	252kHz	45mA	30.0Ω	1.8MHz
LQH43NZ122K03	—	1200µH ±10%	1kHz	40	252kHz	45mA	30.0Ω	1.8MHz
LQH43NZ152J03	—	1500µH ±5%	1kHz	40	252kHz	40mA	37.0Ω	1.6MHz
LQH43NZ152K03	_	1500µH ±10%	1kHz	40	252kHz	40mA	37.0Ω	1.6MHz
LQH43NZ182J03	—	1800µH ±5%	1kHz	40	252kHz	35mA	45.0Ω	1.5MHz
LQH43NZ182K03		1800µH ±10%	1kHz	40	252kHz	35mA	45.0Ω	1.5MHz
LQH43NZ222J03	_	2200µH ±5%	1kHz	40	252kHz	30mA	50.0Ω	1.3MHz
LQH43NZ222K03	_	2200µH ±10%	1kHz	40	252kHz	30mA	50.0Ω	1.3MHz
LQH43NZ242J03	-	2400µH ±5%	1kHz	40	252kHz	25mA	53.0Ω	1.2MHz
LQH43NZ242K03	—	2400µH ±10%	1kHz	40	252kHz	25mA	53.0Ω	1.2MHz

Operating temp.range: -40 to 105°C

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

When rated current is applied to the products, self-temperature rise shall be limited to 20°C max and inductance will be within ±10% of initial inductance value.

Continued on the following page. earrow

Inductors for Power Lines

muRata
Inductors for General Circuits HEAWS Series 4241 (107104) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	250	

(in mm)

Rated Value (\Box : packaging code)

Part N	lumber	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance	
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current (Isat)	Rated Current (itemp)	Plax. Of DC Resistance	
1211EA-1004	—	10µH ±20%	0.1MHz	5000mA	2800mA	0.025Ω	

Operating temp.range (Self-temp.rise included): -40 to 125°C

Operating temp.range (Self-temp.rise not included): -40 to 85°C

Only for reflow soldering

12

10

0

(HH)

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 25%. (The ambient reference temperature is 20°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 20°C)

Class of Magnetic Shield: Ferrite Core

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductors for General Circuits HEAW Series 5551 (140130) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	200

(in mm)

Rated Value (: packaging code)

Part N	lumber	Inductance	Inductance	Rated Current (Isat)*	Rated Current (Itemp)*	Max. of DC Resistance	
Infotainment			Test Frequency	Rated Current (ISat)	Rated Current (itemp)	Plax. Of DC Resistance	
1155EA-0001	—	10µH ±20%	0.1MHz	7200mA	3000mA	0.025Ω	

Operating temp.range (Self-temp.rise included): -40 to 125°C Operating temp.range (Self-temp.rise not included): -40 to 85°C

Only for reflow soldering

*Isat: Rated Current based on Inductance change *Itemp: Rated Current based on Temperature rise

Rated current (Isat) is specified when the decrease of the initial inductance value at 25%. (The ambient reference temperature is 20°C)

Rated current (Itemp) is specified when temperature of inductor the is raised 40°C by DC current. (The ambient reference temperature is 20°C)

Class of Magnetic Shield: Ferrite Core

Inductance-Current Characteristics (Typ.)

Temperature Rise Characteristics (Typ.) 60

RF Inductors

muRata

Inductors for General Circuits Surface mount variable coil 5CCEG Series 2222 (5656) inch (mm)

Appearance/Dimensions

(General Tolerance: ±0.3 in mm)

Features

- 6.5×5.9×6.0(H) mm MAX.
- Supported inductance range: 0.05 to 2.7µH

(5) q ((O)) p (2)

- High reliability that conforms to automotive standards
- Operating temperature range: -40°C to +85°C

Applications

• Ideal for use as RF matching transformers for car tuners

Rated Value (\Box : packaging code)

Winding Connection	Part Nu	mber	Test Frequency	Resonance Capacitor Range
(Bottom View)	Infotainment	Powertrain/Safety	(MHz)	(pF)
	#A1313AN-0001GGH[]	-	100	11.4 +3/-3%
S 3 2	#A1313AN-0002GRG	-	100	11.4 +5/-2%
	#A1313AN-0003GRG	-	100	11.4 +2/-4%
	#A1313AN-0004GGH[]	-	100	11.7 +3/-3%

Packaging

Code	Packaging	Minimum Quantity	
=P3	ø330mm Embossed Taping	750	

Inductors for General Circuits

Inductors for General Circuits Surface mount variable coil FSDVA Series 2323 (5858) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
=P3	ø330mm Embossed Taping	1000

(General Tolerance: ±0.2 in mm)

Features

- 5.8×5.8×5.5(H) mm MAX.
- Supported inductance range: 0.1 to 52mH (1 to 7 mH for corner sensor applications)
- Resistant to mechanical stress
- Operating temperature range Up to 20 mH (-40°C to +105°C) 20 mH or more (-40°C to +85°C)
- Various reliability conditions guaranteed for 1,000 hours (evaluation performed up to 3,000 hours)
- Lead coplanarity guaranteed within 0.1 mm

Rated Value (\Box : packaging code)

Winding Connection	Part Ni	ımber	Test Frequency	Inductance Range	Under start O	
(Bottom View)	Infotainment	Infotainment Powertrain/Safety		(mH)	Unloaded Q	
S C C C C C C C C C C C C C C C C C C C	N1342BCA-0004UG	-	252	4.4 ±3%	25 min	
S C C C C C C C C C C C C C C C C C C C	N1342DEA-0008BQE	_	252	2.5 ±5%	25 min	

Winding Connection	Part Nu	ımber	Test Frequency	Inductance Tolerance	Unloaded Q	
(Bottom View)	Infotainment	Powertrain/Safety	(kHz)	(mH)	Unioaded Q	
Q⊕s ⊘ 0	N1342AAA-0001Z	-	79.6	52 ±7%	10 min	

Inductors for Power Lines

Inductors for General Circuits (LQ Series) ①Caution/Notice

Caution

Rating

- 1. About the Rated Current
 - Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

For the usage of powertrain and safety be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Notice

Storage and Operating Condition

<Operating Environment>

Do not use products in chemical atmosphere such as chlorine gas, acid or sulfide gas.

- <Storage Requirements>
- Storage Period Products should be used within 12 months. Check solderability if this period is exceeded.
- 2. Storage Conditions

 Store products in a warehouse in compliance with the following conditions:

Temperature: -10 to +40 degrees C. Humidity: 15 to 85% (relative humidity)

2. About Excessive Surge Current

Surge current (pulse current or rush current) greater than the specified rated current applied to the product may cause a critical failure, such as an open circuit, burnout caused by excessive temperature rise.

Please contact us in advance in case of applying the surge current.

Do not subject products to rapid changes in temperature and humidity.

Do not store them in chemical atmosphere such as one containing sulfurous acid gas or alkaline gas. This will prevent electrode oxidation, which causes poor solderability and possible corrosion of inductors.

- (2) Do not store products in bulk packaging to prevent collision among inductors, which causes core chipping and wire breakage.
- (3) Store products on pallets to protect from humidity, dust, etc.
- (4) Avoid heat shock, vibration, direct sunlight, etc.

Handling

This item is designed to have sufficient strength, but handle with care to avoid chipping or breaking its ceramic structure.

LQH series

- To prevent breaking the wire, avoid touching with sharp material, such as tweezers or the bristles of a cleaning brush, to the wire wound portion of this product.
- To prevent breaking the core, avoid applying excessive mechanical shock to products mounted on the board.

<Transportation>

Do not apply excessive vibration or mechanical shock to products.

<Resin Coating>

When coating products with resin, the relatively high resin curing stress may change inductance values. For exterior coating, select resin carefully so that electrical and mechanical performance of the product is not affected. Prior to use, please evaluate reliability with the product mounted in your application set. (LQH series)

An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating conditions, etc. Some resins containing impurities or chloride may possibly generate chlorine by hydrolysis under some operating conditions, causing corrosion of the inductor wire and leading to an open circuit.

<Handling of a Substrate>

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting the substrate when cropping the substrate, inserting and removing a connector from the substrate, or tightening a screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Bending 11

muRata

Twisting

Inductors for General Circuits

Inductors for General (except for LQ Series) <u></u>(Caution/Notice

Caution

Rating

1. About the Rated Current

Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Notice

Precaution for Application

 The part must be pre-heated before soldering if reflow is applied.

The difference between pre-heat temperature and soldering temperature must be within 150°C.

(2) If a soldering iron is applied, the soldering process must be completed within 3 seconds at a soldering temperature lower than 350°C.

The tip of the soldering iron must not touch the terminal electrode in this process.

- (3) Terminals should not be handled with fingers. This is to prevent deterioration in solderability.
- (4) Soldering using a soldering iron must be done only once for each part.
- (5) PCB mount: this part must be handled with care to minimize any physical stress to the part at the board assembly process.

2. About Excessive Surge Current

Surge current (pulse current or rush current) greater than the specified rated current applied to the product may cause a critical failure, such as an open circuit, burnout caused by excessive temperature rise. Please contact us in advance in case of applying the surge current.

- (6) To minimize the influence to the part, the thickness of PCB, land dimension, and the amount of solder must be evaluated carefully by individual application.
- (7) If a washing process is applied, please make sure there is no problem with operating.
- (8) Products should not be dropped on the floor. This is to prevent damage to the products.
- (9) Although electrical performance is satisfactory, audible noises may be made if audio frequency ingredient is contained in current.

Before using, please make sure there aren't any problem with operating.

Handling

 $\bigcirc \mathsf{Storage} \text{ and } \mathsf{Handling} \ \mathsf{Requirements}$

(1) Storage period

Use the products within 6 months after delivered. Solderability should be checked if this period is exceeded

- (2) Storage conditions
- Products should be stored in the warehouse on the following conditions.

Temperature: -10 to 40°C

Humidity: 15 to 85% relative humidity No rapid change on temperature and humidity

Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.

- Products should not be stored on bulk packaging condition to prevent the chipping of the core and the breaking of winding wire caused by the collision between the products.
- Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.
- Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.
- (3) Handling Condition

Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

Inductors for Power Lines

A Note
 • Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Inductors for General Circuits Soldering and Mounting

1. Standard Land Pattern Dimensions

A high Q value is achieved when the PCB electrode land pattern is designed so that it does not project beyond the chip Inductors (chip coils) electrode.

Attention should be paid to potential magnetic coupling effects when using the Inductors (coils) as a resonator.

Continued on the following page. 🎢

Inductors for Power Lines

Inductors for General Circuits

C51E.pdf Apr. 27,2018

Inductors for General Circuits Soldering and Mounting

Continued from the preceding page. \searrow

2. Standard Soldering Conditions

(1) Soldering method

Chip Inductors (Chip coils) can be reflow soldered. Please contact Murata regarding other soldering methods.

Solder: Use Sn-3.0Ag-0.5Cu solder.

Flux: Use rosin-based flux, but not strongly acidic flux

(with chlorine content exceeding 0.2wt%).

Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

(2) Soldering profile

max.

Continued on the following page. 🎢

max.

Inductors for General Circuits Soldering and Mounting

Continued from the preceding page.

(3) Reworking with Soldering Iron (LQ Series)

Preheating at 150°C for 1 minute is required. Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the products due to the thermal shock.

Soldering iron power output: 80W max. Temperature of soldering iron tip: 350°C

Diameter of soldering iron end: 3.0mm max.

Soldering time: within 3 s

Please keep the fix time with the soldering iron within 2 times

Reworking with Soldering Iron (HEAWS/HEAW Series) Temperature of soldering iron tip: 390°C Soldering time: within 3±1 s Reworking with Soldering Iron (FSDVA/5CCEG Series) Apply reflow soldering conditions when using soldering iron and for rework.

Especially be careful not to overheat the tip of the soldering iron.

Temperature of soldering iron tip: 360°C Soldering time: within 3±1 s

Please keep the fix time with the soldering iron within 1 times.

Continued on the following page. \checkmark

inductors for General Circuits

Inductors for General Circuits Soldering and Mounting

Continued from the preceding page. \searrow

3. Mounting Instructions

(1) Land Pattern Dimensions

Large lands reduce Q of the mounted chip. Also, large protruding land areas (bordered by lines having dimensions 'c' and 'd' shown) cause floating and electrode leaching.

(2) Land Pattern Designing (LQH series)

Please follow the recommended patterns. Otherwise, their performance, which includes electrical performance or solderability, may be affected, or result in "position shift" in the soldering process.

(3) Magnetic Coupling

Since some chip inductors (chip coils) are constructed like an open magnetic circuit, narrow spacing between inductors (coils) may cause magnetic coupling.

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

(5) Amount of Solder Paste

Excessive solder causes electrode corrosion, while insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste as shown on the right so that solder is applied. Guideline of solder paste thickness LQH32N: 100 to 150µm LQH43N: 200 to 300µm 5CCEG: 200µm FSDVA: 150 to 200µm

Products should be located in a sideways direction (Length: a<b) to the mechanical stress.

Poor example

The electrode part of the product should be located as in the figure to avoid mechanical stress.

Poor example

muRata

electrode electrode Good example

Continued on the following page. earrow

Note • Please read rating and (CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

C51E.pdf Apr. 27,2018

Inductors for General Circuits Soldering and Mounting

Continued from the preceding page. 🖌

4. Cleaning

The following conditions should be observed when cleaning chip inductors (chip coils):

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol cleaning agents)
- (2) Ultrasonic

Output: 20W/l max.

Duration: 5 minutes max.

Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the PCB and mounted products.

(3) Cleaning agent

The following cleaning agents have been tested on individual components. Evaluation in complete assembly should be done prior to production.

- (a) Alcohol cleaning agents Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agents Pine Alpha ST-100S

(4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agents have been removed with deionized water.

For additional cleaning methods, please contact Murata.

Inductors for General Circuits Packaging

Minimum Quantity and 8mm Width Taping Dimensions

Dimension of the cavity of embossed tape is measured at the bottom side.

Embossed Tape

Part Number	Dimer	nsions	Depth of Cavity	Packaging Code (Minimum Qty. [pcs.])		
Part Number	a	b	с	ø180mm reel	ø330mm reel	Bulk
LQH32N	2.9	3.6	2.1	L (2000)	K (7500)	-

(in mm)

Minimum Quantity and 12mm Width Embossed Taping Dimensions

Dimension of the cavity of embossed tape is measured at the bottom side.

Embossed Tape

Part Number	Dir	mensions (c: I	Depth of Cavi	ty)	Packaging Code (Minimum Qty. [pcs.])		
	а	b	с	d	ø180mm reel	ø330mm reel	Bulk
LQH43N	3.6	4.9	2.7	0.3	L (500)	K (2500)	-

(in mm)

Continued on the following page. $earrow \earrow \ea$

Inductors for General Circuits Packaging

Continued from the preceding page. \searrow

Taping for Automatic Insertion of SMT Coils

Tape and Reel Dimensions

HEAWS 24.0±0.3 11.5±0.1 10.9±0.1 11.2±0.1 10.7±0.1 0.5±0.05 16.0±0.1 250 ø330 25.5±0.5 27.5±1 HEAW ø330 33.5±0.5 37.5±1 32.0±0.3 14.2±0.1 13.3±0.1 14.3±0.1 11.2±0.1 0.5±0.05 20.0±0.1 200

Continued on the following page. 🖊

Inductors for General Circuits

Inductors for General Circuits Packaging

Continued from the preceding page. \searrow

Tape and Reel Dimensions

(in mm)

Surface Mounting Type, Reel/Tape List

Carias	F	Reel Size (mm)			Tape Size (mm)					
Series	a	b1	b2	с	d	е	f	g	h	Q'ty 1 Reel
5CCEG	ø330	17.5±0.5	21.5±1	16.0±0.4	7.5±0.2	6.2±0.2	6.6±0.2	6.2±0.2	12±0.2	750
FSDVA	ø330	17.5±0.5	21.5±1	16.0±0.3	7.5±0.1	6.0±0.2	6.2±0.2	5.9±0.2	12±0.1	1,000

336

Part Numbering

RF Inductors for Automotive

(Part Number)	LQ	G	15	Н	н	1N0	s	0	2	D
	1	2	8	4	6	6	0	8	9	10

Product ID

Product ID	
LQ	Chip Inductors (Chip Coils)

2 Structure

Code	Structure
G	Multilayer Type (Air-core Inductors (Coils))
н	Wire Wound Type (Ferrite Core)
Р	Film Type
W	Wire Wound Type (Air-core Inductors (Coils))

Oimensions (LxW)

Code	Nominal Dimensions (LxW)	Size Code (in inch)
03	0.6x0.3mm	0201
15	1.0x0.5mm	0402
18	1.6x0.8mm	0603
31	3.2x1.6mm	1206

Applications and Characteristics

Code	Series	Applications and Characteristics
н	1.00	Multilayer Air-core Inductors (Coils)
W	LQG	High Q Type
т	LQP	Film Type (Low DC Resistance Type)
А	LQW	High Q Type (UHF-SHF)
С	LQW	for Choke (Coating Type)
н	LQH	for High-frequency Resonant Circuit

GCategory

Code	Series	Category			
N	LQP/LQW	Standard Type			
s	LQW	Standard Type			
Z	LQG/LQH	A t t	Infotainment		
н	LQG	Automotive	Powertrain/Safety		

6 Inductance

Expressed by three-digit alphanumerics. The unit is micro-henry (µH). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If there is a decimal point, it is expressed by the capital letter "**R**." In this case, all figures are significant digits. If inductance is less than 0.1µH, the inductance code is expressed by a combination of two figures and the capital letter "**N**," and the unit of inductance is nano-henry (nH). The capital letter "**N**" indicates the unit of "nH," and also expresses a decimal point. In this case, all figures are significant digits. For those products whose inductance values are specified using three designated digits, these values may be indicated using the closest two digits instead.

Inductance Tolerance

Code	Inductance Tolerance
В	±0.1nH
с	±0.2nH
D	±0.5nH
G	±2%
н	±3%
J	±5%
к	±10%
s	±0.3nH

8Features

Code	Features	Series
0	Standard Type	LQG/LQH/LQP/LQW
1	High-Q or Low DC Resistance	LQW15A/15C/18A
8	Low Resistance/ Large Current Type	LQW15A/18A
н	Automotive Powertrain/ Safety	LQP03T
Z	Automotive Infotainment	LQP03T

Selectrode

•Lead (Pb) Free

Code	Electrode	Series		
0	5-	LQG18H		
2	Sn	LQG15H/LQG15W/LQP03T		
3	LF Solder	LQH		
Z	Automotive Infotainment	LQW15A/15C/18A/18C		

Packaging

Code	Packaging			
к	Embossed Taping (ø330mm Reel)			
L	Embossed Taping (ø180mm Reel)			
В	Bulk			
J	Paper Taping (ø330mm Reel)			
D	Paper Taping (ø180mm Reel)			

Inductors for Power Lines

RF InductorsLQG15HZ_02/LQG15HH_02 Series 0402 (1005) inch (mm)

0.5±0.05

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	10000
L	ø330mm Paper Taping	50000
В	Packing in Bulk	1000

Rated Value (: packaging code)

Part Number			Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQG15HZ1N0B02	LQG15HH1N0B02	1.0nH ±0.1nH	100MHz	8	100MHz	1000mA	0.07Ω	10000MHz
LQG15HZ1N0C02	LQG15HH1N0C02	1.0nH ±0.2nH	100MHz	8	100MHz	1000mA	0.07Ω	10000MHz
LQG15HZ1N0S02	LQG15HH1N0S02	1.0nH ±0.3nH	100MHz	8	100MHz	1000mA	0.07Ω	10000MHz
LQG15HZ1N1B02	LQG15HH1N1B02	1.1nH ±0.1nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N1C02	LQG15HH1N1C02	1.1nH ±0.2nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N1S02	LQG15HH1N1S02	1.1nH ±0.3nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N2B02	LQG15HH1N2B02	1.2nH ±0.1nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N2C02	LQG15HH1N2C02	1.2nH ±0.2nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N2S02	LQG15HH1N2S02	1.2nH ±0.3nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N3B02	LQG15HH1N3B02	1.3nH ±0.1nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N3C02	LQG15HH1N3C02	1.3nH ±0.2nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N3S02	LQG15HH1N3S02	1.3nH ±0.3nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N5B02	LQG15HH1N5B02	1.5nH ±0.1nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N5C02	LQG15HH1N5C02	1.5nH ±0.2nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N5S02	LQG15HH1N5S02	1.5nH ±0.3nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N6B02	LQG15HH1N6B02	1.6nH ±0.1nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N6C02	LQG15HH1N6C02	1.6nH ±0.2nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N6S02	LQG15HH1N6S02	1.6nH ±0.3nH	100MHz	8	100MHz	1000mA	0.07Ω	6000MHz
LQG15HZ1N8B02	LQG15HH1N8B02	1.8nH ±0.1nH	100MHz	8	100MHz	950mA	0.08Ω	6000MHz
LQG15HZ1N8C02	LQG15HH1N8C02	1.8nH ±0.2nH	100MHz	8	100MHz	950mA	0.08Ω	6000MHz
LQG15HZ1N8S02	LQG15HH1N8S02	1.8nH ±0.3nH	100MHz	8	100MHz	950mA	0.08Ω	6000MHz
LQG15HZ2N0B02	LQG15HH2N0B02	2.0nH ±0.1nH	100MHz	8	100MHz	900mA	0.09Ω	6000MHz
LQG15HZ2N0C02	LQG15HH2N0C02	2.0nH ±0.2nH	100MHz	8	100MHz	900mA	0.09Ω	6000MHz
LQG15HZ2N0S02	LQG15HH2N0S02	2.0nH ±0.3nH	100MHz	8	100MHz	900mA	0.09Ω	6000MHz
LQG15HZ2N2B02	LQG15HH2N2B02	2.2nH ±0.1nH	100MHz	8	100MHz	900mA	0.09Ω	6000MHz
LQG15HZ2N2C02	LQG15HH2N2C02	2.2nH ±0.2nH	100MHz	8	100MHz	900mA	0.09Ω	6000MHz
LQG15HZ2N2S02	LQG15HH2N2S02	2.2nH ±0.3nH	100MHz	8	100MHz	900mA	0.09Ω	6000MHz
LQG15HZ2N4B02	LQG15HH2N4B02	2.4nH ±0.1nH	100MHz	8	100MHz	850mA	0.11Ω	6000MHz
LQG15HZ2N4C02	LQG15HH2N4C02	2.4nH ±0.2nH	100MHz	8	100MHz	850mA	0.11Ω	6000MHz
LQG15HZ2N4S02	LQG15HH2N4S02	2.4nH ±0.3nH	100MHz	8	100MHz	850mA	0.11Ω	6000MHz
LQG15HZ2N7B02	LQG15HH2N7B02	2.7nH ±0.1nH	100MHz	8	100MHz	800mA	0.12Ω	6000MHz
LQG15HZ2N7C02	LQG15HH2N7C02	2.7nH ±0.2nH	100MHz	8	100MHz	800mA	0.12Ω	6000MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQG15HZ2N7S02	LQG15HH2N7S02	2.7nH ±0.3nH	100MHz	8	100MHz	800mA	0.12Ω	6000MHz
LQG15HZ3N0B02	LQG15HH3N0B02	3.0nH ±0.1nH	100MHz	8	100MHz	800mA	0.125Ω	6000MHz
LQG15HZ3N0C02	LQG15HH3N0C02	3.0nH ±0.2nH	100MHz	8	100MHz	800mA	0.125Ω	6000MHz
LQG15HZ3N0S02	LQG15HH3N0S02	3.0nH ±0.3nH	100MHz	8	100MHz	800mA	0.125Ω	6000MHz
LQG15HZ3N3B02	LQG15HH3N3B02	3.3nH ±0.1nH	100MHz	8	100MHz	800mA	0.125Ω	6000MHz
LQG15HZ3N3C02		3.3nH ±0.2nH	100MHz	8	100MHz	800mA	0.125Ω	6000MHz
LQG15HZ3N3S02	LQG15HH3N3S02	3.3nH ±0.3nH	100MHz	8	100MHz	800mA	0.125Ω	6000MHz
LQG15HZ3N6B02	LQG15HH3N6B02	3.6nH ±0.1nH	100MHz	8	100MHz	750mA	0.14Ω	6000MHz
LQG15HZ3N6C02		3.6nH ±0.2nH	100MHz	8	100MHz	750mA	0.14Ω	6000MHz
LQG15HZ3N6S02		3.6nH ±0.3nH	100MHz	8	100MHz	750mA	0.14Ω	6000MHz
LQG15HZ3N9B02	LQG15HH3N9B02	3.9nH ±0.1nH	100MHz	8	100MHz	750mA	0.14Ω	6000MHz
LQG15HZ3N9C02		3.9nH ±0.2nH		8	100MHz	750mA	0.14Ω	
			100MHz	8				6000MHz
	·	3.9nH ±0.3nH	100MHz		100MHz	750mA	0.14Ω	6000MHz
		4.3nH ±0.1nH	100MHz	8	100MHz	750mA	0.14Ω	6000MHz
LQG15HZ4N3C02		4.3nH ±0.2nH	100MHz	8	100MHz	750mA	0.14Ω	6000MHz
LQG15HZ4N3S02	LQG15HH4N3S02	4.3nH ±0.3nH	100MHz	8	100MHz	750mA	0.14Ω	6000MHz
LQG15HZ4N7B02	LQG15HH4N7B02	4.7nH ±0.1nH	100MHz	8	100MHz	700mA	0.16Ω	6000MHz
LQG15HZ4N7C02	LQG15HH4N7C02	4.7nH ±0.2nH	100MHz	8	100MHz	700mA	0.16Ω	6000MHz
LQG15HZ4N7S02	LQG15HH4N7S02	4.7nH ±0.3nH	100MHz	8	100MHz	700mA	0.16Ω	6000MHz
LQG15HZ5N1B02	LQG15HH5N1B02	5.1nH ±0.1nH	100MHz	8	100MHz	650mA	0.18Ω	5300MHz
LQG15HZ5N1C02	LQG15HH5N1C02	5.1nH ±0.2nH	100MHz	8	100MHz	650mA	0.18Ω	5300MHz
LQG15HZ5N1S02	LQG15HH5N1S02	5.1nH ±0.3nH	100MHz	8	100MHz	650mA	0.18Ω	5300MHz
LQG15HZ5N6B02	LQG15HH5N6B02	5.6nH ±0.1nH	100MHz	8	100MHz	650mA	0.18Ω	4500MHz
LQG15HZ5N6C02	LQG15HH5N6C02	5.6nH ±0.2nH	100MHz	8	100MHz	650mA	0.18Ω	4500MHz
LQG15HZ5N6S02	LQG15HH5N6S02	5.6nH ±0.3nH	100MHz	8	100MHz	650mA	0.18Ω	4500MHz
LQG15HZ6N2B02	LQG15HH6N2B02	6.2nH ±0.1nH	100MHz	8	100MHz	600mA	0.20Ω	4500MHz
LQG15HZ6N2C02	LQG15HH6N2C02	6.2nH ±0.2nH	100MHz	8	100MHz	600mA	0.20Ω	4500MHz
LQG15HZ6N2S02	LQG15HH6N2S02	6.2nH ±0.3nH	100MHz	8	100MHz	600mA	0.20Ω	4500MHz
LQG15HZ6N8G02	LQG15HH6N8G02	6.8nH ±2%	100MHz	8	100MHz	600mA	0.22Ω	4500MHz
LQG15HZ6N8H02	LQG15HH6N8H02	6.8nH ±3%	100MHz	8	100MHz	600mA	0.22Ω	4500MHz
LQG15HZ6N8J02	LQG15HH6N8J02	6.8nH ±5%	100MHz	8	100MHz	600mA	0.22Ω	4500MHz
LQG15HZ7N5G02	LQG15HH7N5G02	7.5nH ±2%	100MHz	8	100MHz	550mA	0.24Ω	4200MHz
LQG15HZ7N5H02	LQG15HH7N5H02	7.5nH ±3%	100MHz	8	100MHz	550mA	0.24Ω	4200MHz
LQG15HZ7N5J02	LQG15HH7N5J02	7.5nH ±5%	100MHz	8	100MHz	550mA	0.24Ω	4200MHz
LQG15HZ8N2G02	LQG15HH8N2G02	8.2nH ±2%	100MHz	8	100MHz	550mA	0.24Ω	3700MHz
LQG15HZ8N2H02	LQG15HH8N2H02	8.2nH ±3%	100MHz	8	100MHz	550mA	0.24Ω	3700MHz
LQG15HZ8N2J02	LQG15HH8N2J02	8.2nH ±5%	100MHz	8	100MHz	550mA	0.24Ω	3700MHz
LQG15HZ9N1G02	LQG15HH9N1G02	9.1nH ±2%	100MHz	8	100MHz	500mA	0.26Ω	3400MHz
LQG15HZ9N1H02	LQG15HH9N1H02	9.1nH ±3%	100MHz	8	100MHz	500mA	0.26Ω	3400MHz
LQG15HZ9N1J02	LQG15HH9N1J02	9.1nH ±5%	100MHz	8	100MHz	500mA	0.26Ω	3400MHz
LQG15HZ10NG02	LQG15HH10NG02	10nH ±2%	100MHz	8	100MHz	500mA	0.26Ω	3400MHz
LQG15HZ10NH02	LQG15HH10NH02	10nH ±3%	100MHz	8	100MHz	500mA	0.26Ω	3400MHz
LQG15HZ10NJ02	LQG15HH10NJ02	10nH ±5%	100MHz	8	100MHz	500mA	0.26Ω	3400MHz
LQG15HZ12NG02	LQG15HH12NG02	12nH ±2%	100MHz	8	100MHz	500mA	0.28Ω	3000MHz
LQG15HZ12NH02	LQG15HH12NH02	12nH ±3%	100MHz	8	100MHz	500mA	0.28Ω	3000MHz
LQG15HZ12NJ02	LQG15HH12NJ02	12nH ±5%	100MHz	8	100MHz	500mA	0.28Ω	3000MHz
LQG15HZ15NG02	LQG15HH15NG02	15nH ±2%	100MHz	8	100MHz	450mA	0.32Ω	2500MHz
LQG15HZ15NH02	LQG15HH15NH02	15nH ±3%	100MHz	8	100MHz	450mA	0.32Ω	2500MHz
LQG15HZ15NJ02	LQG15HH15NJ02	15nH ±5%	100MHz	8	100MHz	450mA	0.32Ω	2500MHz
LQG15HZ18NG02	LQG15HH18NG02	18nH ±2%	100MHz	8	100MHz	400mA	0.36Ω	2200MHz
LQG15HZ18NH02	LQG15HH18NH02	18nH ±3%	100MHz	8	100MHz	400mA	0.36Ω	2200MHz
LQG15HZ18NJ02	LQG15HH18NJ02	18nH ±5%	100MHz	8	100MHz	400mA	0.36Ω	2200MHz
LQG15HZ22NG02	LQG15HH22NG02	22nH ±2%	100MHz	8	100MHz	350mA	0.42Ω	1900MHz
		22111122/0	10011112	5	10011112	550mA	0. 7232	130011112

muRata

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Part N	umber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQG15HZ22NH02	LQG15HH22NH02	22nH ±3%	100MHz	8	100MHz	350mA	0.42Ω	1900MHz
LQG15HZ22NJ02	LQG15HH22NJ02	22nH ±5%	100MHz	8	100MHz	350mA	0.42Ω	1900MHz
LQG15HZ27NG02	LQG15HH27NG02	27nH ±2%	100MHz	8	100MHz	350mA	0.46Ω	1700MHz
LQG15HZ27NH02	LQG15HH27NH02	27nH ±3%	100MHz	8	100MHz	350mA	0.46Ω	1700MHz
LQG15HZ27NJ02	LQG15HH27NJ02	27nH ±5%	100MHz	8	100MHz	350mA	0.46Ω	1700MHz
LQG15HZ33NG02	LQG15HH33NG02	33nH ±2%	100MHz	8	100MHz	350mA	0.58Ω	1600MHz
LQG15HZ33NH02	LQG15HH33NH02	33nH ±3%	100MHz	8	100MHz	350mA	0.58Ω	1600MHz
LQG15HZ33NJ02	LQG15HH33NJ02	33nH ±5%	100MHz	8	100MHz	350mA	0.58Ω	1600MHz
LQG15HZ39NG02	LQG15HH39NG02	39nH ±2%	100MHz	8	100MHz	300mA	0.65Ω	1200MHz
LQG15HZ39NH02	LQG15HH39NH02	39nH ±3%	100MHz	8	100MHz	300mA	0.65Ω	1200MHz
LQG15HZ39NJ02	LQG15HH39NJ02	39nH ±5%	100MHz	8	100MHz	300mA	0.65Ω	1200MHz
LQG15HZ47NG02	LQG15HH47NG02	47nH ±2%	100MHz	8	100MHz	300mA	0.72Ω	1000MHz
LQG15HZ47NH02	LQG15HH47NH02	47nH ±3%	100MHz	8	100MHz	300mA	0.72Ω	1000MHz
LQG15HZ47NJ02	LQG15HH47NJ02	47nH ±5%	100MHz	8	100MHz	300mA	0.72Ω	1000MHz
LQG15HZ56NG02	LQG15HH56NG02	56nH ±2%	100MHz	8	100MHz	250mA	0.82Ω	800MHz
LQG15HZ56NH02	LQG15HH56NH02	56nH ±3%	100MHz	8	100MHz	250mA	0.82Ω	800MHz
LQG15HZ56NJ02	LQG15HH56NJ02	56nH ±5%	100MHz	8	100MHz	250mA	0.82Ω	800MHz
LQG15HZ68NG02	LQG15HH68NG02	68nH ±2%	100MHz	8	100MHz	250mA	0.92Ω	800MHz
LQG15HZ68NH02	LQG15HH68NH02	68nH ±3%	100MHz	8	100MHz	250mA	0.92Ω	800MHz
LQG15HZ68NJ02	LQG15HH68NJ02	68nH ±5%	100MHz	8	100MHz	250mA	0.92Ω	800MHz
LQG15HZ82NG02	LQG15HH82NG02	82nH ±2%	100MHz	8	100MHz	200mA	1.20Ω	700MHz
LQG15HZ82NH02	LQG15HH82NH02	82nH ±3%	100MHz	8	100MHz	200mA	1.20Ω	700MHz
LQG15HZ82NJ02	LQG15HH82NJ02	82nH ±5%	100MHz	8	100MHz	200mA	1.20Ω	700MHz
LQG15HZR10G02	LQG15HHR10G02	100nH ±2%	100MHz	8	100MHz	200mA	1.25Ω	600MHz
LQG15HZR10H02	LQG15HHR10H02	100nH ±3%	100MHz	8	100MHz	200mA	1.25Ω	600MHz
LQG15HZR10J02	LQG15HHR10J02	100nH ±5%	100MHz	8	100MHz	200mA	1.25Ω	600MHz
LQG15HZR12G02	LQG15HHR12G02	120nH ±2%	100MHz	8	100MHz	200mA	1.30Ω	600MHz
LQG15HZR12H02	LQG15HHR12H02	120nH ±3%	100MHz	8	100MHz	200mA	1.30Ω	600MHz
LQG15HZR12J02	LQG15HHR12J02	120nH ±5%	100MHz	8	100MHz	200mA	1.30Ω	600MHz
LQG15HZR15G02	LQG15HHR15G02	150nH ±2%	100MHz	8	100MHz	150mA	2.99Ω	550MHz
LQG15HZR15H02	LQG15HHR15H02	150nH ±3%	100MHz	8	100MHz	150mA	2.99Ω	550MHz
LQG15HZR15J02	LQG15HHR15J02	150nH ±5%	100MHz	8	100MHz	150mA	2.99Ω	550MHz
LQG15HZR18G02	LQG15HHR18G02	180nH ±2%	100MHz	8	100MHz	150mA	3.38Ω	500MHz
LQG15HZR18H02	LQG15HHR18H02	180nH ±3%	100MHz	8	100MHz	150mA	3.38Ω	500MHz
LQG15HZR18J02	LQG15HHR18J02	180nH ±5%	100MHz	8	100MHz	150mA	3.38Ω	500MHz
LQG15HZR22G02	LQG15HHR22G02	220nH ±2%	100MHz	8	100MHz	120mA	3.77Ω	450MHz
LQG15HZR22H02	LQG15HHR22H02	220nH ±3%	100MHz	8	100MHz	120mA	3.77Ω	450MHz
LQG15HZR22J02	LQG15HHR22J02	220nH ±5%	100MHz	8	100MHz	120mA	3.77Ω	450MHz
LQG15HZR27G02	LQG15HHR27G02	270nH ±2%	100MHz	8	100MHz	110mA	4.94Ω	400MHz
LQG15HZR27H02	LQG15HHR27H02	270nH ±3%	100MHz	8	100MHz	110mA	4.94Ω	400MHz
LQG15HZR27J02	LQG15HHR27J02	270nH ±5%	100MHz	8	100MHz	110mA	4.94Ω	400MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

muRata

0.6±0.05

(in mm)

0.5±0.1

Polarity Marking

0.2±0.06

1.0±0.05

QG15WZ_02/LQG15WH_02 Series 0402 (1005) inch (mm)

Packaging

Code

D

J

в

Packaging

ø180mm Paper Taping

ø330mm Paper Taping

Packing in Bulk

Minimum

Quantity

10000

40000

100

Rated Value (: packaging code)

RF Inductors

Appearance/Dimensions

Rated Value (L: pa	lumber							
Infotainment	Powertrain/Safety	Inductance	Inductance Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQG15WZ0N7B02		0.7nH ±0.1nH	100MHz	_	250MHz	1200mA	0.03Ω	15000MHz
• _	• —	0.7nH ±0.2nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
				-	250MHz		0.03Ω	
LQG15WZ0N7S02	LQG15WH0N7S02	0.7nH ±0.3nH	100MHz 100MHz	-	250MHz	1200mA 1200mA	0.03Ω	15000MHz 15000MHz
• _	• —	0.8nH ±0.1nH		-				
		0.8nH ±0.2nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		0.8nH ±0.3nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		0.9nH ±0.1nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		0.9nH ±0.2nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		0.9nH ±0.3nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		1.0nH ±0.1nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		1.0nH ±0.2nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		1.0nH ±0.3nH	100MHz	-	250MHz	1200mA	0.03Ω	15000MHz
		1.1nH ±0.1nH	100MHz	-	250MHz	1200mA	0.03Ω	14000MHz
		1.1nH ±0.2nH	100MHz	-	250MHz	1200mA	0.03Ω	14000MHz
		1.1nH ±0.3nH	100MHz	-	250MHz	1200mA	0.03Ω	14000MHz
		1.2nH ±0.1nH	100MHz	-	250MHz	1200mA	0.03Ω	13000MHz
		1.2nH ±0.2nH	100MHz	-	250MHz	1200mA	0.03Ω	13000MHz
		1.2nH ±0.3nH	100MHz	-	250MHz	1200mA	0.03Ω	13000MHz
LQG15WZ1N3B02		1.3nH ±0.1nH	100MHz	-	250MHz	1200mA	0.03Ω	12000MHz
		1.3nH ±0.2nH	100MHz	-	250MHz	1200mA	0.03Ω	12000MHz
LQG15WZ1N3S02		1.3nH ±0.3nH	100MHz	-	250MHz	1200mA	0.03Ω	12000MHz
		1.4nH ±0.1nH	100MHz	23	250MHz	1000mA	0.04Ω	12000MHz
		1.4nH ±0.2nH	100MHz	23	250MHz	1000mA	0.04Ω	12000MHz
		1.4nH ±0.3nH	100MHz	23	250MHz	1000mA	0.04Ω	12000MHz
		1.5nH ±0.1nH	100MHz	23 23	250MHz	1000mA	0.04Ω	11000MHz
		1.5nH ±0.2nH	100MHz		250MHz	1000mA	0.04Ω	11000MHz
		1.5nH ±0.3nH	100MHz	23	250MHz	1000mA	0.04Ω	11000MHz
LQG15WZ1N6B02		1.6nH ±0.1nH	100MHz	23	250MHz	1000mA	0.04Ω	10000MHz
		1.6nH ±0.2nH	100MHz	23	250MHz	1000mA	0.04Ω	10000MHz
		1.6nH ±0.3nH	100MHz	23	250MHz	1000mA	0.04Ω	10000MHz
LQG15WZ1N7B02		1.7nH ±0.1nH	100MHz	23	250MHz	1000mA	0.04Ω	10000MHz
LQG15WZ1N7C02	LQG15WH1N7C02	1.7nH ±0.2nH	100MHz	23	250MHz	1000mA	0.04Ω	10000MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Continued on the following page. earrow

muRata

🖄 Note 🔹 Please read rating and 🖞 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Dort N	lumber							
Infotainment	Powertrain/Safety	Inductance	Inductance Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQG15WZ1N7S02	LQG15WH1N7S02	1.7nH ±0.3nH	100MHz	23	250MHz	1000mA	0.04Ω	10000MHz
LQG15WZ1N8B02	LQG15WH1N8B02	1.8nH ±0.1nH	100MHz	23	250MHz	1000mA	0.04Ω	9000MHz
LQG15WZ1N8C02	LQG15WH1N8C02	1.8nH ±0.2nH	100MHz	23	250MHz	1000mA	0.04Ω	9000MHz
LQG15WZ1N8S02	LQG15WH1N8S02	1.8nH ±0.3nH	100MHz	23	250MHz	1000mA	0.04Ω	9000MHz
LQG15WZ1N9B02	LQG15WH1N9B02	1.9nH ±0.1nH	100MHz	23	250MHz	1000mA	0.05Ω	8000MHz
LQG15WZ1N9C02	LQG15WH1N9C02	1.9nH ±0.2nH	100MHz	23	250MHz	1000mA	0.05Ω	8000MHz
LQG15WZ1N9S02	LQG15WH1N9S02	1.9nH ±0.3nH	100MHz	23	250MHz	1000mA	0.05Ω	8000MHz
LQG15WZ2N0B02	LQG15WH2N0B02	2.0nH ±0.1nH	100MHz	23	250MHz	1000mA	0.05Ω	8000MHz
LQG15WZ2N0C02	LQG15WH2N0C02	2.0nH ±0.2nH	100MHz	23	250MHz	1000mA	0.05Ω	8000MHz
LQG15WZ2N0S02	LQG15WH2N0S02	2.0nH ±0.3nH	100MHz	23	250MHz	1000mA	0.05Ω	8000MHz
LQG15WZ2N1B02	LQG15WH2N1B02	2.1nH ±0.1nH	100MHz	23	250MHz	1000mA	0.06Ω	8000MHz
LQG15WZ2N1C02	LQG15WH2N1C02	2.1nH ±0.2nH	100MHz	23	250MHz	1000mA	0.06Ω	8000MHz
LQG15WZ2N1S02	LQG15WH2N1S02	2.1nH ±0.3nH	100MHz	23	250MHz	1000mA	0.06Ω	8000MHz
LQG15WZ2N2B02	LQG15WH2N2B02	2.2nH ±0.1nH	100MHz	23	250MHz	1000mA	0.06Ω	8000MHz
LQG15WZ2N2C02	LQG15WH2N2C02	2.2nH ±0.2nH	100MHz	23	250MHz	1000mA	0.06Ω	8000MHz
LQG15WZ2N2S02	LQG15WH2N2S02	2.2nH ±0.3nH	100MHz	23	250MHz	1000mA	0.06Ω	8000MHz
LQG15WZ2N3B02	LQG15WH2N3B02	2.3nH ±0.1nH	100MHz	23	250MHz	1000mA	0.07Ω	7000MHz
LQG15WZ2N3C02	LQG15WH2N3C02	2.3nH ±0.2nH	100MHz	23	250MHz	1000mA	0.07Ω	7000MHz
LQG15WZ2N3S02	LQG15WH2N3S02	2.3nH ±0.3nH	100MHz	23	250MHz	1000mA	0.07Ω	7000MHz
LQG15WZ2N4B02	LQG15WH2N4B02	2.4nH ±0.1nH	100MHz	23	250MHz	1000mA	0.06Ω	6500MHz
LQG15WZ2N4C02		2.4nH ±0.2nH	100MHz	23	250MHz	1000mA	0.06Ω	6500MHz
LQG15WZ2N4S02		2.4nH ±0.2nH	100MHz	23	250MHz	1000mA	0.06Ω	6500MHz
LQG15WZ2N5B02	LQG15WH2N4302	2.5nH ±0.1nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
				23		900mA	0.07Ω	
		2.5nH ±0.2nH	100MHz		250MHz			6500MHz
		2.5nH ±0.3nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
		2.6nH ±0.1nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
		2.6nH ±0.2nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
		2.6nH ±0.3nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
		2.7nH ±0.1nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
		2.7nH ±0.2nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
LQG15WZ2N7S02		2.7nH ±0.3nH	100MHz	23	250MHz	900mA	0.07Ω	6500MHz
		2.8nH ±0.1nH	100MHz	23	250MHz	900mA	0.08Ω	6500MHz
LQG15WZ2N8C02	LQG15WH2N8C02	2.8nH ±0.2nH	100MHz	23	250MHz	900mA	0.08Ω	6500MHz
LQG15WZ2N8S02	LQG15WH2N8S02	2.8nH ±0.3nH	100MHz	23	250MHz	900mA	0.08Ω	6500MHz
LQG15WZ2N9B02	LQG15WH2N9B02	2.9nH ±0.1nH	100MHz	23	250MHz	900mA	0.08Ω	6500MHz
		2.9nH ±0.2nH	100MHz	23	250MHz	900mA	0.08Ω	6500MHz
LQG15WZ2N9S02		2.9nH ±0.3nH	100MHz	23	250MHz	900mA	0.08Ω	6500MHz
LQG15WZ3N0B02	LQG15WH3N0B02	3.0nH ±0.1nH	100MHz	23	250MHz	900mA	0.08Ω	6000MHz
		3.0nH ±0.2nH	100MHz	23	250MHz	900mA	0.08Ω	6000MHz
		3.0nH ±0.3nH	100MHz	23	250MHz	900mA	0.08Ω	6000MHz
LQG15WZ3N1B02		3.1nH ±0.1nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
LQG15WZ3N1C02		3.1nH ±0.2nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
		3.1nH ±0.3nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
LQG15WZ3N2B02		3.2nH ±0.1nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
		3.2nH ±0.2nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
		3.2nH ±0.3nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
LQG15WZ3N3B02	LQG15WH3N3B02	3.3nH ±0.1nH	100MHz	23	250MHz	900mA	0.08Ω	6000MHz
LQG15WZ3N3C02	LQG15WH3N3C02	3.3nH ±0.2nH	100MHz	23	250MHz	900mA	0.08Ω	6000MHz
LQG15WZ3N3S02	LQG15WH3N3S02	3.3nH ±0.3nH	100MHz	23	250MHz	900mA	0.08Ω	6000MHz
LQG15WZ3N4B02	LQG15WH3N4B02	3.4nH ±0.1nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
LQG15WZ3N4C02	LQG15WH3N4C02	3.4nH ±0.2nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
LQG15WZ3N4S02	LQG15WH3N4S02	3.4nH ±0.3nH	100MHz	23	250MHz	900mA	0.09Ω	6000MHz
LQG15WZ3N5B02	LQG15WH3N5B02	3.5nH ±0.1nH	100MHz	23	250MHz	900mA	0.09Ω	5800MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Inductors for General Circuits

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQG15WZ3N5C02	LQG15WH3N5C02	3.5nH ±0.2nH	100MHz	23	250MHz	900mA	0.09Ω	5800MHz
LQG15WZ3N5S02	LQG15WH3N5S02	3.5nH ±0.3nH	100MHz	23	250MHz	900mA	0.09Ω	5800MHz
LQG15WZ3N6B02	LQG15WH3N6B02	3.6nH ±0.1nH	100MHz	23	250MHz	900mA	0.09Ω	5500MHz
LQG15WZ3N6C02	LQG15WH3N6C02	3.6nH ±0.2nH	100MHz	23	250MHz	900mA	0.09Ω	5500MHz
LQG15WZ3N6S02	LQG15WH3N6S02	3.6nH ±0.3nH	100MHz	23	250MHz	900mA	0.09Ω	5500MHz
LQG15WZ3N7B02	LQG15WH3N7B02	3.7nH ±0.1nH	100MHz	23	250MHz	900mA	0.10Ω	5500MHz
LQG15WZ3N7C02	LQG15WH3N7C02	3.7nH ±0.2nH	100MHz	23	250MHz	900mA	0.10Ω	5500MHz
LQG15WZ3N7S02	LQG15WH3N7S02	3.7nH ±0.3nH	100MHz	23	250MHz	900mA	0.10Ω	5500MHz
LQG15WZ3N8B02	LQG15WH3N8B02	3.8nH ±0.1nH	100MHz	23	250MHz	900mA	0.10Ω	5000MHz
LQG15WZ3N8C02	LQG15WH3N8C02	3.8nH ±0.2nH	100MHz	23	250MHz	900mA	0.10Ω	5000MHz
LQG15WZ3N8S02	LQG15WH3N8S02	3.8nH ±0.3nH	100MHz	23	250MHz	900mA	0.10Ω	5000MHz
LQG15WZ3N9B02	LQG15WH3N9B02	3.9nH ±0.1nH	100MHz	23	250MHz	900mA	0.09Ω	5000MHz
LQG15WZ3N9B02		3.9nH ±0.2nH	100MHz	23	250MHz	900mA	0.09Ω	5000MHz
	-							5000MHz
		3.9nH ±0.3nH	100MHz	23	250MHz	900mA	0.09Ω	
		4.1nH ±0.1nH	100MHz	23	250MHz	800mA	0.10Ω	5000MHz
		4.1nH ±0.2nH	100MHz	23	250MHz	800mA	0.10Ω	5000MHz
LQG15WZ4N1S02	LQG15WH4N1S02	4.1nH ±0.3nH	100MHz	23	250MHz	800mA	0.10Ω	5000MHz
LQG15WZ4N3B02		4.3nH ±0.1nH	100MHz	23	250MHz	800mA	0.10Ω	5000MHz
LQG15WZ4N3C02	LQG15WH4N3C02	4.3nH ±0.2nH	100MHz	23	250MHz	800mA	0.10Ω	5000MHz
LQG15WZ4N3S02	LQG15WH4N3S02	4.3nH ±0.3nH	100MHz	23	250MHz	800mA	0.10Ω	5000MHz
LQG15WZ4N7B02	LQG15WH4N7B02	4.7nH ±0.1nH	100MHz	23	250MHz	800mA	0.11Ω	5000MHz
LQG15WZ4N7C02	LQG15WH4N7C02	4.7nH ±0.2nH	100MHz	23	250MHz	800mA	0.11Ω	5000MHz
LQG15WZ4N7S02	LQG15WH4N7S02	4.7nH ±0.3nH	100MHz	23	250MHz	800mA	0.11Ω	5000MHz
LQG15WZ5N1B02	LQG15WH5N1B02	5.1nH ±0.1nH	100MHz	23	250MHz	800mA	0.12Ω	4500MHz
LQG15WZ5N1C02	LQG15WH5N1C02	5.1nH ±0.2nH	100MHz	23	250MHz	800mA	0.12Ω	4500MHz
LQG15WZ5N1S02	LQG15WH5N1S02	5.1nH ±0.3nH	100MHz	23	250MHz	800mA	0.12Ω	4500MHz
LQG15WZ5N6B02	LQG15WH5N6B02	5.6nH ±0.1nH	100MHz	23	250MHz	800mA	0.13Ω	4500MHz
LQG15WZ5N6C02	LQG15WH5N6C02	5.6nH ±0.2nH	100MHz	23	250MHz	800mA	0.13Ω	4500MHz
LQG15WZ5N6S02	LQG15WH5N6S02	5.6nH ±0.3nH	100MHz	23	250MHz	800mA	0.13Ω	4500MHz
LQG15WZ5N8B02	LQG15WH5N8B02	5.8nH ±0.1nH	100MHz	23	250MHz	700mA	0.13Ω	4000MHz
LQG15WZ5N8C02	LQG15WH5N8C02	5.8nH ±0.2nH	100MHz	23	250MHz	700mA	0.13Ω	4000MHz
LQG15WZ5N8S02	LQG15WH5N8S02	5.8nH ±0.3nH	100MHz	23	250MHz	700mA	0.13Ω	4000MHz
LQG15WZ6N2B02	LQG15WH6N2B02	6.2nH ±0.1nH	100MHz	23	250MHz	700mA	0.13Ω	4000MHz
LQG15WZ6N2C02	LQG15WH6N2C02	6.2nH ±0.2nH	100MHz	23	250MHz	700mA	0.13Ω	4000MHz
LQG15WZ6N2S02	LQG15WH6N2S02	6.2nH ±0.3nH	100MHz	23	250MHz	700mA	0.13Ω	4000MHz
LQG15WZ6N8G02	LQG15WH6N8G02	6.8nH ±2%	100MHz	23	250MHz	700mA	0.14Ω	4000MHz
LQG15WZ6N8H02	LQG15WH6N8H02	6.8nH ±3%	100MHz	23	250MHz	700mA	0.14Ω	4000MHz
LQG15WZ6N8J02	LQG15WH6N8J02	6.8nH ±5%	100MHz	23	250MHz	700mA	0.14Ω	4000MHz
LQG15WZ7N3G02	LQG15WH7N3G02	7.3nH ±2%	100MHz	23	250MHz	600mA	0.17Ω	4000MHz
LQG15WZ7N3H02	LQG15WH7N3H02	7.3nH ±3%	100MHz	23	250MHz	600mA	0.17Ω	4000MHz
LQG15WZ7N3J02	LQG15WH7N3J02	7.3nH ±5%	100MHz	23	250MHz	600mA	0.17Ω	4000MHz
LQG15WZ7N5G02	LQG15WH7N5G02	7.5nH ±2%	100MHz	23	250MHz	600mA	0.16Ω	4000MHz
LQG15WZ7N5H02	LQG15WH7N5H02	7.5nH ±3%	100MHz	23	250MHz	600mA	0.16Ω	4000MHz
LQG15WZ7N5J02	LQG15WH7N5J02	7.5nH ±5%	100MHz	23	250MHz	600mA	0.16Ω	4000MHz
LQG15WZ8N2G02	LQG15WH8N2G02	8.2nH ±2%	100MHz	23	250MHz	550mA	0.16Ω	3600MHz
LQG15WZ8N2H02	LQG15WH8N2H02	8.2nH ±3%	100MHz	23	250MHz	550mA	0.16Ω	3600MHz
LQG15WZ8N2J02	LQG15WH8N2J02	8.2nH ±5%	100MHz	23	250MHz	550mA	0.16Ω	3600MHz
LQG15WZ8N7G02	LQG15WH8N7G02	8.7nH ±2%	100MHz	23	250MHz	550mA	0.17Ω	3500MHz
LQG15WZ8N7H02	LQG15WH8N7H02	8.7nH ±3%	100MHz	23	250MHz	550mA	0.17Ω	3500MHz
LQG15WZ8N7J02	LQG15WH8N7J02	8.7nH ±5%	100MHz	23	250MHz	550mA	0.17Ω	3500MHz
LQG15WZ9N1G02	LQG15WH9N1G02	9.1nH ±2%	100MHz	23	250MHz	550mA	0.17Ω	3400MHz
LQG15WZ9N1H02	LQG15WH9N1H02	9.1nH ±3%	100MHz	23	250MHz	550mA	0.17Ω	3400MHz
LQG15WZ9N1J02	LQG15WH9N1J02	9.1nH ±5%	100MHz	23	250MHz	550mA	0.17Ω	3400MHz
			1	1	1	I	1	

muRata

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

Pa <u>rt N</u>	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQG15WZ9N5G02	LQG15WH9N5G02	9.5nH ±2%	100MHz	23	250MHz	500mA	0.21Ω	3300MHz
LQG15WZ9N5H02	LQG15WH9N5H02	9.5nH ±3%	100MHz	23	250MHz	500mA	0.21Ω	3300MHz
LQG15WZ9N5J02	LQG15WH9N5J02	9.5nH ±5%	100MHz	23	250MHz	500mA	0.21Ω	3300MHz
LQG15WZ10NG02	LQG15WH10NG02	10nH ±2%	100MHz	23	250MHz	500mA	0.19Ω	3300MHz
LQG15WZ10NH02	LQG15WH10NH02	10nH ±3%	100MHz	23	250MHz	500mA	0.19Ω	3300MHz
LQG15WZ10NJ02	LQG15WH10NJ02	10nH ±5%	100MHz	23	250MHz	500mA	0.19Ω	3300MHz
LQG15WZ11NG02	LQG15WH11NG02	11nH ±2%	100MHz	23	250MHz	450mA	0.22Ω	3000MHz
LQG15WZ11NH02	LQG15WH11NH02	11nH ±3%	100MHz	23	250MHz	450mA	0.22Ω	3000MHz
LQG15WZ11NJ02	LQG15WH11NJ02	11nH ±5%	100MHz	23	250MHz	450mA	0.22Ω	3000MHz
LQG15WZ12NG02	LQG15WH12NG02	12nH ±2%	100MHz	23	250MHz	450mA	0.24Ω	2800MHz
LQG15WZ12NH02	LQG15WH12NH02	12nH ±3%	100MHz	23	250MHz	450mA	0.24Ω	2800MHz
LQG15WZ12NJ02	LQG15WH12NJ02	12nH ±5%	100MHz	23	250MHz	450mA	0.24Ω	2800MHz
LQG15WZ13NG02	LQG15WH13NG02	13nH ±2%	100MHz	23	250MHz	400mA	0.26Ω	2800MHz
LQG15WZ13NH02	LQG15WH13NH02	13nH ±3%	100MHz	23	250MHz	400mA	0.26Ω	2800MHz
LQG15WZ13NJ02	LQG15WH13NJ02	13nH ±5%	100MHz	23	250MHz	400mA	0.26Ω	2800MHz
LQG15WZ15NG02	LQG15WH15NG02	15nH ±2%	100MHz	23	250MHz	400mA	0.28Ω	2300MHz
LQG15WZ15NH02	LQG15WH15NH02	15nH ±3%	100MHz	23	250MHz	400mA	0.28Ω	2300MHz
LQG15WZ15NJ02	LQG15WH15NJ02	15nH ±5%	100MHz	23	250MHz	400mA	0.28Ω	2300MHz
LQG15WZ16NG02	LQG15WH16NG02	16nH ±2%	100MHz	20	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ16NH02	LQG15WH16NH02	16nH ±3%	100MHz	20	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ16NJ02	LQG15WH16NJ02	16nH ±5%	100MHz	20	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ18NG02	LQG15WH18NG02	18nH ±2%	100MHz	22	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ18NH02	LQG15WH18NH02	18nH ±3%	100MHz	22	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ18NJ02	LQG15WH18NJ02	18nH ±5%	100MHz	22	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ19NG02	LQG15WH19NG02	19nH ±2%	100MHz	20	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ19NH02	LQG15WH19NH02	19nH ±3%	100MHz	20	250MHz	260mA	0.8Ω	2300MHz
LQG15WZ19NJ02	LQG15WH19NJ02	19nH ±5%	100MHz	20	250MHz	260mA	0.8Ω	2300MHz
LOG15WZ20NG02		20nH ±2%	100MHz	20	250MHz	260mA	1.1Ω	2100MHz
LQG15WZ20NH02	LQG15WH20NH02	20nH ±3%	100MHz	20	250MHz	260mA	1.1Ω	2100MHz
LQG15WZ20NJ02	LQG15WH20NJ02	20nH ±5%	100MHz	20	250MHz	260mA	1.1Ω	2100MHz
LQG15WZ22NG02	LQG15WH22NG02	22nH ±2%	100MHz	20	250MHz	230mA	1.1Ω	2100MHz
LQG15WZ22NH02	LQG15WH22NH02	22nH ±3%	100MHz	20	250MHz	230mA	1.1Ω	2100MHz
LQG15WZ22NJ02	LQG15WH22NJ02	22nH ±5%	100MHz	20	250MHz	230mA	1.1Ω	2100MHz
LQG15WZ23NG02	LQG15WH23NG02	23nH ±2%	100MHz	22	250MHz	230mA	1.1Ω	2000MHz
LQG15WZ23NH02	LQG15WH23NH02	23nH ±3%	100MHz	22	250MHz	230mA	1.1Ω	2000MHz
LQG15WZ23NJ02	LQG15WH23NJ02	23nH ±5%	100MHz	22	250MHz	230mA	1.1Ω	2000MHz
LQG15WZ24NG02	LQG15WH24NG02	24nH ±2%	100MHz	20	250MHz	230mA	1.2Ω	2000MHz
LQG15WZ24NH02	LQG15WH24NH02	24nH ±3%	100MHz	20	250MHz	230mA	1.2Ω	2000MHz
LQG15WZ24NJ02	LQG15WH24NJ02	24nH ±5%	100MHz	20	250MHz	230mA	1.2Ω	2000MHz
LQG15WZ27NG02	LQG15WH27NG02	27nH ±2%	100MHz	20	250MHz	230mA	1.3Ω	1700MHz
LQG15WZ27NH02	LQG15WH27NH02	27nH ±3%	100MHz	20	250MHz	230mA	1.3Ω	1700MHz
LQG15WZ27NJ02	LQG15WH27NJ02	27nH ±5%	100MHz	20	250MHz	230mA	1.3Ω	1700MHz
LQG15WZ30NG02	LQG15WH30NG02	30nH ±2%	100MHz	20	250MHz	220mA	1.3Ω	1700MHz
LQG15WZ30NH02	LQG15WH30NH02	30nH ±3%	100MHz	20	250MHz	220mA	1.3Ω	1700MHz
LQG15WZ30NJ02	LQG15WH30NJ02	30nH ±5%	100MHz	20	250MHz	220mA	1.3Ω	1700MHz
LQG15WZ33NG02	LQG15WH33NG02	33nH ±2%	100MHz	20	250MHz	220mA	1.5Ω	1600MHz
LQG15WZ33NH02	LQG15WH33NH02	33nH ±3%	100MHz	20	250MHz	220mA	1.5Ω	1600MHz
LQG15WZ33NJ02	LQG15WH33NJ02	33nH ±5%	100MHz	20	250MHz	220mA	1.5Ω	1600MHz
LQG15WZ36NG02	LQG15WH36NG02	36nH ±2%	100MHz	20	250MHz	190mA	1.5Ω	1600MHz
LQG15WZ36NH02	LQG15WH36NH02	36nH ±3%	100MHz	20	250MHz	190mA	1.5Ω	1600MHz
LQG15WZ36NJ02	LQG15WH36NJ02	36nH ±5%	100MHz	20	250MHz	190mA	1.5Ω	1600MHz
LQG15WZ39NG02	LQG15WH39NG02	39nH ±2%	100MHz	20	250MHz	190mA	1.5Ω	1400MHz
LQG15WZ39NH02	LQG15WH39NH02	39nH ±3%	100MHz	20	250MHz	190mA	1.5Ω	1400MHz
-49101120311102		551112570	1001112	20	23011112	10000	1.51	1.0001112

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Dort N	lumber							
		Inductance	Inductance Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	39nH ±5%	100MHz	20	250MHz	190mA	1.5Ω	1400MHz
				20		190mA 190mA		
		40nH ±2%	100MHz		250MHz		1.5Ω	1400MHz
LQG15WZ40NH02		40nH ±3%	100MHz	20	250MHz	190mA	1.5Ω	1400MHz
LQG15WZ40NJ02		40nH ±5%	100MHz	20	250MHz	190mA	1.5Ω	1400MHz
LQG15WZ43NG02		43nH ±2%	100MHz	22	250MHz	190mA	1.6Ω	1400MHz
LQG15WZ43NH02	LQG15WH43NH02	43nH ±3%	100MHz	22	250MHz	190mA	1.6Ω	1400MHz
LQG15WZ43NJ02	LQG15WH43NJ02	43nH ±5%	100MHz	22	250MHz	190mA	1.6Ω	1400MHz
LQG15WZ47NG02	LQG15WH47NG02	47nH ±2%	100MHz	22	250MHz	190mA	1.6Ω	1300MHz
LQG15WZ47NH02	LQG15WH47NH02	47nH ±3%	100MHz	22	250MHz	190mA	1.6Ω	1300MHz
LQG15WZ47NJ02	LQG15WH47NJ02	47nH ±5%	100MHz	22	250MHz	190mA	1.6Ω	1300MHz
LQG15WZ51NG02	LQG15WH51NG02	51nH ±2%	100MHz	22	250MHz	190mA	1.8Ω	1300MHz
LQG15WZ51NH02	LQG15WH51NH02	51nH ±3%	100MHz	22	250MHz	190mA	1.8Ω	1300MHz
LQG15WZ51NJ02	LQG15WH51NJ02	51nH ±5%	100MHz	22	250MHz	190mA	1.8Ω	1300MHz
LQG15WZ56NG02	LQG15WH56NG02	56nH ±2%	100MHz	22	250MHz	180mA	1.8Ω	1200MHz
LQG15WZ56NH02	LQG15WH56NH02	56nH ±3%	100MHz	22	250MHz	180mA	1.8Ω	1200MHz
LQG15WZ56NJ02	LQG15WH56NJ02	56nH ±5%	100MHz	22	250MHz	180mA	1.8Ω	1200MHz
LQG15WZ62NG02	LQG15WH62NG02	62nH ±2%	100MHz	22	250MHz	180mA	1.9Ω	1100MHz
LQG15WZ62NH02	LQG15WH62NH02	62nH ±3%	100MHz	22	250MHz	180mA	1.9Ω	1100MHz
LQG15WZ62NJ02	LQG15WH62NJ02	62nH ±5%	100MHz	22	250MHz	180mA	1.9Ω	1100MHz
LQG15WZ68NG02	LQG15WH68NG02	68nH ±2%	100MHz	22	250MHz	160mA	2.0Ω	1100MHz
LQG15WZ68NH02	LQG15WH68NH02	68nH ±3%	100MHz	22	250MHz	160mA	2.0Ω	1100MHz
LQG15WZ68NJ02	LQG15WH68NJ02	68nH ±5%	100MHz	22	250MHz	160mA	2.0Ω	1100MHz
LQG15WZ72NG02	LQG15WH72NG02	72nH ±2%	100MHz	22	250MHz	160mA	2.2Ω	1100MHz
LQG15WZ72NH02	LQG15WH72NH02	72nH ±3%	100MHz	22	250MHz	160mA	2.2Ω	1100MHz
LQG15WZ72NJ02	LQG15WH72NJ02	72nH ±5%	100MHz	22	250MHz	160mA	2.2Ω	1100MHz
LQG15WZ75NG02	LQG15WH75NG02	75nH ±2%	100MHz	22	250MHz	160mA	2.2Ω	1100MHz
LQG15WZ75NH02	LQG15WH75NH02	75nH ±3%	100MHz	22	250MHz	160mA	2.2Ω	1100MHz
LQG15WZ75NJ02	LQG15WH75NJ02	75nH ±5%	100MHz	22	250MHz	160mA	2.2Ω	1100MHz
LQG15WZ82NG02	LQG15WH82NG02	82nH ±2%	100MHz	22	250MHz	160mA	2.3Ω	900MHz
LQG15WZ82NH02	LQG15WH82NH02	82nH ±3%	100MHz	22	250MHz	160mA	2.3Ω	900MHz
LQG15WZ82NJ02	LQG15WH82NJ02	82nH ±5%	100MHz	22	250MHz	160mA	2.3Ω	900MHz
LQG15WZ91NG02	LQG15WH91NG02	91nH ±2%	100MHz	23	250MHz	160mA	2.3Ω	900MHz
LQG15WZ91NH02	LQG15WH91NH02	91nH ±3%	100MHz	23	250MHz	160mA	2.3Ω	900MHz
LQG15WZ91NJ02	LQG15WH91NJ02	91nH ±5%	100MHz	23	250MHz	160mA	2.3Ω	900MHz
LQG15WZR10G02	LQG15WHR10G02	100nH ±2%	100MHz	23	250MHz	150mA	2.5Ω	900MHz
LQG15WZR10H02	LQG15WHR10H02	100nH ±3%	100MHz	23	250MHz	150mA	2.5Ω	900MHz
LQG15WZR10J02	LQG15WHR10J02	100nH ±5%	100MHz	23	250MHz	150mA	2.5Ω	900MHz
LQG15WZR11G02	LQG15WHR11G02	110nH ±2%	100MHz	22	250MHz	150mA	2.7Ω	800MHz
LQG15WZR11H02	LQG15WHR11H02	110nH ±3%	100MHz	22	250MHz	150mA	2.7Ω	800MHz
LQG15WZR11J02	LQG15WHR11J02	110nH ±5%	100MHz	22	250MHz	150mA	2.7Ω	800MHz
LQG15WZR12G02	LQG15WHR12G02	120nH ±2%	100MHz	22	250MHz	140mA	2.7Ω	800MHz
LQG15WZR12H02	LQG15WHR12H02	120nH ±3%	100MHz	22	250MHz	140mA	2.7Ω	800MHz
LQG15WZR12J02	LQG15WHR12J02	120nH ±5%	100MHz	22	250MHz	140mA	2.7Ω	800MHz
LQG15WZR13G02	LQG15WHR13G02	130nH ±2%	100MHz	22	250MHz	110mA	2.9Ω	800MHz
LQG15WZR13H02	LQG15WHR13H02	130nH ±3%	100MHz	22	250MHz	110mA	2.9Ω	800MHz
LQG15WZR13J02	LQG15WHR13J02	130nH ±5%	100MHz	22	250MHz	110mA	2.9Ω	800MHz
LQG15WZR15G02	LQG15WHR15G02	150nH ±2%	100MHz	22	250MHz	110mA	3.0Ω	800MHz
LQG15WZR15H02	LQG15WHR15H02	150nH ±3%	100MHz	22	250MHz	110mA	3.0Ω	800MHz
LQG15WZR15J02	LQG15WHR15J02	150nH ±5%	100MHz	22	250MHz	110mA	3.0Ω	800MHz
			1	1	i	1	1	

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Continued on the following page. $ot\!\!\!/$

RF Inductors LQG18HH_00 Series 0603 (1608) inch (mm)

Appearance/Dimensions

(in mm)

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
ſ	ø330mm Paper Taping	10000
В	Packing in Bulk	1000

Rated Value (: packaging code)

Part	Number		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
_	LQG18HH1N2S00	1.2nH ±0.3nH	100MHz	12	100MHz	1100mA	0.10Ω	6000MHz
_	LQG18HH1N5S00	1.5nH ±0.3nH	100MHz	12	100MHz	1100mA	0.10Ω	6000MHz
_	LQG18HH1N8S00	1.8nH ±0.3nH	100MHz	12	100MHz	1100mA	0.10Ω	5000MHz
_	LQG18HH2N2S00	2.2nH ±0.3nH	100MHz	12	100MHz	1100mA	0.10Ω	5000MHz
_	LQG18HH2N7S00	2.7nH ±0.3nH	100MHz	12	100MHz	1000mA	0.13Ω	4000MHz
_	LQG18HH3N3S00	3.3nH ±0.3nH	100MHz	12	100MHz	900mA	0.14Ω	4000MHz
_	LQG18HH3N9S00	3.9nH ±0.3nH	100MHz	12	100MHz	900mA	0.15Ω	3000MHz
_	LQG18HH4N7S00	4.7nH ±0.3nH	100MHz	12	100MHz	800mA	0.16Ω	3000MHz
_	LQG18HH5N6S00	5.6nH ±0.3nH	100MHz	12	100MHz	800mA	0.17Ω	3000MHz
_	LQG18HH6N2S00	6.2nH ±0.3nH	100MHz	12	100MHz	800mA	0.18Ω	2800MHz
_	LQG18HH6N8J00	6.8nH ±5%	100MHz	12	100MHz	800mA	0.18Ω	2800MHz
_	LQG18HH8N2J00	8.2nH ±5%	100MHz	12	100MHz	800mA	0.20Ω	2600MHz
_	LQG18HH10NJ00	10nH ±5%	100MHz	12	100MHz	700mA	0.25Ω	2400MHz
_	LQG18HH12NJ00	12nH ±5%	100MHz	12	100MHz	600mA	0.30Ω	2200MHz
_	LQG18HH15NJ00	15nH ±5%	100MHz	12	100MHz	600mA	0.35Ω	1800MHz
_	LQG18HH18NJ00	18nH ±5%	100MHz	12	100MHz	600mA	0.35Ω	1800MHz
_	LQG18HH22NJ00	22nH ±5%	100MHz	12	100MHz	500mA	0.50Ω	1600MHz
_	LQG18HH27NJ00	27nH ±5%	100MHz	12	100MHz	500mA	0.54Ω	1400MHz
_	LQG18HH33NJ00	33nH ±5%	100MHz	12	100MHz	500mA	0.54Ω	1200MHz
_	LQG18HH39NJ00	39nH ±5%	100MHz	12	100MHz	400mA	0.60Ω	1000MHz
_	LQG18HH47NJ00	47nH ±5%	100MHz	12	100MHz	400mA	0.70Ω	900MHz
_	LQG18HH56NJ00	56nH ±5%	100MHz	12	100MHz	400mA	0.70Ω	800MHz
_	LQG18HH68NJ00	68nH ±5%	100MHz	12	100MHz	400mA	0.80Ω	800MHz
_	LQG18HH82NJ00	82nH ±5%	100MHz	12	100MHz	300mA	0.85Ω	700MHz
_	LQG18HHR10J00	100nH ±5%	100MHz	12	100MHz	300mA	0.90Ω	600MHz
_	LQG18HHR12J00	120nH ±5%	100MHz	14	100MHz	300mA	1.10Ω	550MHz
_	LQG18HHR15J00	150nH ±5%	100MHz	14	100MHz	300mA	1.20Ω	550MHz
_	LQG18HHR18J00	180nH ±5%	100MHz	14	100MHz	300mA	1.30Ω	500MHz
_	LQG18HHR22J00	220nH ±5%	100MHz	14	100MHz	300mA	1.50Ω	450MHz
_	LQG18HHR27J00	270nH ±5%	100MHz	14	100MHz	200mA	1.90Ω	400MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Continued on the following page. $earrow \earrow \ea$

RF Inductors LQP03TN_Z2 Series 0201 (0603) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	15000
J	ø330mm Paper Taping	50000
В	Packing in Bulk	500

Rated Value (\Box : packaging code)

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQP03TN0N6BZ2	—	0.6nH ±0.1nH	500MHz	14	500MHz	850mA	0.07Ω	20000MHz
LQP03TN0N6CZ2	_	0.6nH ±0.2nH	500MHz	14	500MHz	850mA	0.07Ω	20000MHz
LQP03TN0N7BZ2	_	0.7nH ±0.1nH	500MHz	14	500MHz	800mA	0.08Ω	20000MHz
LQP03TN0N7CZ2	—	0.7nH ±0.2nH	500MHz	14	500MHz	800mA	0.08Ω	20000MHz
LQP03TN0N8BZ2	_	0.8nH ±0.1nH	500MHz	14	500MHz	800mA	0.08Ω	18000MHz
LQP03TN0N8CZ2	_	0.8nH ±0.2nH	500MHz	14	500MHz	800mA	0.08Ω	18000MHz
LQP03TN0N9BZ2	_	0.9nH ±0.1nH	500MHz	14	500MHz	750mA	0.10Ω	18000MHz
LQP03TN0N9CZ2	_	0.9nH ±0.2nH	500MHz	14	500MHz	750mA	0.10Ω	18000MHz
LQP03TN1N0BZ2	—	1.0nH ±0.1nH	500MHz	14	500MHz	750mA	0.10Ω	17000MHz
LQP03TN1N0CZ2	_	1.0nH ±0.2nH	500MHz	14	500MHz	750mA	0.10Ω	17000MHz
LQP03TN1N1BZ2	_	1.1nH ±0.1nH	500MHz	14	500MHz	750mA	0.10Ω	17000MHz
LQP03TN1N1CZ2	_	1.1nH ±0.2nH	500MHz	14	500MHz	750mA	0.10Ω	17000MHz
LQP03TN1N2BZ2	_	1.2nH ±0.1nH	500MHz	14	500MHz	750mA	0.10Ω	17000MHz
LQP03TN1N2CZ2	—	1.2nH ±0.2nH	500MHz	14	500MHz	750mA	0.10Ω	17000MHz
LQP03TN1N3BZ2	—	1.3nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	17000MHz
LQP03TN1N3CZ2	—	1.3nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	17000MHz
LQP03TN1N4BZ2	—	1.4nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	16000MHz
LQP03TN1N4CZ2	—	1.4nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	16000MHz
LQP03TN1N5BZ2	—	1.5nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N5CZ2	—	1.5nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N6BZ2	—	1.6nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N6CZ2	—	1.6nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N7BZ2	—	1.7nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N7CZ2	—	1.7nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N8BZ2	—	1.8nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N8CZ2	—	1.8nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	15000MHz
LQP03TN1N9BZ2	—	1.9nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	12500MHz
LQP03TN1N9CZ2	—	1.9nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	12500MHz
LQP03TN2N0BZ2	—	2.0nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	12500MHz
LQP03TN2N0CZ2	—	2.0nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	12500MHz
LQP03TN2N1BZ2	—	2.1nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	11000MHz
LQP03TN2N1CZ2	—	2.1nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	11000MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Deut-t	lumber							
		Inductance	Inductance Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	2.2nH ±0.1nH	500MHz	14	500MHz	600mA	0.15Ω	11000MHz
		2.2nH ±0.2nH	500MHz	14	500MHz	600mA	0.15Ω	11000MHz
		2.3nH ±0.1nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.3nH ±0.2nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.4nH ±0.1nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.4nH ±0.2nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.5nH ±0.1nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.5nH ±0.2nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.6nH ±0.1nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.6nH ±0.2nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.7nH ±0.1nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
	_	2.7nH ±0.2nH	500MHz	14	500MHz	500mA	0.20Ω	10000MHz
		2.8nH ±0.1nH	500MHz	14	500MHz	500mA	0.20Ω	9500MHz
		2.8nH ±0.2nH	500MHz	14	500MHz	500mA	0.20Ω	9500MHz
		2.9nH ±0.1nH	500MHz	14	500MHz	500mA	0.20Ω	9500MHz
	_	2.9nH ±0.2nH	500MHz	14	500MHz	500mA	0.20Ω	9500MHz
LQP03TN3N0BZ2	_	3.0nH ±0.1nH	500MHz	14	500MHz	450mA	0.25Ω	9500MHz
	_	3.0nH ±0.2nH	500MHz	14	500MHz	450mA	0.25Ω	9500MHz
LQP03TN3N1BZ2		3.1nH ±0.1nH	500MHz	14	500MHz	450mA	0.25Ω	8000MHz
		3.1nH ±0.2nH	500MHz	14	500MHz	450mA	0.25Ω	8000MHz
		3.2nH ±0.1nH	500MHz	14	500MHz	450mA	0.25Ω	8000MHz
		3.2nH ±0.2nH	500MHz	14	500MHz	450mA	0.25Ω	8000MHz
		3.3nH ±0.1nH	500MHz	14	500MHz	450mA	0.25Ω	8000MHz
		3.3nH ±0.2nH	500MHz	14	500MHz	450mA	0.25Ω	8000MHz
		3.4nH ±0.1nH	500MHz	14	500MHz	450mA	0.25Ω	7000MHz
		3.4nH ±0.2nH	500MHz	14	500MHz	450mA	0.25Ω	7000MHz
		3.5nH ±0.1nH	500MHz	14	500MHz	450mA	0.25Ω	7000MHz
		3.5nH ±0.2nH	500MHz	14	500MHz	450mA	0.25Ω	7000MHz
	_	3.6nH ±0.1nH	500MHz	14	500MHz	400mA	0.30Ω	6000MHz
LQP03TN3N6CZ2	_	3.6nH ±0.2nH	500MHz	14	500MHz	400mA	0.30Ω	6000MHz
	_	3.7nH ±0.1nH	500MHz	14	500MHz	400mA	0.30Ω	6000MHz
LQP03TN3N7CZ2	_	3.7nH ±0.2nH	500MHz	14	500MHz	400mA	0.30Ω	6000MHz
LQP03TN3N8BZ2	_	3.8nH ±0.1nH	500MHz	14	500MHz	400mA	0.30Ω	6000MHz
LQP03TN3N8CZ2	_	3.8nH ±0.2nH	500MHz	14	500MHz	400mA	0.30Ω	6000MHz
LQP03TN3N9BZ2	_	3.9nH ±0.1nH	500MHz	14	500MHz	400mA	0.30Ω	5700MHz
LQP03TN3N9CZ2	_	3.9nH ±0.2nH	500MHz	14	500MHz	400mA	0.30Ω	5700MHz
LQP03TN4N0BZ2	_	4.0nH ±0.1nH	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N0CZ2	_	4.0nH ±0.2nH	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N1BZ2	_	4.1nH ±0.1nH	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N1CZ2	_	4.1nH ±0.2nH	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N2BZ2	_	4.2nH ±0.1nH	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N2CZ2	_	4.2nH ±0.2nH	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N3HZ2	_	4.3nH ±3%	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N3JZ2	_	4.3nH ±5%	500MHz	14	500MHz	350mA	0.40Ω	5300MHz
LQP03TN4N7HZ2	_	4.7nH ±3%	500MHz	14	500MHz	350mA	0.40Ω	4400MHz
LQP03TN4N7JZ2	_	4.7nH ±5%	500MHz	14	500MHz	350mA	0.40Ω	4400MHz
LQP03TN5N1HZ2	_	5.1nH ±3%	500MHz	14	500MHz	350mA	0.40Ω	4200MHz
LQP03TN5N1JZ2	_	5.1nH ±5%	500MHz	14	500MHz	350mA	0.40Ω	4200MHz
LQP03TN5N6HZ2	_	5.6nH ±3%	500MHz	14	500MHz	350mA	0.40Ω	4000MHz
LQP03TN5N6JZ2	_	5.6nH ±5%	500MHz	14	500MHz	350mA	0.40Ω	4000MHz
LQP03TN6N2HZ2	_	6.2nH ±3%	500MHz	14	500MHz	300mA	0.60Ω	4000MHz
LQP03TN6N2JZ2	_	6.2nH ±5%	500MHz	14	500MHz	300mA	0.60Ω	4000MHz
LQP03TN6N8HZ2	_	6.8nH ±3%	500MHz	14	500MHz	300mA	0.60Ω	3900MHz
				· ·	1		· · · · -	

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Pa <u>rt N</u>	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQP03TN6N8JZ2	—	6.8nH ±5%	500MHz	14	500MHz	300mA	0.60Ω	3900MHz
LQP03TN7N5HZ2	_	7.5nH ±3%	500MHz	14	500MHz	300mA	0.60Ω	3700MHz
LQP03TN7N5JZ2	—	7.5nH ±5%	500MHz	14	500MHz	300mA	0.60Ω	3700MHz
LQP03TN8N2HZ2	_	8.2nH ±3%	500MHz	14	500MHz	250mA	0.70Ω	3600MHz
LQP03TN8N2JZ2	_	8.2nH ±5%	500MHz	14	500MHz	250mA	0.70Ω	3600MHz
LQP03TN9N1HZ2	—	9.1nH ±3%	500MHz	14	500MHz	250mA	0.70Ω	3300MHz
LQP03TN9N1JZ2	—	9.1nH ±5%	500MHz	14	500MHz	250mA	0.70Ω	3300MHz
LQP03TN10NHZ2	—	10nH ±3%	500MHz	14	500MHz	250mA	0.70Ω	3200MHz
LQP03TN10NJZ2	—	10nH ±5%	500MHz	14	500MHz	250mA	0.70Ω	3200MHz
LQP03TN11NHZ2	—	11nH ±3%	500MHz	14	500MHz	250mA	0.80Ω	2900MHz
LQP03TN11NJZ2	—	11nH ±5%	500MHz	14	500MHz	250mA	0.80Ω	2900MHz
LQP03TN12NHZ2	—	12nH ±3%	500MHz	12	500MHz	250mA	0.70Ω	2900MHz
LQP03TN12NJZ2	-	12nH ±5%	500MHz	12	500MHz	250mA	0.70Ω	2900MHz
LQP03TN13NHZ2	-	13nH ±3%	500MHz	12	500MHz	250mA	0.80Ω	2600MHz
LQP03TN13NJZ2	_	13nH ±5%	500MHz	12	500MHz	250mA	0.80Ω	2600MHz
LQP03TN15NHZ2	—	15nH ±3%	500MHz	12	500MHz	250mA	0.70Ω	2600MHz
LQP03TN15NJZ2	_	15nH ±5%	500MHz	12	500MHz	250mA	0.70Ω	2600MHz
LQP03TN16NHZ2	—	16nH ±3%	500MHz	12	500MHz	200mA	0.95Ω	2200MHz
LQP03TN16NJZ2	—	16nH ±5%	500MHz	12	500MHz	200mA	0.95Ω	2200MHz
LQP03TN18NHZ2	—	18nH ±3%	500MHz	12	500MHz	200mA	0.80Ω	2200MHz
LQP03TN18NJZ2	—	18nH ±5%	500MHz	12	500MHz	200mA	0.80Ω	2200MHz
LQP03TN20NHZ2	—	20nH ±3%	500MHz	12	500MHz	150mA	2.30Ω	2200MHz
LQP03TN20NJZ2	—	20nH ±5%	500MHz	12	500MHz	150mA	2.30Ω	2200MHz
LQP03TN22NHZ2	—	22nH ±3%	500MHz	12	500MHz	150mA	1.90Ω	2200MHz
LQP03TN22NJZ2	_	22nH ±5%	500MHz	12	500MHz	150mA	1.90Ω	2200MHz
LQP03TN24NHZ2	_	24nH ±3%	500MHz	12	500MHz	140mA	2.30Ω	2000MHz
LQP03TN24NJZ2	_	24nH ±5%	500MHz	12	500MHz	140mA	2.30Ω	2000MHz
LQP03TN27NHZ2	_	27nH ±3%	500MHz	12	500MHz	140mA	2.30Ω	2000MHz
LQP03TN27NJZ2	_	27nH ±5%	500MHz	12	500MHz	140mA	2.30Ω	2000MHz
LQP03TN30NHZ2	_	30nH ±3%	500MHz	9	500MHz	120mA	2.95Ω	1700MHz
LQP03TN30NJZ2	_	30nH ±5%	500MHz	9	500MHz	120mA	2.95Ω	1700MHz
LQP03TN33NHZ2	_	33nH ±3%	300MHz	9	300MHz	120mA	2.95Ω	1700MHz
LQP03TN33NJZ2	_	33nH ±5%	300MHz	9	300MHz	120mA	2.95Ω	1700MHz
LQP03TN36NHZ2	_	36nH ±3%	300MHz	9	300MHz	120mA	3.00Ω	1500MHz
LQP03TN36NJZ2	_	36nH ±5%	300MHz	9	300MHz	120mA	3.00Ω	1500MHz
LQP03TN39NHZ2	-	39nH ±3%	300MHz	9	300MHz	120mA	3.00Ω	1500MHz
LQP03TN39NJZ2	-	39nH ±5%	300MHz	9	300MHz	120mA	3.00Ω	1500MHz
LQP03TN43NHZ2	-	43nH ±3%	300MHz	9	300MHz	100mA	3.60Ω	1300MHz
LQP03TN43NJZ2	-	43nH ±5%	300MHz	9	300MHz	100mA	3.60Ω	1300MHz
LQP03TN47NHZ2	-	47nH ±3%	300MHz	9	300MHz	100mA	3.60Ω	1300MHz
LQP03TN47NJZ2	_	47nH ±5%	300MHz	9	300MHz	100mA	3.60Ω	1300MHz
LQP03TN51NHZ2	_	51nH ±3%	300MHz	9	300MHz	100mA	3.90Ω	1200MHz
LQP03TN51NJZ2	_	51nH ±5%	300MHz	9	300MHz	100mA	3.90Ω	1200MHz
LQP03TN56NHZ2	_	56nH ±3%	300MHz	9	300MHz	100mA	3.90Ω	1200MHz
LQP03TN56NJZ2	-	56nH ±5%	300MHz	9	300MHz	100mA	3.90Ω	1200MHz
LQP03TN62NHZ2	-	62nH ±3%	300MHz	8	300MHz	100mA	Ω8	1100MHz
LQP03TN62NJZ2	-	62nH ±5%	300MHz	8	300MHz	100mA	Ω8	1100MHz
LQP03TN68NHZ2	-	68nH ±3%	300MHz	8	300MHz	100mA	Ω8	1100MHz
LQP03TN68NJZ2	-	68nH ±5%	300MHz	8	300MHz	100mA	8Ω	1100MHz
LQP03TN75NHZ2	-	75nH ±3%	300MHz	8	300MHz	100mA	10Ω	1000MHz
LQP03TN75NJZ2	-	75nH ±5%	300MHz	8	300MHz	100mA	10Ω	1000MHz
LQP03TN82NHZ2	-	82nH ±3%	300MHz	8	300MHz	100mA	10Ω	1000MHz
LQP03TN82NJZ2	—	82nH ±5%	300MHz	8	300MHz	100mA	10Ω	1000MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Continued from the preceding page. 🖌

Part N	Part Number		Inductance	0 (min)	O Test Francisco	Dated Comment		
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	nin.) Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F" (min.)
LQP03TN91NHZ2	—	91nH ±3%	300MHz	8	300MHz	80mA	10Ω	900MHz
LQP03TN91NJZ2	—	91nH ±5%	300MHz	8	300MHz	80mA	10Ω	900MHz
LQP03TNR10HZ2	—	100nH ±3%	300MHz	8	300MHz	80mA	10Ω	900MHz
LQP03TNR10JZ2	—	100nH ±5%	300MHz	8	300MHz	80mA	10Ω	900MHz
LQP03TNR11HZ2	_	110nH ±3%	300MHz	8	300MHz	80mA	12Ω	800MHz
LQP03TNR11JZ2	_	110nH ±5%	300MHz	8	300MHz	80mA	12Ω	800MHz
LQP03TNR12HZ2	_	120nH ±3%	300MHz	8	300MHz	80mA	12Ω	800MHz
LQP03TNR12JZ2	—	120nH ±5%	300MHz	8	300MHz	80mA	12Ω	800MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

muRata

RF Inductors LQW15AN_0Z Series 0402 (1005) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	10000
В	Packing in Bulk	500

Rated Value (\Box : packaging code)

Part N	lumber		Inductance		0.7.1.5			6 B 54 ()
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN1N5B0Z	—	1.5nH ±0.1nH	100MHz	10	250MHz	1000mA	0.03Ω	18.0GHz
LQW15AN1N5C0Z	_	1.5nH ±0.2nH	100MHz	10	250MHz	1000mA	0.03Ω	18.0GHz
LQW15AN1N5D0Z	_	1.5nH ±0.5nH	100MHz	10	250MHz	1000mA	0.03Ω	18.0GHz
LQW15AN1N6C0Z	_	1.6nH ±0.2nH	100MHz	10	250MHz	750mA	0.07Ω	17.0GHz
LQW15AN1N6D0Z	_	1.6nH ±0.5nH	100MHz	10	250MHz	750mA	0.07Ω	17.0GHz
LQW15AN1N7C0Z	_	1.7nH ±0.2nH	100MHz	10	250MHz	640mA	0.10Ω	17.0GHz
LQW15AN1N7D0Z	_	1.7nH ±0.5nH	100MHz	10	250MHz	640mA	0.10Ω	17.0GHz
LQW15AN1N8C0Z	_	1.8nH ±0.2nH	100MHz	10	250MHz	460mA	0.16Ω	16.0GHz
LQW15AN1N8D0Z	_	1.8nH ±0.5nH	100MHz	10	250MHz	460mA	0.16Ω	16.0GHz
LQW15AN2N4B0Z	_	2.4nH ±0.1nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N4C0Z	_	2.4nH ±0.2nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N4D0Z	_	2.4nH ±0.5nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N5B0Z	_	2.5nH ±0.1nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N5C0Z	_	2.5nH ±0.2nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N5D0Z	_	2.5nH ±0.5nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N6B0Z	_	2.6nH ±0.1nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N6C0Z	_	2.6nH ±0.2nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N6D0Z	_	2.6nH ±0.5nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N7B0Z	_	2.7nH ±0.1nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N7C0Z	_	2.7nH ±0.2nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N7D0Z	_	2.7nH ±0.5nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N8B0Z	_	2.8nH ±0.1nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N8C0Z	_	2.8nH ±0.2nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N8D0Z	_	2.8nH ±0.5nH	100MHz	20	250MHz	850mA	0.05Ω	15.0GHz
LQW15AN2N9B0Z	_	2.9nH ±0.1nH	100MHz	20	250MHz	750mA	0.07Ω	15.0GHz
LQW15AN2N9C0Z	_	2.9nH ±0.2nH	100MHz	20	250MHz	750mA	0.07Ω	15.0GHz
LQW15AN2N9D0Z	_	2.9nH ±0.5nH	100MHz	20	250MHz	750mA	0.07Ω	15.0GHz
LQW15AN3N0B0Z	_	3.0nH ±0.1nH	100MHz	20	250MHz	750mA	0.07Ω	15.0GHz
LQW15AN3N0C0Z	—	3.0nH ±0.2nH	100MHz	20	250MHz	750mA	0.07Ω	15.0GHz
LQW15AN3N0D0Z	_	3.0nH ±0.5nH	100MHz	20	250MHz	750mA	0.07Ω	15.0GHz
LQW15AN3N1B0Z	_	3.1nH ±0.1nH	100MHz	20	250MHz	570mA	0.13Ω	14.0GHz
LQW15AN3N1C0Z	_	3.1nH ±0.2nH	100MHz	20	250MHz	570mA	0.13Ω	14.0GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Part N	umber	la du atender	Inductance	o (0 T	Detector		C D Ft C
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min
LQW15AN3N1D0Z	_	3.1nH ±0.5nH	100MHz	20	250MHz	570mA	0.13Ω	14.0GHz
LQW15AN3N2B0Z	_	3.2nH ±0.1nH	100MHz	15	250MHz	500mA	0.17Ω	14.0GHz
LQW15AN3N2C0Z	_	3.2nH ±0.2nH	100MHz	15	250MHz	500mA	0.17Ω	14.0GHz
LQW15AN3N2D0Z		3.2nH ±0.5nH	100MHz	15	250MHz	500mA	0.17Ω	14.0GHz
LQW15AN3N9B0Z		3.9nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GHz
LQW15AN3N9C0Z		3.9nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GHz
LQW15AN3N9D0Z		3.9nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GHz
LQW15AN4N1B0Z		4.1nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GHz
LQW15AN4N1C0Z		4.1nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GHz
LQW15AN4N1D0Z		4.1nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GH
LQW15AN4N3B0Z		4.3nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GH
LQW15AN4N3C0Z		4.3nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GH
LQW15AN4N3D0Z		4.3nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	10.0GH
LQW15AN4N4B0Z		4.4nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N4C0Z		4.4nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N4D0Z		4.4nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N5B0Z		4.5nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N5C0Z		4.5nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N5D0Z		4.5nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N6B0Z		4.6nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N6C0Z		4.6nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N6D0Z		4.6nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N7B0Z		4.7nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N7C0Z		4.7nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N7D0Z		4.7nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N8B0Z		4.8nH ±0.1nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
		4.8nH ±0.2nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
		4.8nH ±0.5nH	100MHz	25	250MHz	750mA	0.07Ω	8.0GHz
LQW15AN4N9B0Z		4.9nH ±0.1nH	100MHz	25	250MHz	600mA	0.12Ω	8.0GHz
LQW15AN4N9C0Z		4.9nH ±0.2nH	100MHz	25	250MHz	600mA	0.12Ω	8.0GHz
LQW15AN4N9D0Z		4.9nH ±0.5nH	100MHz	25	250MHz	600mA	0.12Ω	8.0GHz
LQW15AN5N0B0Z		5.0nH ±0.1nH	100MHz	25	250MHz	600mA	0.12Ω	8.0GHz
-					250MHz			
LQW15AN5N0C0Z		5.0nH ±0.2nH 5.0nH ±0.5nH	100MHz 100MHz	25 25	250MHz	600mA 600mA	0.12Ω	8.0GHz 8.0GHz
LQW15AN5N1B0Z	—	5.1nH ±0.1nH	100MHz	25	250MHz	600mA	0.12Ω 0.12Ω	8.0GHz
LQW15AN5N1C0Z		5.1nH ±0.2nH	100MHz	25	250MHz		0.12Ω	8.0GHz
LQW15AN5N1C02		5.1nH ±0.2nH		25	250MHz	600mA 600mA	0.12Ω	8.0GHz
LQW15AN5N8B0Z		5.8nH ±0.1nH	100MHz 100MHz					
-	—			25	250MHz	700mA	0.09Ω	8.0GHz
	-	5.8nH ±0.2nH	100MHz	25	250MHz	700mA	0.09Ω	8.0GHz
	—	5.8nH ±0.5nH	100MHz	25	250MHz	700mA	0.09Ω	8.0GHz
		6.2nH ±0.1nH 6.2nH ±0.2nH	100MHz	25	250MHz 250MHz	700mA	0.09Ω	8.0GHz
			100MHz	25		700mA	0.09Ω	8.0GHz
	—	6.2nH ±0.5nH	100MHz	25	250MHz	700mA	0.09Ω	8.0GHz
	—	6.3nH ±0.1nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
	—	6.3nH ±0.2nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
	-	6.3nH ±0.5nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
	—	6.4nH ±0.1nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
	—	6.4nH ±0.2nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
	—	6.4nH ±0.5nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
	—	6.5nH ±0.1nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
	—	6.5nH ±0.2nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N5D0Z	—	6.5nH ±0.5nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

354

muRata

Inductors for General Circuits

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN6N6C0Z	—	6.6nH ±0.2nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N6D0Z	_	6.6nH ±0.5nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N7B0Z	_	6.7nH ±0.1nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N7C0Z	_	6.7nH ±0.2nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N7D0Z	_	6.7nH ±0.5nH	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N8G0Z	_	6.8nH ±2%	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N8H0Z	_	6.8nH ±3%	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N8J0Z	_	6.8nH ±5%	100MHz	25	250MHz	700mA	0.09Ω	6.0GHz
LQW15AN6N9G0Z	_	6.9nH ±2%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN6N9H0Z	_	6.9nH ±3%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN6N9J0Z	—	6.9nH ±5%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N0G0Z	_	7.0nH ±2%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N0H0Z	_	7.0nH ±3%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N0J0Z	_	7.0nH ±5%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N1G0Z	—	7.1nH ±2%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N1H0Z	—	7.1nH ±3%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N1J0Z	—	7.1nH ±5%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N2G0Z	—	7.2nH ±2%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N2H0Z	—	7.2nH ±3%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N2J0Z	—	7.2nH ±5%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N3G0Z	—	7.3nH ±2%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N3H0Z	—	7.3nH ±3%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N3J0Z	—	7.3nH ±5%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N5G0Z	—	7.5nH ±2%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N5H0Z	—	7.5nH ±3%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN7N5J0Z	—	7.5nH ±5%	100MHz	25	250MHz	570mA	0.13Ω	6.0GHz
LQW15AN8N2G0Z	—	8.2nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N2H0Z	—	8.2nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N2J0Z	—	8.2nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N6G0Z	_	8.6nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N6H0Z	_	8.6nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N6J0Z	_	8.6nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N7G0Z	_	8.7nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N7H0Z	_	8.7nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N7J0Z	_	8.7nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N8G0Z	_	8.8nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N8H0Z	_	8.8nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N8J0Z	_	8.8nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N9G0Z	—	8.9nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N9H0Z	—	8.9nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN8N9J0Z	—	8.9nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N0G0Z	—	9.0nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N0H0Z	—	9.0nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N0J0Z	—	9.0nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N1G0Z	—	9.1nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N1H0Z	_	9.1nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N1J0Z	—	9.1nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N2G0Z	—	9.2nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N2H0Z	—	9.2nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N2J0Z	—	9.2nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N3G0Z	—	9.3nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N3H0Z	—	9.3nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N3J0Z	—	9.3nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Inductors for General Circuits

RF Inductors

355

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

Part N	lumber		Industrian					
Infotainment	Powertrain/Safety	Inductance	Inductance Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN9N4G0Z	_	9.4nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N4H0Z	_	9.4nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N4JOZ	_	9.4nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N5G0Z	_	9.5nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N5H0Z	_	9.5nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N5J0Z	_	9.5nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N6G0Z	_	9.6nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N6H0Z	_	9.6nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N6J0Z	_	9.6nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N7G0Z	_	9.7nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N7H0Z	_	9.7nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N7J0Z	_	9.7nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N8G0Z	_	9.8nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N8H0Z	_	9.8nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N8J0Z	_	9.8nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N9G0Z	_	9.9nH ±2%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N9H0Z		9.9nH ±3%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN9N9JOZ		9.9nH ±5%	100MHz	25	250MHz	540mA	0.14Ω	5.5GHz
LQW15AN10NG0Z		10nH ±2%	100MHz	25	250MHz	500mA	0.17Ω	5.5GHz
LQW15AN10NH0Z		10nH ±3%	1000 HHZ	25	250MHz	500mA	0.17Ω	5.5GHz
LQW15AN10NJ0Z		10nH ±5%	1000 HHZ	25	250MHz	500mA	0.17Ω	5.5GHz
LQW15AN11NG0Z		11nH ±2%	1001 H 2	30	250MHz	500mA	0.14Ω	5.5GHz
LQW15AN11NH0Z		11nH ±3%	100MHz	30	250MHz	500mA	0.14Ω	5.5GHz
LQW15AN11NJ0Z		11nH ±5%	100MHz	30	250MHz	500mA	0.14Ω	5.5GHz
LQW15AN12NG0Z		12nH ±2%	100MHz	30	250MHz	500mA	0.14Ω	5.5GHz
LQW15AN12NH0Z		12nH ±3%	100MHz	30	250MHz	500mA	0.14Ω	5.5GHz
LQW15AN12NJ0Z		12nH ±5%	100MHz	30	250MHz	500mA	0.14Ω	5.5GHz
LQW15AN12NJ02		13nH ±2%	100MHz	25	250MHz	430mA	0.21Ω	5.0GHz
LQW15AN13NH0Z		13nH ±3%	100MHz	25	250MHz	430mA	0.21Ω	5.0GHz
LQW15AN13NJ0Z		13nH ±5%	100MHz	25	250MHz	430mA	0.21Ω	5.0GHz
LQW15AN15NG0Z		15nH ±2%	100MHz	30	250MHz	460mA	0.16Ω	5.0GHz
LQW15AN15NH0Z		15nH ±3%	100MHz	30	250MHz	460mA	0.16Ω	5.0GHz
LQW15AN15NJ0Z		15nH ±5%	100MHz	30	250MHz	460mA	0.16Ω	5.0GHz
LQW15AN16NG0Z		16nH ±2%	100MHz	25	250MHz	370mA	0.24Ω	4.5GHz
LQW15AN16NH0Z		16nH ±3%	100MHz	25	250MHz	370mA	0.24Ω	4.5GHz
LQW15AN16NJ0Z		16nH ±5%	100MHz	25	250MHz	370mA	0.24Ω	4.5GHz
LQW15AN18NG0Z		18nH ±2%	100MHz	25	250MHz	370mA	0.24Ω	4.5GHz
LQW15AN18NH0Z		18nH ±3%	100MHz	25	250MHz	370mA	0.27Ω	4.5GHz
LQW15AN18NJ0Z		18nH ±5%	100MHz	25	250MHz	370mA	0.27Ω	4.5GHz
LQW15AN18NJ02		19nH ±2%	100MHz	25	250MHz	370mA	0.27Ω	4.5GHz
LQW15AN19NG0Z		1911H ±2%	100MHz	25	250MHz	370mA	0.27Ω	4.5GHz
LQW15AN19NH02		1911H ±5%	100MHz	25	250MHz	370mA	0.27Ω	4.5GHz
LQW15AN19NJ02		20nH ±2%	100MHz	25	250MHz	370mA	0.27Ω	4.5GHz 4.0GHz
LQW15AN20NG02		20nH ±2% 20nH ±3%	100MHz 100MHz	25	250MHz 250MHz	370mA 370mA	0.27Ω	4.0GHz 4.0GHz
LQW15AN20NH02		20nH ±3% 20nH ±5%		25			0.27Ω	4.0GHz 4.0GHz
LQW15AN20NJ02		20nH ±5% 22nH ±2%	100MHz	25	250MHz	370mA	0.27Ω	
			100MHz		250MHz	310mA		4.0GHz
		22nH ±3%	100MHz	25	250MHz	310mA	0.30Ω	4.0GHz
		22nH ±5%	100MHz	25	250MHz	310mA	0.30Ω	4.0GHz
		23nH ±2%	100MHz	25	250MHz	310mA	0.30Ω	3.8GHz
	_	23nH ±3%	100MHz	25	250MHz	310mA	0.30Ω	3.8GHz
	_	23nH ±5%	100MHz	25	250MHz	310mA	0.30Ω	3.8GHz
	_	24nH ±2%	100MHz	25	250MHz	280mA	0.52Ω	3.5GHz
LQW15AN24NH0Z	—	24nH ±3%	100MHz	25	250MHz	280mA	0.52Ω	3.5GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN24NJ0Z	—	24nH ±5%	100MHz	25	250MHz	280mA	0.52Ω	3.5GHz
LQW15AN27NG0Z	_	27nH ±2%	100MHz	25	250MHz	280mA	0.52Ω	3.5GHz
LQW15AN27NH0Z	_	27nH ±3%	100MHz	25	250MHz	280mA	0.52Ω	3.5GHz
LQW15AN27NJ0Z	_	27nH ±5%	100MHz	25	250MHz	280mA	0.52Ω	3.5GHz
LQW15AN30NG0Z	_	30nH ±2%	100MHz	25	250MHz	270mA	0.58Ω	3.3GHz
LQW15AN30NH0Z	_	30nH ±3%	100MHz	25	250MHz	270mA	0.58Ω	3.3GHz
LQW15AN30NJ0Z	_	30nH ±5%	100MHz	25	250MHz	270mA	0.58Ω	3.3GHz
LQW15AN33NG0Z	_	33nH ±2%	100MHz	25	250MHz	260mA	0.63Ω	3.2GHz
LQW15AN33NH0Z	_	33nH ±3%	100MHz	25	250MHz	260mA	0.63Ω	3.2GHz
LQW15AN33NJ0Z	_	33nH ±5%	100MHz	25	250MHz	260mA	0.63Ω	3.2GHz
LQW15AN36NG0Z	_	36nH ±2%	100MHz	25	250MHz	260mA	0.63Ω	3.1GHz
LQW15AN36NH0Z	_	36nH ±3%	100MHz	25	250MHz	260mA	0.63Ω	3.1GHz
LQW15AN36NJ0Z	_	36nH ±5%	100MHz	25	250MHz	260mA	0.63Ω	3.1GHz
LQW15AN39NG0Z	—	39nH ±2%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN39NH0Z	_	39nH ±3%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN39NJ0Z	_	39nH ±5%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN40NG0Z	—	40nH ±2%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN40NH0Z	_	40nH ±3%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN40NJ0Z	_	40nH ±5%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN43NG0Z	_	43nH ±2%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN43NH0Z	_	43nH ±3%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN43NJ0Z	_	43nH ±5%	100MHz	25	250MHz	250mA	0.70Ω	3.0GHz
LQW15AN47NG0Z	_	47nH ±2%	100MHz	25	200MHz	210mA	1.08Ω	2.9GHz
LQW15AN47NH0Z	—	47nH ±3%	100MHz	25	200MHz	210mA	1.08Ω	2.9GHz
LQW15AN47NJ0Z	—	47nH ±5%	100MHz	25	200MHz	210mA	1.08Ω	2.9GHz
LQW15AN51NG0Z	—	51nH ±2%	100MHz	25	200MHz	210mA	1.08Ω	2.85GHz
LQW15AN51NH0Z	—	51nH ±3%	100MHz	25	200MHz	210mA	1.08Ω	2.85GHz
LQW15AN51NJ0Z	—	51nH ±5%	100MHz	25	200MHz	210mA	1.08Ω	2.85GHz
LQW15AN56NG0Z	—	56nH ±2%	100MHz	25	200MHz	200mA	1.17Ω	2.8GHz
LQW15AN56NH0Z	—	56nH ±3%	100MHz	25	200MHz	200mA	1.17Ω	2.8GHz
LQW15AN56NJ0Z	—	56nH ±5%	100MHz	25	200MHz	200mA	1.17Ω	2.8GHz
LQW15AN62NG0Z	—	62nH ±2%	100MHz	20	200MHz	145mA	1.82Ω	2.6GHz
LQW15AN62NH0Z	—	62nH ±3%	100MHz	20	200MHz	145mA	1.82Ω	2.6GHz
LQW15AN62NJ0Z	—	62nH ±5%	100MHz	20	200MHz	145mA	1.82Ω	2.6GHz
LQW15AN68NG0Z	—	68nH ±2%	100MHz	20	200MHz	140mA	1.96Ω	2.5GHz
LQW15AN68NJ0Z	—	68nH ±5%	100MHz	20	200MHz	140mA	1.96Ω	2.5GHz
LQW15AN72NG0Z	_	72nH ±2%	100MHz	20	150MHz	135mA	2.10Ω	2.5GHz
LQW15AN72NJ0Z	_	72nH ±5%	100MHz	20	150MHz	135mA	2.10Ω	2.5GHz
LQW15AN75NG0Z	_	75nH ±2%	100MHz	20	150MHz	135mA	2.10Ω	2.4GHz
LQW15AN75NJ0Z	_	75nH ±5%	100MHz	20	150MHz	135mA	2.10Ω	2.4GHz
LQW15AN82NG0Z	_	82nH ±2%	100MHz	20	150MHz	130mA	2.24Ω	2.3GHz
LQW15AN82NJ0Z	—	82nH ±5%	100MHz	20	150MHz	130mA	2.24Ω	2.3GHz
LQW15AN91NG0Z	—	91nH ±2%	100MHz	20	150MHz	125mA	2.38Ω	2.1GHz
LQW15AN91NJ0Z	_	91nH ±5%	100MHz	20	150MHz	125mA	2.38Ω	2.1GHz
LQW15ANR10J0Z	_	100nH ±5%	100MHz	20	150MHz	120mA	2.52Ω	1.5GHz
LQW15ANR12J0Z	—	120nH ±5%	100MHz	20	150MHz	110mA	2.66Ω	1.0GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Continued on the following page. earrow

Inductors for General Circuits

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

RF Inductors LQW15AN_1Z Series 0402 (1005) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	10000
В	Packing in Bulk	500

Rated Value (\Box : packaging code)

Rated Value (L: pa	00,		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN1N3C1Z	_	1.3nH ±0.2nH	100MHz	20	250MHz	1200mA	0.017Ω	16GHz
LQW15AN1N3D1Z	_	1.3nH ±0.5nH	100MHz	20	250MHz	1200mA	0.017Ω	16GHz
LQW15AN1N4C1Z	_	1.4nH ±0.2nH	100MHz	25	250MHz	1100mA	0.019Ω	15GHz
LQW15AN1N4D1Z	_	1.4nH ±0.5nH	100MHz	25	250MHz	1100mA	0.019Ω	15GHz
LQW15AN2N2C1Z	_	2.2nH ±0.2nH	100MHz	25	250MHz	1000mA	0.027Ω	14GHz
LQW15AN2N2D1Z	_	2.2nH ±0.5nH	100MHz	25	250MHz	1000mA	0.027Ω	14GHz
LQW15AN2N3C1Z	_	2.3nH ±0.2nH	100MHz	25	250MHz	1000mA	0.027Ω	14GHz
LQW15AN2N3D1Z	—	2.3nH ±0.5nH	100MHz	25	250MHz	1000mA	0.027Ω	14GHz
LQW15AN2N4D1Z	—	2.4nH ±0.5nH	100MHz	25	250MHz	1000mA	0.027Ω	14GHz
LQW15AN3N3D1Z	—	3.3nH ±0.5nH	100MHz	30	250MHz	900mA	0.040Ω	12GHz
LQW15AN3N4C1Z	—	3.4nH ±0.2nH	100MHz	30	250MHz	900mA	0.040Ω	12GHz
LQW15AN3N4D1Z	—	3.4nH ±0.5nH	100MHz	30	250MHz	900mA	0.040Ω	12GHz
LQW15AN3N5C1Z	—	3.5nH ±0.2nH	100MHz	30	250MHz	900mA	0.040Ω	9.5GHz
LQW15AN3N5D1Z	—	3.5nH ±0.5nH	100MHz	30	250MHz	900mA	0.040Ω	9.5GHz
LQW15AN3N6C1Z	—	3.6nH ±0.2nH	100MHz	30	250MHz	900mA	0.040Ω	9.5GHz
LQW15AN3N6D1Z	—	3.6nH ±0.5nH	100MHz	30	250MHz	900mA	0.040Ω	9.5GHz
LQW15AN3N8C1Z	—	3.8nH ±0.2nH	100MHz	30	250MHz	900mA	0.040Ω	7GHz
LQW15AN3N8D1Z	—	3.8nH ±0.5nH	100MHz	30	250MHz	900mA	0.040Ω	7GHz
LQW15AN3N9D1Z	—	3.9nH ±0.5nH	100MHz	30	250MHz	900mA	0.040Ω	7GHz
LQW15AN4N0C1Z	—	4.0nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	6.5GHz
LQW15AN4N0D1Z	—	4.0nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	6.5GHz
LQW15AN4N2C1Z	—	4.2nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	6.5GHz
LQW15AN4N2D1Z	—	4.2nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	6.5GHz
LQW15AN4N7D1Z	—	4.7nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N1C1Z	—	5.1nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N1D1Z	—	5.1nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N2C1Z	—	5.2nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N2D1Z		5.2nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N3C1Z		5.3nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N3D1Z	—	5.3nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N4C1Z		5.4nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N4D1Z	—	5.4nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Part N	umber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN5N5C1Z	_	5.5nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N5D1Z	_	5.5nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N6C1Z	_	5.6nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N6D1Z	_	5.6nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N7C1Z	_	5.7nH ±0.2nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N7D1Z	_	5.7nH ±0.5nH	100MHz	30	250MHz	800mA	0.051Ω	8GHz
LQW15AN5N9C1Z	_	5.9nH ±0.2nH	100MHz	30	250MHz	760mA	0.056Ω	7.7GHz
LQW15AN5N9D1Z	_	5.9nH ±0.5nH	100MHz	30	250MHz	760mA	0.056Ω	7.7GHz
LQW15AN6N0C1Z	_	6.0nH ±0.2nH	100MHz	30	250MHz	760mA	0.056Ω	7.7GHz
LQW15AN6N0D1Z	_	6.0nH ±0.5nH	100MHz	30	250MHz	760mA	0.056Ω	7.7GHz
LQW15AN6N1C1Z	_	6.1nH ±0.2nH	100MHz	30	250MHz	760mA	0.056Ω	7.7GHz
LQW15AN6N1D1Z	_	6.1nH ±0.5nH	100MHz	30	250MHz	760mA	0.056Ω	7.7GHz
LQW15AN7N4C1Z	_	7.4nH ±0.2nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N4D1Z	_	7.4nH ±0.5nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N6C1Z	_	7.6nH ±0.2nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N6D1Z	_	7.6nH ±0.5nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N7C1Z	_	7.7nH ±0.2nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N7D1Z	_	7.7nH ±0.5nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N8C1Z	_	7.8nH ±0.2nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N8D1Z	_	7.8nH ±0.5nH	100MHz	30	250MHz	750mA	0.058Ω	6.8GHz
LQW15AN7N9C1Z	_	7.9nH ±0.2nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN7N9D1Z	_	7.9nH ±0.5nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N0C1Z	_	8.0nH ±0.2nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N0D1Z	_	8.0nH ±0.5nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N1C1Z	_	8.1nH ±0.2nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N1D1Z	_	8.1nH ±0.5nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N3C1Z	_	8.3nH ±0.2nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N3D1Z	_	8.3nH ±0.5nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N4C1Z	_	8.4nH ±0.2nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz
LQW15AN8N4D1Z	_	8.4nH ±0.5nH	100MHz	30	250MHz	640mA	0.079Ω	7.5GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

RF Inductors LQW15AN_8Z Series 0402 (1005) inch (mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	10000
В	Packing in Bulk	500

Rated Value (: packaging code)

Part N	umber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN1N3C8Z	_	1.3nH ±0.2nH	100MHz	20	250MHz	3150mA	0.012Ω	18.0GHz
LQW15AN1N3D8Z	_	1.3nH ±0.5nH	100MHz	20	250MHz	3150mA	0.012Ω	18.0GHz
LQW15AN1N5C8Z	_	1.5nH ±0.2nH	100MHz	20	250MHz	2100mA	0.028Ω	18.0GHz
LQW15AN1N5D8Z	_	1.5nH ±0.5nH	100MHz	20	250MHz	2100mA	0.028Ω	18.0GHz
LQW15AN1N6C8Z	_	1.6nH ±0.2nH	100MHz	20	250MHz	1450mA	0.045Ω	18.0GHz
LQW15AN1N6D8Z	_	1.6nH ±0.5nH	100MHz	20	250MHz	1450mA	0.045Ω	18.0GHz
LQW15AN1N7C8Z	_	1.7nH ±0.2nH	100MHz	20	250MHz	1150mA	0.065Ω	18.0GHz
LQW15AN1N7D8Z	_	1.7nH ±0.5nH	100MHz	20	250MHz	1150mA	0.065Ω	18.0GHz
LQW15AN2N2B8Z	_	2.2nH ±0.1nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N2C8Z	_	2.2nH ±0.2nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N2D8Z	_	2.2nH ±0.5nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N2G8Z	_	2.2nH ±2%	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N3B8Z	_	2.3nH ±0.1nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N3C8Z	_	2.3nH ±0.2nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N3D8Z	_	2.3nH ±0.5nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N3G8Z	_	2.3nH ±2%	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N4B8Z	—	2.4nH ±0.1nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N4C8Z	—	2.4nH ±0.2nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N4D8Z	—	2.4nH ±0.5nH	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N4G8Z	—	2.4nH ±2%	100MHz	30	250MHz	2530mA	0.022Ω	15.5GHz
LQW15AN2N5B8Z	_	2.5nH ±0.1nH	100MHz	30	250MHz	2100mA	0.030Ω	15.5GHz
LQW15AN2N5C8Z	—	2.5nH ±0.2nH	100MHz	30	250MHz	2100mA	0.030Ω	15.5GHz
LQW15AN2N5D8Z	_	2.5nH ±0.5nH	100MHz	30	250MHz	2100mA	0.030Ω	15.5GHz
LQW15AN2N5G8Z	—	2.5nH ±2%	100MHz	30	250MHz	2100mA	0.030Ω	15.5GHz
LQW15AN2N6B8Z	—	2.6nH ±0.1nH	100MHz	30	250MHz	1950mA	0.035Ω	14.5GHz
LQW15AN2N6C8Z	—	2.6nH ±0.2nH	100MHz	30	250MHz	1950mA	0.035Ω	14.5GHz
LQW15AN2N6D8Z	_	2.6nH ±0.5nH	100MHz	30	250MHz	1950mA	0.035Ω	14.5GHz
LQW15AN2N6G8Z	—	2.6nH ±2%	100MHz	30	250MHz	1950mA	0.035Ω	14.5GHz
LQW15AN2N7B8Z	—	2.7nH ±0.1nH	100MHz	28	250MHz	1500mA	0.047Ω	14.0GHz
LQW15AN2N7C8Z	—	2.7nH ±0.2nH	100MHz	28	250MHz	1500mA	0.047Ω	14.0GHz
LQW15AN2N7D8Z	_	2.7nH ±0.5nH	100MHz	28	250MHz	1500mA	0.047Ω	14.0GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15A_80 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

muRata

Part N	lumber							
		Inductance	Inductance Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	07.00			250144	4500 4	0.0.470	110011
	—	2.7nH ±2%	100MHz	28	250MHz	1500mA	0.047Ω	14.0GHz
LQW15AN2N8B8Z	—	2.8nH ±0.1nH	100MHz	27	250MHz	1500mA	0.047Ω	13.5GHz
LQW15AN2N8C8Z	—	2.8nH ±0.2nH	100MHz	27	250MHz	1500mA	0.047Ω	13.5GHz
LQW15AN2N8D8Z	—	2.8nH ±0.5nH	100MHz	27	250MHz	1500mA	0.047Ω	13.5GHz
LQW15AN2N8G8Z	_	2.8nH ±2%	100MHz	27	250MHz	1500mA	0.047Ω	13.5GHz
LQW15AN2N9B8Z	—	2.9nH ±0.1nH	100MHz	25	250MHz	1500mA	0.047Ω	12.5GHz
LQW15AN2N9C8Z	—	2.9nH ±0.2nH	100MHz	25	250MHz	1500mA	0.047Ω	12.5GHz
LQW15AN2N9D8Z	_	2.9nH ±0.5nH	100MHz	25	250MHz	1500mA	0.047Ω	12.5GHz
LQW15AN2N9G8Z	_	2.9nH ±2%	100MHz	25	250MHz	1500mA	0.047Ω	12.5GHz
LQW15AN3N0B8Z	_	3.0nH ±0.1nH	100MHz	20	250MHz	1350mA	0.063Ω	12.5GHz
LQW15AN3N0C8Z	_	3.0nH ±0.2nH	100MHz	20	250MHz	1350mA	0.063Ω	12.5GHz
LQW15AN3N0D8Z	—	3.0nH ±0.5nH	100MHz	20	250MHz	1350mA	0.063Ω	12.5GHz
LQW15AN3N0G8Z	_	3.0nH ±2%	100MHz	20	250MHz	1350mA	0.063Ω	12.5GHz
LQW15AN3N3B8Z	—	3.3nH ±0.1nH	100MHz	30	250MHz	2000mA	0.030Ω	14.0GHz
LQW15AN3N3C8Z	—	3.3nH ±0.2nH	100MHz	30	250MHz	2000mA	0.030Ω	14.0GHz
LQW15AN3N3D8Z	-	3.3nH ±0.5nH	100MHz	30	250MHz	2000mA	0.030Ω	14.0GHz
LQW15AN3N3G8Z	_	3.3nH ±2%	100MHz	30	250MHz	2000mA	0.030Ω	14.0GHz
LQW15AN3N4B8Z	_	3.4nH ±0.1nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N4C8Z	_	3.4nH ±0.2nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N4D8Z	—	3.4nH ±0.5nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N4G8Z	—	3.4nH ±2%	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N5B8Z	—	3.5nH ±0.1nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N5C8Z	—	3.5nH ±0.2nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N5D8Z	—	3.5nH ±0.5nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N5G8Z	—	3.5nH ±2%	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N6B8Z	—	3.6nH ±0.1nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N6C8Z	_	3.6nH ±0.2nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N6D8Z	_	3.6nH ±0.5nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N6G8Z	_	3.6nH ±2%	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N7B8Z	_	3.7nH ±0.1nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N7C8Z	_	3.7nH ±0.2nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N7D8Z	_	3.7nH ±0.5nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N7G8Z	_	3.7nH ±2%	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N8B8Z	_	3.8nH ±0.1nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N8C8Z	_	3.8nH ±0.2nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N8D8Z	_	3.8nH ±0.5nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N8G8Z	_	3.8nH ±2%	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N9B8Z	_	3.9nH ±0.1nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N9C8Z	_	3.9nH ±0.2nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N9D8Z	_	3.9nH ±0.5nH	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN3N9G8Z	_	3.9nH ±2%	100MHz	35	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN4N0B8Z	_	4.0nH ±0.1nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN4N0C8Z	_	4.0nH ±0.2nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN4N0D8Z	_	4.0nH ±0.5nH	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN4N0G8Z	_	4.0nH ±2%	100MHz	30	250MHz	1950mA	0.030Ω	10.0GHz
LQW15AN4N1B8Z	_	4.1nH ±0.1nH	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N1C8Z	_	4.1nH ±0.2nH	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N1D8Z		4.1nH ±0.5nH	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N1G8Z	_	4.1nH ±2%	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N2B8Z		4.2nH ±0.1nH	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N2C8Z		4.2nH ±0.2nH	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
		4.200 EV.200		30	25011112	1000114	0.0441/	9.0GHZ

Operating temp.range (Self-temp.rise not included): -55 to 125 $^{\circ}\mathrm{C}$

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15A_80 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN4N2D8Z	_	4.2nH ±0.5nH	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N2G8Z	_	4.2nH ±2%	100MHz	30	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N3B8Z	_	4.3nH ±0.1nH	100MHz	32	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N3C8Z		4.3nH ±0.2nH	100MHz	32	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N3D8Z		4.3nH ±0.5nH	100MHz	32	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N3G8Z		4.3nH ±2%	100MHz	32	250MHz	1800mA	0.044Ω	9.6GHz
LQW15AN4N4B8Z		4.4nH ±0.1nH	100MHz	34	250MHz	1600mA	0.052Ω	9.6GHz
LQW15AN4N4C8Z		4.4nH ±0.2nH	100MHz	34	250MHz	1600mA	0.052Ω	9.6GHz
LQW15AN4N4D8Z		4.4nH ±0.5nH	100MHz	34	250MHz	1600mA	0.052Ω	9.6GHz
LQW15AN4N4G8Z		4.4nH ±2%	100MHz	34	250MHz	1600mA	0.052Ω	9.6GHz
LQW15AN4N5B8Z		4.5nH ±0.1nH	100MHz	34	250MHz	1450mA	0.060Ω	9.6GHz
LQW15AN4N5C8Z		4.5nH ±0.2nH	100MHz	34	250MHz	1450mA	0.060Ω	9.6GHz
LQW15AN4N5D8Z		4.5nH ±0.5nH	100MHz	34	250MHz	1450mA	0.060Ω	9.6GHz
LQW15AN4N5G8Z		4.5nH ±2%	100MHz	34	250MHz	1450mA	0.060Ω	9.6GHz
·						1450mA		9.6GHz
		4.6nH ±0.1nH 4.6nH ±0.2nH	100MHz	32 32	250MHz 250MHz	1450mA 1450mA	0.060Ω	9.6GHz 9.6GHz
		4.6nH ±0.2nH	100MHz	32		1450mA 1450mA	0.060Ω	9.6GHz 9.6GHz
LQW15AN4N6D8Z		4.6nH ±0.5nH 4.6nH ±2%	100MHz	32	250MHz	1450mA 1450mA	0.060Ω	9.6GHz 9.6GHz
LQW15AN4N6G8Z		4.0nH ±2%	100MHz 100MHz	32	250MHz 250MHz	1450mA 1200mA	0.060Ω	8.0GHz
		4.7nH ±0.1nH		31	250MHz	1200mA	0.071Ω	8.0GHz
	—	4.7nH ±0.2nH	100MHz					8.0GHz
	—		100MHz	31	250MHz	1200mA	0.071Ω	
	—	4.7nH ±2%	100MHz		250MHz	1200mA	0.071Ω	8.0GHz
	—	4.8nH ±0.1nH	100MHz	30	250MHz	1200mA	0.071Ω	8.0GHz
	—	4.8nH ±0.2nH	100MHz	30	250MHz	1200mA	0.071Ω	8.0GHz
		4.8nH ±0.5nH	100MHz	30	250MHz	1200mA	0.071Ω	8.0GHz
	—	4.8nH ±2%	100MHz	30	250MHz	1200mA	0.071Ω	8.0GHz
	—	4.9nH ±0.1nH	100MHz	27	250MHz	1200mA	0.071Ω	8.0GHz
	_	4.9nH ±0.2nH	100MHz	27	250MHz	1200mA	0.071Ω	8.0GHz
	_	4.9nH ±0.5nH	100MHz	27	250MHz	1200mA	0.071Ω	8.0GHz
	—	4.9nH ±2%	100MHz	27	250MHz	1200mA	0.071Ω	8.0GHz
	—	5.0nH ±0.1nH	100MHz	32	250MHz	1770mA	0.040Ω	10.0GHz
	—	5.0nH ±0.2nH	100MHz	32	250MHz	1770mA	0.040Ω	10.0GHz
	—	5.0nH ±0.5nH	100MHz	32	250MHz	1770mA	0.040Ω	10.0GHz
	—	5.0nH ±2%	100MHz	32	250MHz	1770mA	0.040Ω	10.0GHz
	_	5.1nH ±0.1nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
	—	5.1nH ±0.2nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
	—	5.1nH ±0.5nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
	-	5.1nH ±2%	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N2B8Z		5.2nH ±0.1nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz 8.0GHz
•	—	5.2nH ±0.2nH	100MHz	35	250MHz	1770mA	0.040Ω	
		5.2nH ±0.5nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
		5.2nH ±2%	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
		5.3nH ±0.1nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N3C8Z		5.3nH ±0.2nH 5.3nH ±0.5nH	100MHz 100MHz	35 35	250MHz 250MHz	1770mA	0.040Ω	8.0GHz 8.0GHz
						1770mA		
	-	5.3nH ±2%	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
	-	5.4nH ±0.1nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
		5.4nH ±0.2nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
	-	5.4nH ±0.5nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
	—	5.4nH ±2%	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N5B8Z	—	5.5nH ±0.1nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15A_80 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Inductors for Power Lines

Inductors for General Circuits

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN5N5C8Z	_	5.5nH ±0.2nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N5D8Z		5.5nH ±0.5nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N5G8Z		5.5nH ±2%	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N6B8Z		5.6nH ±0.1nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N6C8Z		5.6nH ±0.2nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N6D8Z		5.6nH ±0.5nH	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N6G8Z		5.6nH ±2%	100MHz	35	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N7B8Z		5.7nH ±0.1nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N7C8Z		5.7nH ±0.2nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N7D8Z		5.7nH ±0.5nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N7G8Z		5.7nH ±2%	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N8B8Z		5.8nH ±0.1nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N8C8Z		5.8nH ±0.2nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
•				30		1770mA	0.040Ω	8.0GHz
		5.8nH ±0.5nH	100MHz		250MHz			
		5.8nH ±2%	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
		5.9nH ±0.1nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N9C8Z	—	5.9nH ±0.2nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N9D8Z	—	5.9nH ±0.5nH	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN5N9G8Z	—	5.9nH ±2%	100MHz	30	250MHz	1770mA	0.040Ω	8.0GHz
LQW15AN6N0B8Z	—	6.0nH ±0.1nH	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N0C8Z	_	6.0nH ±0.2nH	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N0D8Z	_	6.0nH ±0.5nH	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N0G8Z	_	6.0nH ±2%	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N1B8Z	_	6.1nH ±0.1nH	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N1C8Z	_	6.1nH ±0.2nH	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N1D8Z	_	6.1nH ±0.5nH	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N1G8Z	—	6.1nH ±2%	100MHz	32	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N2B8Z	_	6.2nH ±0.1nH	100MHz	33	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N2C8Z	—	6.2nH ±0.2nH	100MHz	33	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N2D8Z	—	6.2nH ±0.5nH	100MHz	33	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N2G8Z	—	6.2nH ±2%	100MHz	33	250MHz	1600mA	0.056Ω	8.0GHz
LQW15AN6N3G8Z	_	6.3nH ±2%	100MHz	32	250MHz	1600mA	0.057Ω	7.8GHz
LQW15AN6N3J8Z	_	6.3nH ±5%	100MHz	32	250MHz	1600mA	0.057Ω	7.8GHz
LQW15AN6N4G8Z	_	6.4nH ±2%	100MHz	33	250MHz	1380mA	0.065Ω	7.0GHz
LQW15AN6N4J8Z	_	6.4nH ±5%	100MHz	33	250MHz	1380mA	0.065Ω	7.0GHz
LQW15AN6N5G8Z	_	6.5nH ±2%	100MHz	32	250MHz	1380mA	0.065Ω	7.0GHz
LQW15AN6N5J8Z	_	6.5nH ±5%	100MHz	32	250MHz	1380mA	0.065Ω	7.0GHz
LQW15AN6N6G8Z	_	6.6nH ±2%	100MHz	30	250MHz	1280mA	0.078Ω	7.0GHz
LQW15AN6N6J8Z	_	6.6nH ±5%	100MHz	30	250MHz	1280mA	0.078Ω	7.0GHz
LQW15AN6N7G8Z	_	6.7nH ±2%	100MHz	30	250MHz	1280mA	0.078Ω	7.0GHz
LQW15AN6N7J8Z		6.7nH ±5%	100MHz	30	250MHz	1280mA	0.078Ω	7.0GHz
LQW15AN6N8G8Z	_	6.8nH ±2%	100MHz	30	250MHz	1450mA	0.068Ω	7.0GHz
LQW15AN6N8J8Z	—	6.8nH ±5%	100MHz	30	250MHz	1450mA	0.068Ω	7.0GHz
LQW15AN6N9G8Z	—	6.9nH ±2%	100MHz	32	250MHz	1420mA	0.069Ω	8.5GHz
LQW15AN6N9J8Z	—	6.9nH ±5%	100MHz	32	250MHz	1420mA	0.069Ω	8.5GHz
LQW15AN7N0G8Z	—	7.0nH ±2%	100MHz	33	250MHz	1420mA	0.069Ω	8.0GHz
LQW15AN7N0J8Z	—	7.0nH ±5%	100MHz	33	250MHz	1420mA	0.069Ω	8.0GHz
LQW15AN7N1G8Z	_	7.1nH ±2%	100MHz	32	250MHz	1420mA	0.069Ω	7.0GHz
LQW15AN7N1J8Z	_	7.1nH ±5%	100MHz	32	250MHz	1420mA	0.069Ω	7.0GHz
LQW15AN7N2G8Z	—	7.2nH ±2%	100MHz	32	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N2J8Z	_	7.2nH ±5%	100MHz	32	250MHz	1700mA	0.050Ω	7.0GHz

Operating temp.range (Self-temp.rise not included): -55 to 125 $^{\circ}\mathrm{C}$

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15A_80 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Inductors for General Circuits

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15AN7N3G8Z	—	7.3nH ±2%	100MHz	32	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N3J8Z	_	7.3nH ±5%	100MHz	32	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N4G8Z	_	7.4nH ±2%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N4J8Z	_	7.4nH ±5%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N5G8Z		7.5nH ±2%	100MHz	35	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N5J8Z	_	7.5nH ±5%	100MHz	35	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N6G8Z	_	7.6nH ±2%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N6J8Z	_	7.6nH ±5%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N7G8Z	_	7.7nH ±2%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N7J8Z		7.7nH ±5%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N8G8Z		7.8nH ±2%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N8J8Z		7.8nH ±5%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN7N9G8Z		7.9nH ±2%	100MHz	30	250MHz	1700mA	0.050Ω	7.0GHz
				30			0.050Ω	7.0GHz
		7.9nH ±5% 8.0nH ±2%	100MHz 100MHz	30	250MHz 250MHz	1700mA 1700mA	0.050Ω	7.0GHz 7.0GHz
	_	8.0nH ±5%	100MHz	30	250MHz 250MHz	1700mA	0.050Ω	7.0GHz
LQW15AN8N1G8Z		8.1nH ±2%	100MHz	32		1500mA	0.069Ω	6.5GHz
LQW15AN8N1J8Z	—	8.1nH ±5%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N2G8Z	—	8.2nH ±2%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N2J8Z	_	8.2nH ±5%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N3G8Z	_	8.3nH ±2%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N3J8Z	_	8.3nH ±5%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N4G8Z	—	8.4nH ±2%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N4J8Z	—	8.4nH ±5%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N5G8Z	—	8.5nH ±2%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N5J8Z	—	8.5nH ±5%	100MHz	32	250MHz	1500mA	0.069Ω	6.5GHz
LQW15AN8N6G8Z	—	8.6nH ±2%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN8N6J8Z	_	8.6nH ±5%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN8N7G8Z	_	8.7nH ±2%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN8N7J8Z	_	8.7nH ±5%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN8N8G8Z	_	8.8nH ±2%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN8N8J8Z	_	8.8nH ±5%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN8N9G8Z	_	8.9nH ±2%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN8N9J8Z	_	8.9nH ±5%	100MHz	31	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN9N0G8Z	_	9.0nH ±2%	100MHz	30	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN9N0J8Z	—	9.0nH ±5%	100MHz	30	250MHz	1420mA	0.070Ω	6.5GHz
LQW15AN9N1G8Z	_	9.1nH ±2%	100MHz	32	250MHz	1400mA	0.080Ω	6.5GHz
LQW15AN9N1J8Z	—	9.1nH ±5%	100MHz	32	250MHz	1400mA	0.080Ω	6.5GHz
LQW15AN9N2G8Z	—	9.2nH ±2%	100MHz	32	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N2J8Z	—	9.2nH ±5%	100MHz	32	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N3G8Z	—	9.3nH ±2%	100MHz	34	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N3J8Z	—	9.3nH ±5%	100MHz	34	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N4G8Z	—	9.4nH ±2%	100MHz	33	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N4J8Z	_	9.4nH ±5%	100MHz	33	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N5G8Z	—	9.5nH ±2%	100MHz	32	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N5J8Z	_	9.5nH ±5%	100MHz	32	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N6G8Z	_	9.6nH ±2%	100MHz	33	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N6J8Z	_	9.6nH ±5%	100MHz	33	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N7G8Z	_	9.7nH ±2%	100MHz	33	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N7J8Z	_	9.7nH ±5%	100MHz	33	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N8G8Z	_	9.8nH ±2%	100MHz	34	250MHz	1400mA	0.081Ω	6.0GHz
,								

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15A_80 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

365

Dent N	lumber							
		Inductance	Inductance Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	0.0.11.5%			250144	4.400	0.001.0	6.0011
	_	9.8nH ±5%	100MHz	34	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N9G8Z	_	9.9nH ±2%	100MHz	32	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN9N9J8Z	—	9.9nH ±5%	100MHz	32	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN10NG8Z	—	10nH ±2%	100MHz	31	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN10NJ8Z	—	10nH ±5%	100MHz	31	250MHz	1400mA	0.081Ω	6.0GHz
LQW15AN11NG8Z	_	11nH ±2%	100MHz	32	250MHz	1400mA	0.083Ω	6.2GHz
LQW15AN11NJ8Z	—	11nH ±5%	100MHz	32	250MHz	1400mA	0.083Ω	6.2GHz
LQW15AN12NG8Z	_	12nH ±2%	100MHz	30	250MHz	1240mA	0.093Ω	5.2GHz
LQW15AN12NJ8Z	_	12nH ±5%	100MHz	30	250MHz	1240mA	0.093Ω	5.2GHz
LQW15AN13NG8Z	_	13nH ±2%	100MHz	30	250MHz	1240mA	0.093Ω	5.2GHz
LQW15AN13NJ8Z	_	13nH ±5%	100MHz	30	250MHz	1240mA	0.093Ω	5.2GHz
LQW15AN14NG8Z	—	14nH ±2%	100MHz	31	250MHz	1150mA	0.111Ω	5.2GHz
LQW15AN14NJ8Z	_	14nH ±5%	100MHz	31	250MHz	1150mA	0.111Ω	5.2GHz
LQW15AN15NG8Z	_	15nH ±2%	100MHz	31	250MHz	1150mA	0.114Ω	5.5GHz
LQW15AN15NJ8Z	_	15nH ±5%	100MHz	31	250MHz	1150mA	0.114Ω	5.5GHz
LQW15AN16NG8Z	-	16nH ±2%	100MHz	31	250MHz	1000mA	0.126Ω	5.0GHz
LQW15AN16NJ8Z	_	16nH ±5%	100MHz	31	250MHz	1000mA	0.126Ω	5.0GHz
LQW15AN17NG8Z	_	17nH ±2%	100MHz	30	250MHz	1000mA	0.126Ω	5.0GHz
LQW15AN17NJ8Z	_	17nH ±5%	100MHz	30	250MHz	1000mA	0.126Ω	5.0GHz
LQW15AN18NG8Z	—	18nH ±2%	100MHz	30	250MHz	1050mA	0.130Ω	5.2GHz
LQW15AN18NJ8Z	—	18nH ±5%	100MHz	30	250MHz	1050mA	0.130Ω	5.2GHz
LQW15AN19NG8Z	—	19nH ±2%	100MHz	30	250MHz	920mA	0.156Ω	5.0GHz
LQW15AN19NJ8Z	—	19nH ±5%	100MHz	30	250MHz	920mA	0.156Ω	5.0GHz
LQW15AN20NG8Z	—	20nH ±2%	100MHz	30	250MHz	800mA	0.186Ω	4.5GHz
LQW15AN20NJ8Z	_	20nH ±5%	100MHz	30	250MHz	800mA	0.186Ω	4.5GHz
LQW15AN21NG8Z	_	21nH ±2%	100MHz	30	250MHz	780mA	0.202Ω	4.5GHz
LQW15AN21NJ8Z	_	21nH ±5%	100MHz	30	250MHz	780mA	0.202Ω	4.5GHz
LQW15AN22NG8Z	_	22nH ±2%	100MHz	30	250MHz	780mA	0.202Ω	4.5GHz
LQW15AN22NJ8Z	_	22nH ±5%	100MHz	30	250MHz	780mA	0.202Ω	4.5GHz
LQW15AN23NG8Z	_	23nH ±2%	100MHz	29	250MHz	760mA	0.201Ω	4.5GHz
LQW15AN23NJ8Z	_	23nH ±5%	100MHz	29	250MHz	760mA	0.201Ω	4.5GHz
LQW15AN24NG8Z	_	24nH ±2%	100MHz	31	250MHz	770mA	0.212Ω	4.0GHz
LQW15AN24NJ8Z	_	24nH ±5%	100MHz	31	250MHz	770mA	0.212Ω	4.0GHz
LQW15AN25NG8Z	_	25nH ±2%	100MHz	31	250MHz	750mA	0.221Ω	4.1GHz
LQW15AN25NJ8Z	_	25nH ±5%	100MHz	31	250MHz	750mA	0.221Ω	4.1GHz
LQW15AN26NG8Z	_	26nH ±2%	100MHz	29	250MHz	720mA	0.282Ω	4.1GHz
LQW15AN26NJ8Z	_	26nH ±5%	100MHz	29	250MHz	720mA	0.282Ω	4.1GHz
LQW15AN27NG8Z	_	27nH ±2%	100MHz	30	250MHz	680mA	0.288Ω	4.0GHz
LQW15AN27NJ8Z	_	27nH ±5%	100MHz	30	250MHz	680mA	0.288Ω	4.0GHz
LQW15AN30NG8Z	_	30nH ±2%	100MHz	30	250MHz	660mA	0.309Ω	3.8GHz
LQW15AN30NJ8Z	_	30nH ±5%	100MHz	30	250MHz	660mA	0.309Ω	3.8GHz
LQW15AN33NG8Z	_	33nH ±2%	100MHz	30	250MHz	620mA	0.336Ω	3.6GHz
LQW15AN33NJ8Z	_	33nH ±5%	100MHz	30	250MHz	620mA	0.336Ω	3.6GHz
LQW15AN36NG8Z	_	36nH ±2%	100MHz	30	250MHz	540mA	0.431Ω	3.5GHz
LQW15AN36NJ8Z	_	36nH ±5%	100MHz	30	250MHz	540mA	0.431Ω	3.5GHz
LQW15AN39NG8Z	_	39nH ±2%	100MHz	28	250MHz	530mA	0.456Ω	3.4GHz
LQW15AN39NJ8Z	_	39nH ±5%	100MHz	28	250MHz	530mA	0.456Ω	3.4GHz
LQW15AN43NG8Z		43nH ±2%	100MHz	30	250MHz	515mA	0.516Ω	3.4GHz
LQW15AN43NJ8Z	_	43nH ±5%	100MHz	30	250MHz	515mA	0.516Ω	3.4GHz
LQW15AN47NG8Z		47nH ±2%	100MHz	25	200MHz	440mA	0.648Ω	3.2GHz
LQW15AN47NJ8Z	_	47nH ±5%	100MHz	25	200MHz	440mA	0.648Ω	3.2GHz
		7/11/12/0	10011112	25	20011112	HIUTA	0.04012	5.20112

Operating temp.range (Self-temp.rise not included): -55 to 125 $^{\circ}\mathrm{C}$

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15A_80 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Part N	Part Number		Inductance	O (min)	Q Test Frequency	Dated Current	Max. of DC Resistance	SDE* (min)
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q rest requercy	Rated Current	Plax. Of DC Resistance	5.R.F" (min.)
LQW15AN51NG8Z	—	51nH ±2%	100MHz	25	200MHz	415mA	0.696Ω	2.9GHz
LQW15AN51NJ8Z	—	51nH ±5%	100MHz	25	200MHz	415mA	0.696Ω	2.9GHz
LQW15AN53NG8Z	—	53nH ±2%	100MHz	25	200MHz	415mA	0.696Ω	2.9GHz
LQW15AN53NJ8Z	—	53nH ±5%	100MHz	25	200MHz	415mA	0.696Ω	2.9GHz
LQW15AN56NG8Z	—	56nH ±2%	100MHz	25	200MHz	340mA	0.996Ω	2.9GHz
LQW15AN56NJ8Z	—	56nH ±5%	100MHz	25	200MHz	340mA	0.996Ω	2.9GHz
LQW15AN68NG8Z	—	68nH ±2%	100MHz	25	200MHz	320mA	1.128Ω	2.5GHz
LQW15AN68NJ8Z	—	68nH ±5%	100MHz	25	200MHz	320mA	1.128Ω	2.5GHz
LQW15AN75NG8Z	—	75nH ±2%	100MHz	25	200MHz	320mA	1.224Ω	2.4GHz
LQW15AN75NJ8Z	_	75nH ±5%	100MHz	25	200MHz	320mA	1.224Ω	2.4GHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15A_80 series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

.....

Derating of Rated Current

RF InductorsLQW18AN_0Z Series 0603 (1608) inch (mm)

0.2±0.1

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
J	ø330mm Paper Taping	10000
В	Packing in Bulk	500

Rated Value (: packaging code)

Part N	umber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW18AN2N2D0Z	_	2.2nH ±0.5nH	100MHz	16	250MHz	700mA	0.042Ω	6000MHz
LQW18AN3N6C0Z	_	3.6nH ±0.2nH	100MHz	25	250MHz	850mA	0.059Ω	6000MHz
LQW18AN3N6D0Z	_	3.6nH ±0.5nH	100MHz	25	250MHz	850mA	0.059Ω	6000MHz
LQW18AN3N9C0Z	—	3.9nH ±0.2nH	100MHz	35	250MHz	850mA	0.059Ω	6000MHz
LQW18AN3N9D0Z	—	3.9nH ±0.5nH	100MHz	35	250MHz	850mA	0.059Ω	6000MHz
LQW18AN4N3C0Z	—	4.3nH ±0.2nH	100MHz	35	250MHz	850mA	0.059Ω	6000MHz
LQW18AN4N3D0Z	_	4.3nH ±0.5nH	100MHz	35	250MHz	850mA	0.059Ω	6000MHz
LQW18AN4N7D0Z	_	4.7nH ±0.5nH	100MHz	35	250MHz	850mA	0.059Ω	6000MHz
LQW18AN5N6C0Z	—	5.6nH ±0.2nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN5N6D0Z	—	5.6nH ±0.5nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN6N2C0Z	—	6.2nH ±0.2nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN6N2D0Z	—	6.2nH ±0.5nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN6N8C0Z	—	6.8nH ±0.2nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN6N8D0Z	—	6.8nH ±0.5nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN7N5C0Z	—	7.5nH ±0.2nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN7N5D0Z	—	7.5nH ±0.5nH	100MHz	35	250MHz	750mA	0.082Ω	6000MHz
LQW18AN8N2C0Z	—	8.2nH ±0.2nH	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN8N2D0Z	—	8.2nH ±0.5nH	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN8N7C0Z	—	8.7nH ±0.2nH	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN8N7D0Z	—	8.7nH ±0.5nH	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN9N1C0Z	—	9.1nH ±0.2nH	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN9N1D0Z	—	9.1nH ±0.5nH	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN9N5D0Z	—	9.5nH ±0.5nH	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN10NG0Z	—	10nH ±2%	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN10NJ0Z	—	10nH ±5%	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN11NG0Z	—	11nH ±2%	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN11NJ0Z	—	11nH ±5%	100MHz	35	250MHz	650mA	0.11Ω	6000MHz
LQW18AN12NG0Z	—	12nH ±2%	100MHz	35	250MHz	600mA	0.13Ω	6000MHz
LQW18AN12NJ0Z	—	12nH ±5%	100MHz	35	250MHz	600mA	0.13Ω	6000MHz
LQW18AN13NG0Z	—	13nH ±2%	100MHz	35	250MHz	600mA	0.13Ω	6000MHz
LQW18AN13NJ0Z	_	13nH ±5%	100MHz	35	250MHz	600mA	0.13Ω	6000MHz
LQW18AN15NG0Z	—	15nH ±2%	100MHz	40	250MHz	600mA	0.13Ω	6000MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

RF Inductors

Inductors for Power Lines

Inductance

15nH ±5%

16nH ±2%

16nH ±5%

18nH ±2%

Inductance

Test Frequenc

100MHz

100MHz

100MHz

100MHz

Q (min.)

40

40

40

40

Q Test Freque

250MHz

250MHz

250MHz

250MHz

Rated Current

600mA

550mA

550mA

550mA

Max. of DC Resistan

0.13Ω

0.16Ω

0.16Ω

0.16Ω

Continued from the preceding page.

Infotainment

LQW18AN15NJ0Z

LQW18AN16NG0Z

LQW18AN16NJ0Z

LQW18AN18NG0Z

Part Number

Powertrain/Safety

_

_

S.R.F* (min.

6000MHz

5500MHz

5500MHz

5500MHz

LQW18AN18NJ0Z	_	18nH ±5%	100MHz	40	250MHz	550mA	0.16Ω	5500MHz
LQW18AN20NG0Z	_	20nH ±2%	100MHz	40	250MHz	550mA	0.16Ω	4900MHz
LQW18AN20NJ0Z	_	20nH ±5%	100MHz	40	250MHz	550mA	0.16Ω	4900MHz
LQW18AN22NG0Z	_	22nH ±2%	100MHz	40	250MHz	500mA	0.17Ω	4600MHz
LQW18AN22NJ0Z	_	22nH ±5%	100MHz	40	250MHz	500mA	0.17Ω	4600MHz
LQW18AN24NG0Z	_	24nH ±2%	100MHz	40	250MHz	500mA	0.21Ω	3800MHz
LQW18AN24NJ0Z	_	24nH ±5%	100MHz	40	250MHz	500mA	0.21Ω	3800MHz
LQW18AN27NG0Z	—	27nH ±2%	100MHz	40	250MHz	440mA	0.21Ω	3700MHz
LQW18AN27NJ0Z	-	27nH ±5%	100MHz	40	250MHz	440mA	0.21Ω	3700MHz
LQW18AN30NG0Z	-	30nH ±2%	100MHz	40	250MHz	420mA	0.23Ω	3300MHz
LQW18AN30NJ0Z	-	30nH ±5%	100MHz	40	250MHz	420mA	0.23Ω	3300MHz
LQW18AN33NG0Z	—	33nH ±2%	100MHz	40	250MHz	420mA	0.23Ω	3200MHz
LQW18AN33NJ0Z	-	33nH ±5%	100MHz	40	250MHz	420mA	0.23Ω	3200MHz
LQW18AN36NG0Z	-	36nH ±2%	100MHz	40	250MHz	400mA	0.26Ω	2900MHz
LQW18AN36NJ0Z	—	36nH ±5%	100MHz	40	250MHz	400mA	0.26Ω	2900MHz
LQW18AN39NG0Z	—	39nH ±2%	100MHz	40	250MHz	400mA	0.26Ω	2800MHz
LQW18AN39NJ0Z	—	39nH ±5%	100MHz	40	250MHz	400mA	0.26Ω	2800MHz
LQW18AN43NG0Z	-	43nH ±2%	100MHz	40	200MHz	380mA	0.29Ω	2700MHz
LQW18AN43NJ0Z	—	43nH ±5%	100MHz	40	200MHz	380mA	0.29Ω	2700MHz
LQW18AN47NG0Z	—	47nH ±2%	100MHz	38	200MHz	380mA	0.29Ω	2600MHz
LQW18AN47NJ0Z	—	47nH ±5%	100MHz	38	200MHz	380mA	0.29Ω	2600MHz
LQW18AN51NG0Z	—	51nH ±2%	100MHz	38	200MHz	370mA	0.33Ω	2500MHz
LQW18AN51NJ0Z	—	51nH ±5%	100MHz	38	200MHz	370mA	0.33Ω	2500MHz
LQW18AN56NG0Z	—	56nH ±2%	100MHz	38	200MHz	360mA	0.35Ω	2400MHz
LQW18AN56NJ0Z	—	56nH ±5%	100MHz	38	200MHz	360mA	0.35Ω	2400MHz
LQW18AN62NG0Z	—	62nH ±2%	100MHz	38	200MHz	280mA	0.51Ω	2300MHz
LQW18AN62NJ0Z	—	62nH ±5%	100MHz	38	200MHz	280mA	0.51Ω	2300MHz
LQW18AN68NG0Z	—	68nH ±2%	100MHz	38	200MHz	340mA	0.38Ω	2200MHz
LQW18AN68NJ0Z	—	68nH ±5%	100MHz	38	200MHz	340mA	0.38Ω	2200MHz
LQW18AN72NG0Z	—	72nH ±2%	100MHz	34	150MHz	270mA	0.56Ω	2100MHz
LQW18AN72NJ0Z	—	72nH ±5%	100MHz	34	150MHz	270mA	0.56Ω	2100MHz
LQW18AN75NG0Z	—	75nH ±2%	100MHz	34	150MHz	270mA	0.56Ω	2050MHz
LQW18AN75NJ0Z	—	75nH ±5%	100MHz	34	150MHz	270mA	0.56Ω	2050MHz
LQW18AN82NG0Z	—	82nH ±2%	100MHz	34	150MHz	250mA	0.60Ω	2000MHz
LQW18AN82NJ0Z	—	82nH ±5%	100MHz	34	150MHz	250mA	0.60Ω	2000MHz
LQW18AN91NG0Z	—	91nH ±2%	100MHz	34	150MHz	230mA	0.64Ω	1900MHz
LQW18AN91NJ0Z	—	91nH ±5%	100MHz	34	150MHz	230mA	0.64Ω	1900MHz
LQW18ANR10G0Z	—	100nH ±2%	100MHz	34	150MHz	220mA	0.68Ω	1800MHz
LQW18ANR10J0Z	—	100nH ±5%	100MHz	34	150MHz	220mA	0.68Ω	1800MHz
LQW18ANR11G0Z	_	110nH ±2%	100MHz	32	150MHz	200mA	1.2Ω	1700MHz
LQW18ANR11J0Z	_	110nH ±5%	100MHz	32	150MHz	200mA	1.2Ω	1700MHz
LQW18ANR12G0Z	_	120nH ±2%	100MHz	32	150MHz	180mA	1.3Ω	1600MHz
LQW18ANR12J0Z	_	120nH ±5%	100MHz	32	150MHz	180mA	1.3Ω	1600MHz
LQW18ANR13G0Z	—	130nH ±2%	100MHz	32	150MHz	170mA	1.4Ω	1450MHz
LQW18ANR13J0Z	—	130nH ±5%	100MHz	32	150MHz	170mA	1.4Ω	1450MHz
LQW18ANR15G0Z	—	150nH ±2%	100MHz	32	150MHz	160mA	1.5Ω	1400MHz
LQW18ANR15J0Z	—	150nH ±5%	100MHz	32	150MHz	160mA	1.5Ω	1400MHz
LQW18ANR16G0Z	—	160nH ±2%	100MHz	32	150MHz	150mA	2.1Ω	1350MHz
LQW18ANR16J0Z	—	160nH ±5%	100MHz	32	150MHz	150mA	2.1Ω	1350MHz
Operating temp range (Self-te	omp rise not included): -55 to 12	5°C						

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Part N	umber	to develop a sec	Inductance	0 (11)		Detect Operation		
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	5.R.F^ (min.)
LQW18ANR18G0Z	—	180nH ±2%	100MHz	25	100MHz	140mA	2.2Ω	1300MHz
LQW18ANR18J0Z	—	180nH ±5%	100MHz	25	100MHz	140mA	2.2Ω	1300MHz
LQW18ANR20G0Z	_	200nH ±2%	100MHz	25	100MHz	120mA	2.4Ω	1250MHz
LQW18ANR20J0Z	_	200nH ±5%	100MHz	25	100MHz	120mA	2.4Ω	1250MHz
LQW18ANR22G0Z	_	220nH ±2%	100MHz	25	100MHz	120mA	2.5Ω	1200MHz
LQW18ANR22J0Z	_	220nH ±5%	100MHz	25	100MHz	120mA	2.5Ω	1200MHz
LQW18ANR27G0Z	_	270nH ±2%	100MHz	30	100MHz	110mA	3.4Ω	960MHz
LQW18ANR27J0Z	_	270nH ±5%	100MHz	30	100MHz	110mA	3.4Ω	960MHz
LQW18ANR33G0Z	_	330nH ±2%	100MHz	30	100MHz	85mA	5.5Ω	800MHz
LQW18ANR33J0Z	_	330nH ±5%	100MHz	30	100MHz	85mA	5.5Ω	800MHz
LQW18ANR39G0Z	_	390nH ±2%	100MHz	30	100MHz	80mA	6.2Ω	800MHz
LQW18ANR39J0Z	_	390nH ±5%	100MHz	30	100MHz	80mA	6.2Ω	800MHz
LQW18ANR47G0Z	_	470nH ±2%	100MHz	30	100MHz	75mA	7.0Ω	700MHz
LQW18ANR47J0Z	_	470nH ±5%	100MHz	30	100MHz	75mA	7.0Ω	700MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

_QW18AN_1Z Series 0603 (1608) inch (mm)

0.2±0.1

(in mm)

0.80±0.15

*1 LQW18AN_1□/ LQW18AS: 0.8±0.3

0.8±0.2

0.3±0.3

1.6±0.

Packaging

Code

D

J

в

Packaging

ø180mm Paper Taping

ø330mm Paper Taping

Packing in Bulk

Minimum

Ouantity

4000

10000

500

Inductors for General Circuits

Rated Value (\Box : packaging code)

0.3±0.1

RF Inductors

Appearance/Dimensions

Part N	umber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW18AN2N2D1Z	—	2.2nH ±0.5nH	100MHz	25	250MHz	1400mA	0.018Ω	18000MHz
LQW18AN3N9C1Z	—	3.9nH ±0.2nH	100MHz	38	250MHz	1000mA	0.032Ω	11000MHz
LQW18AN3N9D1Z	_	3.9nH ±0.5nH	100MHz	38	250MHz	1000mA	0.032Ω	11000MHz
LQW18AN5N6D1Z	_	5.6nH ±0.5nH	100MHz	38	250MHz	900mA	0.045Ω	10000MHz
LQW18AN6N8C1Z	_	6.8nH ±0.2nH	100MHz	38	250MHz	900mA	0.045Ω	7000MHz
LQW18AN6N8D1Z	_	6.8nH ±0.5nH	100MHz	38	250MHz	900mA	0.045Ω	7000MHz
LQW18AN8N2D1Z	_	8.2nH ±0.5nH	100MHz	38	250MHz	800mA	0.058Ω	7000MHz
LQW18AN10NG1Z	_	10nH ±2%	100MHz	38	250MHz	800mA	0.058Ω	5000MHz
LQW18AN10NJ1Z	_	10nH ±5%	100MHz	38	250MHz	800mA	0.058Ω	5000MHz
LQW18AN12NG1Z	_	12nH ±2%	100MHz	38	250MHz	750mA	0.071Ω	5000MHz
LQW18AN12NJ1Z	_	12nH ±5%	100MHz	38	250MHz	750mA	0.071Ω	5000MHz
LQW18AN15NJ1Z	_	15nH ±5%	100MHz	42	250MHz	700mA	0.085Ω	4500MHz
LQW18AN18NG1Z	_	18nH ±2%	100MHz	42	250MHz	700mA	0.085Ω	3500MHz
LQW18AN18NJ1Z	_	18nH ±5%	100MHz	42	250MHz	700mA	0.085Ω	3500MHz
LQW18AN22NG1Z	—	22nH ±2%	100MHz	42	250MHz	640mA	0.099Ω	3200MHz
LQW18AN22NJ1Z	—	22nH ±5%	100MHz	42	250MHz	640mA	0.099Ω	3200MHz
LQW18AN27NG1Z	_	27nH ±2%	100MHz	42	250MHz	590mA	0.116Ω	2800MHz
LQW18AN27NJ1Z	_	27nH ±5%	100MHz	42	250MHz	590mA	0.116Ω	2800MHz
LQW18AN33NJ1Z	_	33nH ±5%	100MHz	42	250MHz	550mA	0.132Ω	2500MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

RF InductorsLQW18AN_8Z Series 0603 (1608) inch (mm)

0.2±0.1

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
J	ø330mm Paper Taping	10000
В	Packing in Bulk	500

Rated Value (\Box : packaging code)

Part N	umber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW18AN2N2C8Z	—	2.2nH ±0.2nH	100MHz	24	250MHz	3200mA	0.018Ω	15000MHz
LQW18AN2N4C8Z	_	2.4nH ±0.2nH	100MHz	18	250MHz	2400mA	0.026Ω	15000MHz
LQW18AN3N0C8Z	_	3.0nH ±0.2nH	100MHz	13	250MHz	670mA	0.170Ω	15000MHz
LQW18AN3N9B8Z	—	3.9nH ±0.1nH	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN3N9C8Z	—	3.9nH ±0.2nH	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN3N9G8Z	—	3.9nH ±2%	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN4N1B8Z	—	4.1nH ±0.1nH	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN4N1C8Z	—	4.1nH ±0.2nH	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN4N1G8Z	—	4.1nH ±2%	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN4N2B8Z	—	4.2nH ±0.1nH	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN4N2C8Z	—	4.2nH ±0.2nH	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN4N2G8Z	—	4.2nH ±2%	100MHz	30	250MHz	2200mA	0.028Ω	10000MHz
LQW18AN4N3B8Z	—	4.3nH ±0.1nH	100MHz	35	250MHz	2100mA	0.036Ω	11600MHz
LQW18AN4N3C8Z	—	4.3nH ±0.2nH	100MHz	35	250MHz	2100mA	0.036Ω	11600MHz
LQW18AN4N3G8Z	—	4.3nH ±2%	100MHz	35	250MHz	2100mA	0.036Ω	11600MHz
LQW18AN4N7B8Z	—	4.7nH ±0.1nH	100MHz	25	250MHz	1500mA	0.054Ω	10400MHz
LQW18AN4N7C8Z	—	4.7nH ±0.2nH	100MHz	25	250MHz	1500mA	0.054Ω	10400MHz
LQW18AN4N7G8Z	—	4.7nH ±2%	100MHz	25	250MHz	1500mA	0.054Ω	10400MHz
LQW18AN4N9B8Z	—	4.9nH ±0.1nH	100MHz	23	250MHz	1200mA	0.081Ω	7300MHz
LQW18AN4N9C8Z	—	4.9nH ±0.2nH	100MHz	23	250MHz	1200mA	0.081Ω	7300MHz
LQW18AN4N9G8Z	—	4.9nH ±2%	100MHz	23	250MHz	1200mA	0.081Ω	7300MHz
LQW18AN5N6C8Z		5.6nH ±0.2nH	100MHz	38	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN5N6G8Z	—	5.6nH ±2%	100MHz	38	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN6N0C8Z		6.0nH ±0.2nH	100MHz	40	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN6N0G8Z	—	6.0nH ±2%	100MHz	40	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN6N5C8Z	—	6.5nH ±0.2nH	100MHz	40	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN6N5G8Z	—	6.5nH ±2%	100MHz	40	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN6N8C8Z	—	6.8nH ±0.2nH	100MHz	40	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN6N8G8Z	—	6.8nH ±2%	100MHz	40	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN7N2C8Z	—	7.2nH ±0.2nH	100MHz	38	250MHz	1900mA	0.040Ω	6650MHz
LQW18AN7N2G8Z	—	7.2nH ±2%	100MHz	38	250MHz	1900mA	0.040Ω	6650MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Infozainment Powertzin/Safety Powertzin/Safety <th>Part N</th> <th>umber</th> <th></th> <th>Inductance</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Part N	umber		Inductance					
LQW1BAN7N5G8Z — 7.5nH 12% 100MHz 35 250MHz 1500mA 0.0480 7000MHz LQW1BANR9K2G2T — 8.2nH 12% 100MHz 38 250MHz 1500mA 0.0520 4750MHz LQW1BANR9K2G2T — 8.4nH 12% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW1BANR9K0G2T — 8.4nH 12% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW1BANR9K0G2T — 8.7nH 127M 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW1BANR9K0G2T — 9.1nH 12% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW1BANR9K0G2T — 9.5nH 10.2mH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW1BANR9K0G2T — 9.5nH 10.2mH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW1BANR9K0G2T — 9.5nH 12% 100MHz 38			Inductance		Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW18AN8N2C82:	LQW18AN7N5C8Z	_	7.5nH ±0.2nH	100MHz	35	250MHz	1500mA	0.048Ω	7000MHz
LQW18AN8N2G8Z	LQW18AN7N5G8Z	_	7.5nH ±2%	100MHz	35	250MHz	1500mA	0.048Ω	7000MHz
LQW18AN8N4C8Z — 8.4mH ± 2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN8N4C8Z — 8.4mH ± 2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN8N4C8Z — 8.7mH ± 2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN8N4C8Z — 9.1mH ± 2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C8Z — 9.1mH ± 2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C8Z — 9.5mH ± 2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C8Z — 9.5mH ± 2% 100MHz 38 250MHz 160mA 0.0520 4750MHz LQW18AN9N5C8Z — 10mH ± 5% 100MHz 38 250MHz 160mA 0.0520 4750MHz LQW18AN10N8Z — 10mH ± 5% 100MHz 38 25	LQW18AN8N2C8Z	_	8.2nH ±0.2nH	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18ANBN4G82 — 8.4nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN7C8Z — 8.7mH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN7C8Z — 9.1mH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN3C6Z — 9.1mH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNS6Z — 9.5mH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNS6Z — 9.5mH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNG8Z — 9.9mH ±0.2mH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN68Z — 10mH ±5% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN1NBGZ — 11mH ±5% 100MHz 38 250MHz <th>LQW18AN8N2G8Z</th> <th>_</th> <th>8.2nH ±2%</th> <th>100MHz</th> <th>38</th> <th>250MHz</th> <th>1600mA</th> <th>0.052Ω</th> <th>4750MHz</th>	LQW18AN8N2G8Z	_	8.2nH ±2%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18ANBN7C62 — 8.7nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN7G8Z — 9.1nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNG6Z — 9.1nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNG6Z — 9.1nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNG6Z — 9.5nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNG6Z — 9.9nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANING8Z — 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANING8Z — 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANING8Z — 11nH ±5% 100MHz 37 <t< th=""><th>LQW18AN8N4C8Z</th><th>_</th><th>8.4nH ±0.2nH</th><th>100MHz</th><th>38</th><th>250MHz</th><th>1600mA</th><th>0.052Ω</th><th>4750MHz</th></t<>	LQW18AN8N4C8Z	_	8.4nH ±0.2nH	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18ANBN7G82 8.7mH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN1G82 9.1nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN1G82 9.1nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN5G82 9.5nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBN5G82 9.5nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18ANBNG82 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10NB2 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN11NB2 11nH ±5% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN11NB2 12nH ±5% 100MHz 37 2	LQW18AN8N4G8Z	_	8.4nH ±2%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN9N1C8Z 9.1nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N1G8Z 9.5nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N568Z 9.5nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N568Z 9.5nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N568Z 9.5nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10NJ8Z 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN110NBZ 11nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN11NJBZ 11nH ±2% 100MHz 37 250MHz 1600mA 0.0640 5000MHz LQW18AN12NJBZ 13nH ±2% 100MHz 37	LQW18AN8N7C8Z	_	8.7nH ±0.2nH	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN9N1G82 9.1nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C82 9.5nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C82 9.5nH ±0.2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C82 9.5nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10082 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10082 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN11082 11nH ±5% 100MHz 37 250MHz 1600mA 0.0540 500MHz LQW18AN11082 12nH ±5% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN12NB2 13nH ±5% 100MHz 38 2	LQW18AN8N7G8Z	_	8.7nH ±2%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN9N5C82□ 95H±02hH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C82□ 95H±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C82□ 99H±02hH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N5C82□ 100H±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10N82□ 10nH±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN1N82□ 11nH±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN1N82□ 11nH±2% 100MHz 37 250MHz 1600mA 0.0520 4750MHz LQW18AN1N82□ 11nH±2% 100MHz 37 250MHz 1600mA 0.0640 5000MHz LQW18AN1N82□ 13nH±2% 100MHz 37 250MHz	LQW18AN9N1C8Z	_	9.1nH ±0.2nH	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN9NSG82 — 9:5hH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N9C82 — 9:9hH ±0.2hH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N9C82 — 9:9hH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10N82 — 10nH ±5% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN1N82 — 10nH ±5% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN1N82 — 11nH ±5% 100MHz 37 250MHz 1600mA 0.0540 5000MHz LQW18AN1802 — 12nH ±5% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN1802 — 13nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN18N62 — 15nH ±2% 100MHz 38 250MHz	LQW18AN9N1G8Z	_	9.1nH ±2%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN9N9C8Z 9:9nH ±0:2nH 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN9N9C6Z 9:9nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10NGSZ 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10NGSZ 11nH ±2% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN1NGSZ 11nH ±2% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN1NGSZ 12nH ±2% 100MHz 40 250MHz 1500mA 0.0640 5000MHz LQW38AN1S0GSZ 13nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW38AN1S0GSZ 13nH ±5% 100MHz 37 250MHz 1400mA 0.0750 4600MHz LQW38AN1S0GSZ 15nH ±2% 100MHz 38 <th< th=""><th>LQW18AN9N5C8Z</th><th>_</th><th>9.5nH ±0.2nH</th><th>100MHz</th><th>38</th><th>250MHz</th><th>1600mA</th><th>0.052Ω</th><th>4750MHz</th></th<>	LQW18AN9N5C8Z	_	9.5nH ±0.2nH	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN9N9G8Z 9.9H ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10N98Z 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10N98Z 10nH ±5% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN11N8Z 11nH ±2% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN11N8Z 11nH ±2% 100MHz 40 250MHz 1600mA 0.0640 5000MHz LQW18AN12N6Z 12nH ±5% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13N6Z 13nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13N5RGZ 13nH ±2% 100MHz 37 250MHz 1400mA 0.0750 4600MHz LQW18AN15N6Z 15nH ±5% 100MHz 40 250MHz <th>LQW18AN9N5G8Z</th> <th>_</th> <th>9.5nH ±2%</th> <th>100MHz</th> <th>38</th> <th>250MHz</th> <th>1600mA</th> <th>0.052Ω</th> <th>4750MHz</th>	LQW18AN9N5G8Z	_	9.5nH ±2%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN10NG8Z 10nH ±2% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN10NJ8Z 10nH ±5% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN11NG8Z 11nH ±2% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN12NJ8Z 11nH ±5% 100MHz 40 250MHz 1600mA 0.0540 500MHz LQW18AN12NJ8Z 12nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13NJ8Z 13nH ±5% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13NJ8Z 13nH ±5% 100MHz 38 250MHz 1400mA 0.0750 4600MHz LQW18AN1SNJ8Z 15nH ±5% 100MHz 38 250MHz 1400mA 0.0750 4600MHz LQW18AN16NJ8Z 16nH ±2% 100MHz 40 250MHz<	LQW18AN9N9C8Z	_	9.9nH ±0.2nH	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN10NJ8Z 100H ±5% 100MHz 38 250MHz 1600mA 0.0520 4750MHz LQW18AN11NG8Z 11nH ±2% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN12NG8Z 11nH ±5% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN12NG8Z 12nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13NG8Z 13nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13NG8Z 13nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13NJ8Z 15nH ±2% 100MHz 38 250MHz 1400mA 0.0750 4600MHz LQW18AN13NJ8Z 15nH ±2% 100MHz 40 250MHz 1400mA 0.0750 4600MHz LQW18AN17NG8Z 17nH ±2% <th100mhz< th=""> 40 250MHz<</th100mhz<>	LQW18AN9N9G8Z	_	9.9nH ±2%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN11NG82□ — 11nH ±2% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN11NJ82□ — 11nH ±5% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN12NG82□ — 12nH ±2% 100MHz 37 250MHz 1500mA 0.064Ω 5000MHz LQW18AN12NJ82□ — 13nH ±2% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NG82□ — 13nH ±2% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN15NJ82□ — 15nH ±2% 100MHz 37 250MHz 1400mA 0.075Ω 4600MHz LQW18AN15NJ82□ — 15nH ±2% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NG82□ — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NG82□ — 17nH ±2% <th100mhz< th=""> 40 250MHz<!--</th--><th>LQW18AN10NG8Z</th><th>_</th><th>10nH ±2%</th><th>100MHz</th><th>38</th><th>250MHz</th><th>1600mA</th><th>0.052Ω</th><th>4750MHz</th></th100mhz<>	LQW18AN10NG8Z	_	10nH ±2%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN11NJ82□ 11nH ±5% 100MHz 40 250MHz 1600mA 0.0520 4750MHz LQW18AN12NG82□ 12nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN12NJ82□ 12nH ±5% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13N82□ 13nH ±2% 100MHz 37 250MHz 1500mA 0.0640 5000MHz LQW18AN13N82□ 13nH ±5% 100MHz 37 250MHz 1400mA 0.075Ω 4600MHz LQW18AN15N82□ 15nH ±5% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16N82□ 16nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17N82□ 17nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17N82□ 17nH ±5% 100MHz 40 25	LQW18AN10NJ8Z	_	10nH ±5%	100MHz	38	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN12NG8Z – 12nH ±2% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN12NJ8Z – 12nH ±5% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NG8Z – 13nH ±2% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NG8Z – 13nH ±2% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN15N3GZ – 15nH ±2% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN15N3GZ – 15nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NG8Z – 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NG8Z – 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17N8Z – 17nH ±5% 100MHz 40 250MHz	LQW18AN11NG8Z	_	11nH ±2%	100MHz	40	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN12NJ8Z — 12nH ±5% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NG8Z — 13nH ±2% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NJ8Z — 13nH ±5% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NJ8Z — 15nH ±2% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN15NJ8Z — 15nH ±2% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NG8Z — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NG8Z — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NJ8Z — 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NB8Z — 18nH ±5% 100MHz 40 250MHz	LQW18AN11NJ8Z	_	11nH ±5%	100MHz	40	250MHz	1600mA	0.052Ω	4750MHz
LQW18AN13NG2 — 13nH ±2% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NJ8Z — 13nH ±5% 100MHz 37 250MHz 150mA 0.064Ω 5000MHz LQW18AN13NJ8Z — 15nH ±2% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN15NJ8Z — 15nH ±5% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NG8Z — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NJ8Z — 16nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NJ8Z — 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NB8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NB8Z — 18nH ±5% 100MHz 40 250MHz	LQW18AN12NG8Z	_	12nH ±2%	100MHz	37	250MHz	1500mA	0.064Ω	5000MHz
LQW18AN13NJ82 — 13nH ±5% 100MHz 37 250MHz 1500mA 0.064Ω 5000MHz LQW18AN15NG82 — 15nH ±2% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN15NJ82 — 15nH ±5% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NG82 — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NG82 — 16nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NJ82 — 17nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NJ82 — 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NG82 — 18mH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NG82 — 19nH ±2% 100MHz 40 250MHz	LQW18AN12NJ8Z	_	12nH ±5%	100MHz	37	250MHz	1500mA	0.064Ω	5000MHz
LQW18AN15NG8Z□ — 15nH ±2% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN15NJ8Z□ — 15nH ±5% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NG8Z□ — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NJ8Z□ — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NJ8Z□ — 16nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NG8Z□ — 17nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z□ — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z□ — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z□ — 19nH ±2% 100MHz 40 250MH	LQW18AN13NG8Z	_	13nH ±2%	100MHz	37	250MHz	1500mA	0.064Ω	5000MHz
LQW18AN15NJ8Z — 15nH±5% 100MHz 38 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NG8Z — 16nH±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NJ8Z — 16nH±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NJ8Z — 17nH±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NJ8Z — 17nH±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600Hz LQW18AN18NJ8Z — 17nH±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600Hz LQW18AN18NJ8Z — 18nH±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600Hz LQW18AN19NJ8Z — 18nH±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600Hz LQW18AN19NJ8Z — 19nH±2% 100MHz 40 250MHz 140	LQW18AN13NJ8Z	_	13nH ±5%	100MHz	37	250MHz	1500mA	0.064Ω	5000MHz
LQW18AN16NG8Z — 16nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN16NJ8Z — 16nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NG8Z — 17nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NG8Z — 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NG8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 19nH ±2% 100MHz 40 250MHz	LQW18AN15NG8Z	_	15nH ±2%	100MHz	38	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN16NJ8Z — 16nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17Ng8Z — 17nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17Nj8Z — 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17Nj8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18Nj8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18Nj8Z — 18nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19Nj8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19Nj8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600Hz LQW18AN22Nj8Z — 22nH ±5% 100MHz 40 250MHz	LQW18AN15NJ8Z	_	15nH ±5%	100MHz	38	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN17NG8Z — 17nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN17NJ8Z — 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NG8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z — 18nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NG8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NG8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN29N68Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN22NJ8Z — 22nH ±2% 100MHz 40 250MHz	LQW18AN16NG8Z	_	16nH ±2%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN17NJ8Z — 17nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NG8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z — 18nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NG8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN2NJ8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN22NJ8Z — 22nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz	LQW18AN16NJ8Z	_	16nH ±5%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN18NG8Z — 18nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z — 18nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN18NJ8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NG8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN22NG8Z — 19nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NG8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NG8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NG8Z — 24nH ±5% 100MHz 40 250MHz	LQW18AN17NG8Z	_	17nH ±2%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN18NJ8Z — 18nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NG8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NG8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN22NG8Z — 19nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN22NG8Z — 22nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NG8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±2% 100MHz 40 250MHz	LQW18AN17NJ8Z	_	17nH ±5%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN19NG8Z — 19nH ±2% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN19NJ8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN22NG8Z — 22nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN22NJ8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±5% 100MHz 40 250MHz	LQW18AN18NG8Z	_	18nH ±2%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN19NJ8Z — 19nH ±5% 100MHz 40 250MHz 1400mA 0.075Ω 4600MHz LQW18AN22NG8Z — 22nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN22NJ8Z — 22nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz	LQW18AN18NJ8Z	_	18nH ±5%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN22NG8Z — 22nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN22NJ8Z — 22nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NG8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NG8Z — 25nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz	LQW18AN19NG8Z	_	19nH ±2%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN22NJ8Z — 22nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NG8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NG8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NG8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NG8Z — 25nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NJ8Z — 25nH ±2% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz	LQW18AN19NJ8Z	_	19nH ±5%	100MHz	40	250MHz	1400mA	0.075Ω	4600MHz
LQW18AN23NG8Z — 23nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NG8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NG8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NG8Z — 25nH ±5% 100MHz 40 250MHz 1300mA 0.098Ω 3600MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN22NG8Z	_	22nH ±2%	100MHz	40	250MHz	1300mA	0.086Ω	3450MHz
LQW18AN23NJ8Z — 23nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NG8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NG8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NG8Z — 25nH ±2% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN22NJ8Z	—	22nH ±5%	100MHz	40	250MHz	1300mA	0.086Ω	3450MHz
LQW18AN24NG8Z — 24nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN24NJ8Z — 24nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NG8Z — 25nH ±2% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NG8Z — 25nH ±2% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN23NG8Z	_	23nH ±2%	100MHz	40	250MHz	1300mA	0.086Ω	3450MHz
LQW18AN24NJ8Z — 24nH ±5% 100MHz 40 250MHz 1300mA 0.086Ω 3450MHz LQW18AN25NG8Z — 25nH ±2% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN23NJ8Z	—	23nH ±5%	100MHz	40	250MHz	1300mA	0.086Ω	3450MHz
LQW18AN25NG8Z — 25nH ±2% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN24NG8Z	—	24nH ±2%	100MHz	40	250MHz	1300mA	0.086Ω	3450MHz
LQW18AN25NJ8Z — 25nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN24NJ8Z	—	24nH ±5%	100MHz	40	250MHz	1300mA	0.086Ω	3450MHz
	LQW18AN25NG8Z	—	25nH ±2%	100MHz	40	250MHz	1200mA	0.098Ω	3600MHz
	LQW18AN25NJ8Z	—	25nH ±5%	100MHz	40	250MHz	1200mA	0.098Ω	3600MHz
LQW18AN27NG8Z — 27nH ±2% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN27NG8Z	—	27nH ±2%	100MHz	40	250MHz	1200mA	0.098Ω	3600MHz
LQW18AN27NJ8Z 27nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN27NJ8Z	—	27nH ±5%	100MHz	40	250MHz	1200mA	0.098Ω	3600MHz
LQW18AN28NG8Z 28nH ±2% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN28NG8Z	—	28nH ±2%	100MHz	40	250MHz	1200mA	0.098Ω	3600MHz
LQW18AN28NJ8Z — 28nH ±5% 100MHz 40 250MHz 1200mA 0.098Ω 3600MHz	LQW18AN28NJ8Z	—	28nH ±5%	100MHz	40	250MHz	1200mA	0.098Ω	3600MHz
LQW18AN30NG8Z — 30nH ±2% 100MHz 40 250MHz 1100mA 0.12Ω 2880MHz	LQW18AN30NG8Z	—	30nH ±2%	100MHz	40	250MHz	1100mA	0.12Ω	2880MHz
LQW18AN30NJ8Z — 30nH ±5% 100MHz 40 250MHz 1100mA 0.12Ω 2880MHz	LQW18AN30NJ8Z	—	30nH ±5%	100MHz	40	250MHz	1100mA	0.12Ω	2880MHz
LQW18AN31NG8Z — 31nH ±2% 100MHz 40 250MHz 1100mA 0.11Ω 3150MHz	LQW18AN31NG8Z	—	31nH ±2%	100MHz	40	250MHz	1100mA	0.11Ω	3150MHz
LQW18AN31NJ8Z — 31nH ±5% 100MHz 40 250MHz 1100mA 0.11Ω 3150MHz	LQW18AN31NJ8Z	—	31nH ±5%	100MHz	40	250MHz	1100mA	0.11Ω	3150MHz
LQW18AN33NG8Z — 33nH ±2% 100MHz 40 250MHz 1100mA 0.11Ω 3150MHz	LQW18AN33NG8Z	—	33nH ±2%	100MHz	40	250MHz	1100mA	0.11Ω	3150MHz
LQW18AN33NJ8Z 33nH ±5% 100MHz 40 250MHz 1100mA 0.11Ω 3150MHz	LQW18AN33NJ8Z	—	33nH ±5%	100MHz	40	250MHz	1100mA	0.11Ω	3150MHz
LQW18AN34NG8Z 34nH ±2% 100MHz 40 250MHz 1050mA 0.15Ω 3000MHz	LQW18AN34NG8Z	—	34nH ±2%	100MHz	40	250MHz	1050mA	0.15Ω	3000MHz
LQW18AN34NJ8Z — 34nH ±5% 100MHz 40 250MHz 1050mA 0.15Ω 3000MHz	LQW18AN34NJ8Z	—	34nH ±5%	100MHz	40	250MHz	1050mA	0.15Ω	3000MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductors for General Circuits

Part N	lumber	to the terms	Inductance	a	0.7	Data da	Maria (Do Da da da	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW18AN36NG8Z	_	36nH ±2%	100MHz	37	250MHz	910mA	0.20Ω	3000MHz
LQW18AN36NJ8Z	_	36nH ±5%	100MHz	37	250MHz	910mA	0.20Ω	3000MHz
LQW18AN37NG8Z	_	37nH ±2%	100MHz	37	250MHz	910mA	0.20Ω	3000MHz
LQW18AN37NJ8Z	_	37nH ±5%	100MHz	37	250MHz	910mA	0.20Ω	3000MHz
LQW18AN39NG8Z	_	39nH ±2%	100MHz	40	250MHz	1000mA	0.16Ω	3280MHz
LQW18AN39NJ8Z	_	39nH ±5%	100MHz	40	250MHz	1000mA	0.16Ω	3280MHz
LQW18AN41NG8Z	_	41nH ±2%	100MHz	40	250MHz	1000mA	0.16Ω	3280MHz
LQW18AN41NJ8Z	_	41nH ±5%	100MHz	40	250MHz	1000mA	0.16Ω	3280MHz
LQW18AN43NG8Z		43nH ±2%	100MHz	40	250MHz	840mA	0.21Ω	2780MHz
LQW18AN43NJ8Z		43nH ±5%	100MHz	40	250MHz	840mA	0.21Ω	2780MHz
LQW18AN44NG8Z		44nH ±2%	100MHz	40	250MHz	840mA	0.21Ω	2780MHz
LQW18AN44NJ8Z		44nH ±5%	100MHz	40	250MHz	840mA	0.21Ω	2780MHz
		47nH ±2%	100MHz	32	200MHz	830mA	0.23Ω	2700MHz
	_	47nH ±5%	100MHz	32	200MHz	830mA	0.23Ω	2700MHz
	_	48nH ±2%	100MHz	32	200MHz	830mA	0.23Ω	2700MHz
	_	48nH ±5%	100MHz	32	200MHz	830mA	0.23Ω	2700MHz
LQW18AN51NG8Z	_	51nH ±2%	100MHz	32	200MHz	830mA	0.23Ω	2700MHz
LQW18AN51NJ8Z	_	51nH ±5%	100MHz	32	200MHz	830mA	0.23Ω	2700MHz
LQW18AN52NG8Z	_	52nH ±2%	100MHz	35	200MHz	750mA	0.27Ω	2750MHz
LQW18AN52NJ8Z	_	52nH ±5%	100MHz	35	200MHz	750mA	0.27Ω	2750MHz
LQW18AN56NG8Z	_	56nH ±2%	100MHz	38	200MHz	770mA	0.26Ω	2600MHz
LQW18AN56NJ8Z	_	56nH ±5%	100MHz	38	200MHz	770mA	0.26Ω	2600MHz
LQW18AN58NG8Z	_	58nH ±2%	100MHz	35	200MHz	700mA	0.30Ω	2400MHz
LQW18AN58NJ8Z	_	58nH ±5%	100MHz	35	200MHz	700mA	0.30Ω	2400MHz
LQW18AN68NG8Z	_	68nH ±2%	100MHz	37	200MHz	630mA	0.38Ω	2380MHz
LQW18AN68NJ8Z	-	68nH ±5%	100MHz	37	200MHz	630mA	0.38Ω	2380MHz
LQW18AN69NG8Z	-	69nH ±2%	100MHz	37	200MHz	630mA	0.38Ω	2380MHz
LQW18AN69NJ8Z	-	69nH ±5%	100MHz	37	200MHz	630mA	0.38Ω	2380MHz
LQW18AN72NG8Z	_	72nH ±2%	100MHz	34	150MHz	560mA	0.47Ω	2330MHz
LQW18AN72NJ8Z	_	72nH ±5%	100MHz	34	150MHz	560mA	0.47Ω	2330MHz
LQW18AN73NG8Z	_	73nH ±2%	100MHz	28	150MHz	590mA	0.41Ω	2280MHz
LQW18AN73NJ8Z	—	73nH ±5%	100MHz	28	150MHz	590mA	0.41Ω	2280MHz
LQW18AN75NG8Z	—	75nH ±2%	100MHz	28	150MHz	590mA	0.41Ω	2280MHz
LQW18AN75NJ8Z	-	75nH ±5%	100MHz	28	150MHz	590mA	0.41Ω	2280MHz
LQW18AN78NG8Z	_	78nH ±2%	100MHz	28	150MHz	590mA	0.41Ω	2280MHz
LQW18AN78NJ8Z	_	78nH ±5%	100MHz	28	150MHz	590mA	0.41Ω	2280MHz
LQW18AN82NG8Z	_	82nH ±2%	100MHz	34	150MHz	550mA	0.50Ω	2230MHz
LQW18AN82NJ8Z	_	82nH ±5%	100MHz	34	150MHz	550mA	0.50Ω	2230MHz
LQW18AN83NG8Z	_	83nH ±2%	100MHz	34	150MHz	550mA	0.50Ω	2230MHz
LQW18AN83NJ8Z	_	83nH ±5%	100MHz	34	150MHz	550mA	0.50Ω	2230MHz
LQW18AN91NG8Z	_	91nH ±2%	100MHz	33	150MHz	520mA	0.54Ω	1900MHz
LQW18AN91NJ8Z	_	91nH ±5%	100MHz	33	150MHz	520mA	0.54Ω	1900MHz
LQW18AN94NG8Z	_	94nH ±2%	100MHz	34	150MHz	490mA	0.63Ω	1750MHz
LQW18AN94NJ8Z	_	94nH ±5%	100MHz	34	150MHz	490mA	0.63Ω	1750MHz
LQW18ANR10G8Z	_	100nH ±2%	100MHz	34	150MHz	490mA	0.63Ω	1750MHz
LQW18ANR10J8Z	_	100nH ±5%	100MHz	34	150MHz	490mA	0.63Ω	1750MHz
LQW18ANR11G8Z	_	110nH ±2%	100MHz	32	150MHz	450mA	0.70Ω	1730MHz
LQW18ANR11J8Z	_	110nH ±5%	1000 H IZ	32	150MHz	450mA	0.70Ω	1730MHz
LQW18ANR12G8Z	_	120nH ±2%	100MHz	32	150MHz	450mA	0.72Ω	1650MHz
LQW18ANR12J8Z	_	120nH ±5%	100MHz	32	150MHz	450mA	0.72Ω	1650MHz
LQW18ANR12562		150nH ±2%	100MHz	28	150MHz	420mA	0.87Ω	1580MHz
LQW18ANR15J8Z	—	150nH ±5%	100MHz	28	150MHz	420mA	0.87Ω	1580MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductors for General Circuits

Inductors for Power Lines

Part N	umber	Inductance	Inductance	Q (min.)	Q Test Frequency	Dated Current	Max. of DC Resistance	SDE* (min)
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q rest Frequency	Rated Current	Max. of DC Resistance	S.R.F" (Min.)
LQW18ANR18G8Z	—	180nH ±2%	100MHz	25	100MHz	310mA	1.65Ω	1380MHz
LQW18ANR18J8Z	—	180nH ±5%	100MHz	25	100MHz	310mA	1.65Ω	1380MHz
LQW18ANR20G8Z	—	200nH ±2%	100MHz	25	100MHz	290mA	1.74Ω	1350MHz
LQW18ANR20J8Z	—	200nH ±5%	100MHz	25	100MHz	290mA	1.74Ω	1350MHz
LQW18ANR21G8Z	—	210nH ±2%	100MHz	27	100MHz	280mA	1.98Ω	1330MHz
LQW18ANR21J8Z	—	210nH ±5%	100MHz	27	100MHz	280mA	1.98Ω	1330MHz
LQW18ANR22G8Z	_	220nH ±2%	100MHz	25	100MHz	280mA	2.08Ω	1330MHz
LQW18ANR22J8Z	_	220nH ±5%	100MHz	25	100MHz	280mA	2.08Ω	1330MHz
LQW18ANR25G8Z	_	250nH ±2%	100MHz	24	100MHz	250mA	2.28Ω	1330MHz
LQW18ANR25J8Z	_	250nH ±5%	100MHz	24	100MHz	250mA	2.28Ω	1330MHz
LQW18ANR27G8Z	—	270nH ±2%	100MHz	24	100MHz	260mA	2.42Ω	1250MHz
LQW18ANR27J8Z	_	270nH ±5%	100MHz	24	100MHz	260mA	2.42Ω	1250MHz
LQW18ANR30G8Z	_	300nH ±2%	100MHz	25	100MHz	220mA	3.12Ω	1200MHz
LQW18ANR30J8Z	_	300nH ±5%	100MHz	25	100MHz	220mA	3.12Ω	1200MHz
LQW18ANR33G8Z	_	330nH ±2%	100MHz	25	100MHz	190mA	3.84Ω	1100MHz
LQW18ANR33J8Z	—	330nH ±5%	100MHz	25	100MHz	190mA	3.84Ω	1100MHz
LQW18ANR36G8Z	—	360nH ±2%	100MHz	25	100MHz	190mA	3.98Ω	1050MHz
LQW18ANR36J8Z	—	360nH ±5%	100MHz	25	100MHz	190mA	3.98Ω	1050MHz
LQW18ANR39G8Z	—	390nH ±2%	100MHz	25	100MHz	190mA	4.23Ω	1100MHz
LQW18ANR39J8Z	—	390nH ±5%	100MHz	25	100MHz	190mA	4.23Ω	1100MHz

Operating temp.range (Self-temp.rise not included): -55 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)." When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max.

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

.....

Derating of Rated Current

RF InductorsLQW18AS_0Z Series 0603 (1608) inch (mm)

Appearance/Dimensions

(in mm)

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	4000
ſ	ø330mm Paper Taping	10000
В	Packing in Bulk	500

Rated Value (: packaging code)

Part N	lumber		Inductance					
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW18AS1N6J0Z	—	1.6nH ±5%	250MHz	24	250MHz	700mA	0.030Ω	12500MHz
LQW18AS1N8J0Z	_	1.8nH ±5%	250MHz	16	250MHz	700mA	0.045Ω	12500MHz
LQW18AS3N3G0Z	_	3.3nH ±2%	250MHz	35	250MHz	700mA	0.045Ω	5900MHz
LQW18AS3N3J0Z	—	3.3nH ±5%	250MHz	35	250MHz	700mA	0.045Ω	5900MHz
LQW18AS3N6G0Z	—	3.6nH ±2%	250MHz	22	250MHz	700mA	0.063Ω	5900MHz
LQW18AS3N6J0Z	—	3.6nH ±5%	250MHz	22	250MHz	700mA	0.063Ω	5900MHz
LQW18AS3N9G0Z	—	3.9nH ±2%	250MHz	22	250MHz	700mA	0.080Ω	6900MHz
LQW18AS3N9J0Z	—	3.9nH ±5%	250MHz	22	250MHz	700mA	0.080Ω	6900MHz
LQW18AS4N3G0Z	—	4.3nH ±2%	250MHz	22	250MHz	700mA	0.063Ω	5900MHz
LQW18AS4N3J0Z	—	4.3nH ±5%	250MHz	22	250MHz	700mA	0.063Ω	5900MHz
LQW18AS4N7G0Z	—	4.7nH ±2%	250MHz	20	250MHz	700mA	0.116Ω	5800MHz
LQW18AS4N7J0Z	—	4.7nH ±5%	250MHz	20	250MHz	700mA	0.116Ω	5800MHz
LQW18AS5N1G0Z	—	5.1nH ±2%	250MHz	20	250MHz	700mA	0.140Ω	5700MHz
LQW18AS5N1J0Z	—	5.1nH ±5%	250MHz	20	250MHz	700mA	0.140Ω	5700MHz
LQW18AS5N6G0Z	—	5.6nH ±2%	250MHz	26	250MHz	700mA	0.075Ω	4760MHz
LQW18AS5N6J0Z	—	5.6nH ±5%	250MHz	26	250MHz	700mA	0.075Ω	4760MHz
LQW18AS6N8G0Z	—	6.8nH ±2%	250MHz	27	250MHz	700mA	0.110Ω	5800MHz
LQW18AS6N8J0Z	—	6.8nH ±5%	250MHz	27	250MHz	700mA	0.110Ω	5800MHz
LQW18AS7N5G0Z	—	7.5nH ±2%	250MHz	28	250MHz	700mA	0.106Ω	4800MHz
LQW18AS7N5J0Z	—	7.5nH ±5%	250MHz	28	250MHz	700mA	0.106Ω	4800MHz
LQW18AS8N2G0Z	—	8.2nH ±2%	250MHz	30	250MHz	700mA	0.115Ω	4200MHz
LQW18AS8N2J0Z	—	8.2nH ±5%	250MHz	30	250MHz	700mA	0.115Ω	4200MHz
LQW18AS8N7G0Z	—	8.7nH ±2%	250MHz	28	250MHz	700mA	0.109Ω	4600MHz
LQW18AS8N7J0Z	—	8.7nH ±5%	250MHz	28	250MHz	700mA	0.109Ω	4600MHz
LQW18AS9N5G0Z	—	9.5nH ±2%	250MHz	28	250MHz	700mA	0.135Ω	5400MHz
LQW18AS9N5J0Z	—	9.5nH ±5%	250MHz	28	250MHz	700mA	0.135Ω	5400MHz
LQW18AS10NG0Z	_	10nH ±2%	250MHz	31	250MHz	700mA	0.130Ω	4800MHz
LQW18AS10NJ0Z	_	10nH ±5%	250MHz	31	250MHz	700mA	0.130Ω	4800MHz
LQW18AS11NG0Z	_	11nH ±2%	250MHz	30	250MHz	700mA	0.086Ω	4000MHz
LQW18AS11NJ0Z	—	11nH ±5%	250MHz	30	250MHz	700mA	0.086Ω	4000MHz
LQW18AS12NG0Z	—	12nH ±2%	250MHz	35	250MHz	700mA	0.130Ω	4000MHz
LQW18AS12NJ0Z	—	12nH ±5%	250MHz	35	250MHz	700mA	0.130Ω	4000MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

muRata

Part N	lumber	Inductance	Inductance	Q (min)	Q Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
Infotainment	Powertrain/Safety	maactanee	Test Frequency	9 (11111)	q rest requercy			5.1.1 (1111.)
LQW18AS15NG0Z	_	15nH ±2%	250MHz	35	250MHz	700mA	0.170Ω	4000MHz
LQW18AS15NJ0Z	_	15nH ±5%	250MHz	35	250MHz	700mA	0.170Ω	4000MHz
LQW18AS16NG0Z	_	16nH ±2%	250MHz	34	250MHz	700mA	0.104Ω	3300MHz
LQW18AS16NJ0Z	_	16nH ±5%	250MHz	34	250MHz	700mA	0.104Ω	3300MHz
LQW18AS18NG0Z	—	18nH ±2%	250MHz	35	250MHz	700mA	0.170Ω	3100MHz
LQW18AS18NJ0Z	—	18nH ±5%	250MHz	35	250MHz	700mA	0.170Ω	3100MHz
LQW18AS22NG0Z	—	22nH ±2%	250MHz	38	250MHz	700mA	0.190Ω	3000MHz
LQW18AS22NJ0Z	—	22nH ±5%	250MHz	38	250MHz	700mA	0.190Ω	3000MHz
LQW18AS23NG0Z	—	23nH ±2%	250MHz	38	250MHz	700mA	0.190Ω	2850MHz
LQW18AS23NJ0Z	—	23nH ±5%	250MHz	38	250MHz	700mA	0.190Ω	2850MHz
LQW18AS24NG0Z	—	24nH ±2%	250MHz	36	250MHz	700mA	0.135Ω	2650MHz
LQW18AS24NJ0Z	—	24nH ±5%	250MHz	36	250MHz	700mA	0.135Ω	2650MHz
LQW18AS27NG0Z	—	27nH ±2%	250MHz	40	250MHz	600mA	0.220Ω	2800MHz
LQW18AS27NJ0Z	—	27nH ±5%	250MHz	40	250MHz	600mA	0.220Ω	2800MHz
LQW18AS30NG0Z	—	30nH ±2%	250MHz	37	250MHz	600mA	0.144Ω	2250MHz
LQW18AS30NJ0Z	—	30nH ±5%	250MHz	37	250MHz	600mA	0.144Ω	2250MHz
LQW18AS33NG0Z	—	33nH ±2%	250MHz	40	250MHz	600mA	0.220Ω	2300MHz
LQW18AS33NJ0Z	_	33nH ±5%	250MHz	40	250MHz	600mA	0.220Ω	2300MHz
LQW18AS36NG0Z	_	36nH ±2%	250MHz	37	250MHz	600mA	0.250Ω	2080MHz
LQW18AS36NJ0Z	_	36nH ±5%	250MHz	37	250MHz	600mA	0.250Ω	2080MHz
LQW18AS39NG0Z	_	39nH ±2%	250MHz	40	250MHz	600mA	0.250Ω	2200MHz
LQW18AS39NJ0Z	_	39nH ±5%	250MHz	40	250MHz	600mA	0.250Ω	2200MHz
LQW18AS43NG0Z	_	43nH ±2%	250MHz	38	250MHz	600mA	0.280Ω	2000MHz
LQW18AS43NJ0Z	_	43nH ±5%	250MHz	38	250MHz	600mA	0.280Ω	2000MHz
LQW18AS47NG0Z	_	47nH ±2%	200MHz	38	200MHz	600mA	0.280Ω	2000MHz
LQW18AS47NJ0Z	_	47nH ±5%	200MHz	38	200MHz	600mA	0.280Ω	2000MHz
LQW18AS51NG0Z	_	51nH ±2%	200MHz	35	200MHz	600mA	0.270Ω	1900MHz
LQW18AS51NJ0Z	_	51nH ±5%	200MHz	35	200MHz	600mA	0.270Ω	1900MHz
LQW18AS56NG0Z	_	56nH ±2%	200MHz	38	200MHz	600mA	0.310Ω	1900MHz
LQW18AS56NJ0Z	_	56nH ±5%	200MHz	38	200MHz	600mA	0.310Ω	1900MHz
LQW18AS68NG0Z	_	68nH ±2%	200MHz	37	200MHz	600mA	0.340Ω	1700MHz
LQW18AS68NJ0Z	_	68nH ±5%	200MHz	37	200MHz	600mA	0.340Ω	1700MHz
LQW18AS72NG0Z	_	72nH ±2%	150MHz	34	150MHz	400mA	0.490Ω	1700MHz
LQW18AS72NJ0Z	_	72nH ±5%	150MHz	34	150MHz	400mA	0.490Ω	1700MHz
LQW18AS82NG0Z	_	82nH ±2%	150MHz	34	150MHz	400mA	0.540Ω	1700MHz
LQW18AS82NJ0Z	_	82nH ±5%	150MHz	34	150MHz	400mA	0.540Ω	1700MHz
LQW18ASR10G0Z	_	100nH ±2%	150MHz	34	150MHz	400mA	0.580Ω	1400MHz
LQW18ASR10J0Z	_	100nH ±5%	150MHz	34	150MHz	400mA	0.580Ω	1400MHz
LQW18ASR11G0Z	_	110nH ±2%	150MHz	32	150MHz	300mA	0.610Ω	1350MHz
LQW18ASR11J0Z	_	110nH ±5%	150MHz	32	150MHz	300mA	0.610Ω	1350MHz
LQW18ASR12G0Z	_	120nH ±2%	150MHz	32	150MHz	300mA	0.650Ω	1300MHz
LQW18ASR12J0Z	—	120nH ±5%	150MHz	32	150MHz	300mA	0.650Ω	1300MHz
LQW18ASR15G0Z	_	150nH ±2%	150MHz	28	150MHz	280mA	0.920Ω	990MHz
LQW18ASR15J0Z	—	150nH ±5%	150MHz	28	150MHz	280mA	0.920Ω	990MHz
LQW18ASR18G0Z	—	180nH ±2%	100MHz	25	100MHz	240mA	1.250Ω	990MHz
LQW18ASR18J0Z	—	180nH ±5%	100MHz	25	100MHz	240mA	1.250Ω	990MHz
LQW18ASR20G0Z	—	200nH ±2%	100MHz	25	100MHz	200mA	1.980Ω	900MHz
LQW18ASR20J0Z	—	200nH ±5%	100MHz	25	100MHz	200mA	1.980Ω	900MHz
LQW18ASR21G0Z	—	210nH ±2%	100MHz	27	100MHz	200mA	2.060Ω	895MHz
LQW18ASR21J0Z	—	210nH ±5%	100MHz	27	100MHz	200mA	2.060Ω	895MHz
LQW18ASR22G0Z	—	220nH ±2%	100MHz	25	100MHz	200mA	2.100Ω	900MHz
LQW18ASR22J0Z	—	220nH ±5%	100MHz	25	100MHz	200mA	2.100Ω	900MHz
LQW18ASR25G0Z	—	250nH ±2%	100MHz	25	100MHz	120mA	3.550Ω	822MHz
					·			

muRata

Operating temp.range (Self-temp.rise included): -40 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

Continued from the preceding page. 🖌

Part N	umber	Inductance	Inductance		Q Test Frequency	Dated Comment	Max. of DC Resistance	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q lest Frequency	Rated Current	Max. of DC Resistance	5.R.F" (min.)
LQW18ASR25J0Z	—	250nH ±5%	100MHz	25	100MHz	120mA	3.550Ω	822MHz
LQW18ASR27G0Z	—	270nH ±2%	100MHz	24	100MHz	170mA	2.300Ω	900MHz
LQW18ASR27J0Z	—	270nH ±5%	100MHz	24	100MHz	170mA	2.300Ω	900MHz
LQW18ASR33G0Z	—	330nH ±2%	100MHz	25	100MHz	100mA	3.890Ω	900MHz
LQW18ASR33J0Z	—	330nH ±5%	100MHz	25	100MHz	100mA	3.890Ω	900MHz
LQW18ASR39G0Z	_	390nH ±2%	100MHz	25	100MHz	100mA	4.350Ω	900MHz
LQW18ASR39J0Z	—	390nH ±5%	100MHz	25	100MHz	100mA	4.350Ω	900MHz

Operating temp.range (Self-temp.rise included): -40 to 125°C

Only for reflow soldering

*S.R.F: Self Resonant Frequency

_QW15CN_0Z Series 0402 (1005) inch (mm)

(0.1)

(in mm)

0.5±0.1 0.55±0.1

0.5±0.1

1.0±0.1

0.3±0.1

Packaging

Code

D

в

Packaging

ø180mm Paper Taping

Packing in Bulk

Minimum

Ouantity

10000

500

Inductors for Power Lines

Inductors for General Circuits

Rated Value (\Box : packaging code)

0.3±0.1

RF Inductors

Appearance/Dimensions

、 I							
Part Number		Inductance	Inductance	Rated Current	Max. of DC Resistance	S.R.F* (min.)	
Infotainment	Powertrain/Safety	inductance	Test Frequency	Rated Current	Plax. Of DC Resistance	5.K.P" (Min.)	
LQW15CN18NJ0Z	—	18nH ±5%	100MHz	1400mA	0.046Ω	3000MHz	
LQW15CN33NJ0Z	—	33nH ±5%	100MHz	1300mA	0.065Ω	1800MHz	
LQW15CN48NJ0Z	_	48nH ±5%	100MHz	1100mA	0.078Ω	1400MHz	
LQW15CN70NJ0Z	_	70nH ±5%	100MHz	820mA	0.12Ω	1300MHz	
LQW15CN96NJ0Z	_	96nH ±5%	100MHz	730mA	0.16Ω	1100MHz	
LQW15CNR13J0Z	_	130nH ±5%	100MHz	640mA	0.23Ω	1000MHz	
LQW15CNR16J0Z	_	160nH ±5%	100MHz	480mA	0.33Ω	900MHz	
LQW15CNR20J0Z	—	200nH ±5%	100MHz	390mA	0.47Ω	800MHz	

Operating temp.range (Self-temp.rise not included): -40 to 125°C

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15C series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

Continued on the following page. 🖊

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

muRata

RF Inductors LQW15CN_1Z Series 0402 (1005) inch (mm)

(0.1)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
D	ø180mm Paper Taping	10000
В	Packing in Bulk	500

Rated Value (\Box : packaging code)

Part N	umber		Inductance			
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)
LQW15CN20NJ1Z	—	20nH ±5%	100MHz	2200mA	0.028Ω	3000MHz
LQW15CN20NK1Z	—	20nH ±10%	100MHz	2200mA	0.028Ω	3000MHz
LQW15CN34NJ1Z	—	34nH ±5%	100MHz	1800mA	0.036Ω	2500MHz
LQW15CN34NK1Z	—	34nH ±10%	100MHz	1800mA	0.036Ω	2500MHz
LQW15CN53NJ1Z	_	53nH ±5%	100MHz	1300mA	0.060Ω	2000MHz
LQW15CN53NK1Z	_	53nH ±10%	100MHz	1300mA	0.060Ω	2000MHz
LQW15CN77NJ1Z	_	77nH ±5%	100MHz	1100mA	0.090Ω	2000MHz
LQW15CN77NK1Z	—	77nH ±10%	100MHz	1100mA	0.090Ω	2000MHz
LQW15CNR11J1Z	_	106nH ±5%	100MHz	850mA	0.144Ω	1500MHz
LQW15CNR11K1Z	—	106nH ±10%	100MHz	850mA	0.144Ω	1500MHz
LQW15CNR14J1Z	—	140nH ±5%	100MHz	650mA	0.216Ω	1000MHz
LQW15CNR14K1Z	—	140nH ±10%	100MHz	650mA	0.216Ω	1000MHz
LQW15CNR18J1Z	—	180nH ±5%	100MHz	560mA	0.312Ω	1000MHz
LQW15CNR18K1Z	—	180nH ±10%	100MHz	560mA	0.312Ω	1000MHz
LQW15CNR22J1Z	—	220nH ±5%	100MHz	450mA	0.47Ω	1400MHz
LQW15CNR22K1Z	—	220nH ±10%	100MHz	450mA	0.47Ω	1400MHz
LQW15CNR27J1Z	—	270nH ±5%	100MHz	420mA	0.52Ω	830MHz
LQW15CNR27K1Z	—	270nH ±10%	100MHz	420mA	0.52Ω	830MHz
LQW15CNR33J1Z	—	330nH ±5%	100MHz	390mA	0.56Ω	520MHz
LQW15CNR33K1Z	—	330nH ±10%	100MHz	390mA	0.56Ω	520MHz
LQW15CNR39J1Z	—	390nH ±5%	100MHz	370mA	0.62Ω	450MHz
LQW15CNR39K1Z	—	390nH ±10%	100MHz	370mA	0.62Ω	450MHz
LQW15CNR42J1Z	—	420nH ±5%	10MHz	370mA	0.62Ω	400MHz
LQW15CNR42K1Z	—	420nH ±10%	10MHz	370mA	0.62Ω	400MHz
LQW15CNR47J1Z	-	470nH ±5%	10MHz	350mA	0.66Ω	380MHz
LQW15CNR47K1Z	—	470nH ±10%	10MHz	350mA	0.66Ω	380MHz
LQW15CNR56J1Z	—	560nH ±5%	10MHz	300mA	0.71Ω	300MHz
LQW15CNR56K1Z	—	560nH ±10%	10MHz	300mA	0.71Ω	300MHz

Operating temp.range (Self-temp.rise not included): -40 to 125°C

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW15C series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Continued on the following page. \nearrow

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

_QW18CN_0Z Series 0603 (1608) inch (mm)

(0.2)

(in mm)

0.8±0.15

0.4±0.1

1.6±0.15

0.4±0.1

0.8±0.15

Packaging

Code

D

J

в

Packaging

ø180mm Paper Taping

ø330mm Paper Taping

Packing in Bulk

Minimum

Ouantity

4000

10000

500

Inductors for Power Lines

Inductors for General Circuits

Rated Value (\Box : packaging code)

RF Inductors

Appearance/Dimensions

Part N	umber		Inductance				
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Rated Current	Max. of DC Resistance	S.R.F* (min.)	
LQW18CN4N9D0Z	—	4.9nH ±0.5nH	10MHz	2600mA	0.015Ω	2300MHz	
LQW18CN15NJ0Z	_	15nH ±5%	10MHz	2200mA	0.025Ω	2000MHz	
LQW18CN33NJ0Z	_	33nH ±5%	10MHz	1700mA	0.035Ω	1800MHz	
LQW18CN55NJ0Z	_	55nH ±5%	10MHz	1500mA	0.045Ω	1600MHz	
LQW18CN85NJ0Z	_	85nH ±5%	10MHz	1400mA	0.060Ω	1380MHz	
LQW18CNR10K0Z	_	100nH ±10%	10MHz	1000mA	0.10Ω	1260MHz	
LQW18CNR12J0Z	—	120nH ±5%	10MHz	1100mA	0.085Ω	1200MHz	
LQW18CNR16J0Z	—	160nH ±5%	10MHz	1000mA	0.10Ω	900MHz	
LQW18CNR21J0Z	—	210nH ±5%	10MHz	800mA	0.15Ω	720MHz	
LQW18CNR27J0Z	—	270nH ±5%	10MHz	750mA	0.16Ω	660MHz	
LQW18CNR33J0Z	—	330nH ±5%	10MHz	630mA	0.25Ω	600MHz	
LQW18CNR39J0Z	—	390nH ±5%	10MHz	620mA	0.28Ω	570MHz	
LQW18CNR47J0Z	—	470nH ±5%	10MHz	500mA	0.45Ω	555MHz	
LQW18CNR56J0Z	—	560nH ±5%	10MHz	450mA	0.48Ω	540MHz	
LQW18CNR65J0Z	—	650nH ±5%	10MHz	430mA	0.52Ω	510MHz	

Operating temp.range (Self-temp.rise not included): -40 to 125°C

Class of Magnetic Shield: No Shield

Only for reflow soldering

*S.R.F: Self Resonant Frequency

In operating temperatures exceeding +85°C, derating of current is necessary for the LQW18CN_0Z series. Please apply the derating curve shown in the chart according to the operating temperature. Please consider "Notice (Rating)."

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

Continued on the following page. \checkmark

Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for this series. Please apply the derating curve shown in the chart according to the operating temperature.

Derating of Rated Current

muRata

RF Inductors

RF Inductors LQH31HZ_03 Series 1206 (3216) inch (mm)

1.6±0.2

1.6±0.2

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000

Rated Value (\Box : packaging code)

Part N	umber	Inductance	Inductance			Rated Current	DC Resistance	
Infotainment	Powertrain/Safety	Inductance	Test Frequency	Q (min.)	Q Test Frequency	Rated Current	DC Resistance	S.R.F* (min.)
LQH31HZ54NK03	—	54nH ±10%	1MHz	50	100MHz	920mA	0.035Ω±30%	800MHz
LQH31HZ95NK03	—	95nH ±10%	1MHz	60	100MHz	790mA	0.047Ω±30%	650MHz
LQH31HZR14J03	—	145nH ±5%	1MHz	60	100MHz	700mA	0.061Ω±30%	500MHz
LQH31HZR14K03	—	145nH ±10%	1MHz	60	100MHz	700mA	0.061Ω±30%	500MHz
LQH31HZR21J03	—	215nH ±5%	1MHz	60	100MHz	520mA	0.11Ω±30%	430MHz
LQH31HZR21K03	_	215nH ±10%	1MHz	60	100MHz	520mA	0.11Ω±30%	430MHz
LQH31HZR29J03	_	290nH ±5%	1MHz	60	100MHz	420mA	0.17Ω±30%	360MHz
LQH31HZR29K03	_	290nH ±10%	1MHz	60	100MHz	420mA	0.17Ω±30%	360MHz
LQH31HZR39J03	_	390nH ±5%	1MHz	60	100MHz	330mA	0.26Ω±30%	300MHz
LQH31HZR39K03	_	390nH ±10%	1MHz	60	100MHz	330mA	0.26Ω±30%	300MHz
LQH31HZR50J03	_	500nH ±5%	1MHz	60	100MHz	260mA	0.44Ω±30%	270MHz
LQH31HZR50K03	_	500nH ±10%	1MHz	60	100MHz	260mA	0.44Ω±30%	270MHz
LQH31HZR61J03	_	610nH ±5%	1MHz	60	100MHz	250mA	0.48Ω±30%	240MHz
LQH31HZR61K03	—	610nH ±10%	1MHz	60	100MHz	250mA	0.48Ω±30%	240MHz
LQH31HZR75J03	_	750nH ±5%	1MHz	60	100MHz	190mA	0.79Ω±30%	220MHz
LQH31HZR75K03	_	750nH ±10%	1MHz	60	100MHz	190mA	0.79Ω±30%	220MHz
LQH31HZR88J03	—	880nH ±5%	1MHz	60	100MHz	180mA	0.86Ω±30%	200MHz
LQH31HZR88K03	_	880nH ±10%	1MHz	60	100MHz	180mA	0.86Ω±30%	200MHz

Operating temp.range (Self-temp.rise not included): -40 to 85°C

*S.R.F: Self Resonant Frequency

Inductance-Frequency Characteristics (Typ.)

Q-Frequency Characteristics (Typ.)

RF Inductors ①Caution/Notice

Rating

About the Rated Current

Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

For the usage of powertrain and safety be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Notice

Storage and Operating Condition

- <Operating Environment>
- Do not use products in chemical atmosphere such as
- chlorine gas, acid or sulfide gas.
- <Storage Requirements>

LQG series should be used within 6 months; the other products should be used within 12 months.

- 2. Storage Conditions
 - (1) Store products in a warehouse in compliance with the following conditions:
 - Temperature: -10 to +40 degrees C.
 - Humidity: 15 to 85% (relative humidity)
 - Do not subject products to rapid changes in

Handling

This item is designed to have sufficient strength, but handle with care to avoid chipping or breaking its ceramic structure.

LQW_A/C series

- To prevent breaking the wire, avoid touching with sharp material, such as tweezers or the bristles of a cleaning brush, to the wire wound portion.
- To prevent breaking the core, avoid applying excessive mechanical shock to products mounted on the board.
- In some mounting machines, when picking up components, a support pin pushes the components up from the bottom of the base tape. In this case, please remove the support pin. The support pin may damage the components and break the wire.
- In rare cases, the laser recognition cannot recognize this component. Please contact us when you use laser recognizion. (There is no problem with the permeation and reflection type.) (LQW15A Series only)

2. About Excessive Surge Current

Surge current (pulse current or rush current) greater than the specified rated current applied to the product may cause a critical failure, such as an open circuit, burnout caused by excessive temperature rise.

Please contact us in advance in case of applying the surge current.

Do not store them in chemical atmosphere such as one containing sulfurous acid gas or alkaline gas. This will prevent electrode oxidation, which causes poor solderability and possible corrosion of inductors.

- (2) Do not store products in bulk packaging to prevent collision among inductors, which causes core chipping and wire breakage.
- (3) Store products on pallets to protect from humidity, dust. etc.
- (4) Avoid heat shock, vibration, direct sunlight, etc.
- (5) Products should be storaged under the airtight packaged condition. (LQG Series)
- <Transportation>

Do not apply excessive vibration or mechanical shock to products.

<Resin Coating>

When coating products with resin, the relatively high resin curing stress may change inductance values. For exterior coating, select resin carefully so that electrical and mechanical performance of the product is not affected. Prior to use, please evaluate reliability with the product mounted in your application set.

RF Inductors

1. Storage Period

Check solderability if this period is exceeded.

temperature and humidity.

RF Inductors ①Caution/Notice

Continued from the preceding page. \searrow

(LQW series)

An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating conditions, etc. Some resins containing impurities or chloride may possibly generate chlorine by hydrolysis under some operating conditions, causing corrosion of the inductor wire and leading to an open circuit.

(LQP series)

When products are coated with resin, please contact us in advance.

<Handling of a Substrate>

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting the substrate when cropping the substrate, inserting and removing a connector from the substrate, or tightening a screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Substrate restriction (LQP Series)

- Don't mount on FPC (Flexible printed circuits)
- When components are mounted on substrate of under 6-layers, please contact us in advance.

To mount components on FPC or substrate of under 6-layers may cause of cracking issue by stress.

Measuring Method

Measuring Method of Inductance/Q

1. Residual elements and stray elements of test fixtures can be described by F-parameter as shown in the following:

2. The impedance of chip Inductors (chip coils) Zx and measured value Zm can be described by input/output current/voltage.

$$Zm = \frac{V_1}{I_1} , \quad Zx = \frac{V_2}{I_2}$$

 There is a possibility of chip cracking caused by PCB expansion/contraction with heat, because stress on a chip is different depending on PCB material and structure.

When the thermal expansion coefficient greatly differs between the board used for mounting and the chip, it will cause cracking of the chip due to the thermal expansion and contraction.

The chip is assumed to be mounted on the PCB of glass-epoxy material, and we don't test with other PCB material which has different thermal expansion coefficient from Glass-epoxy.

When other PCB materials are considered, please be sure to evaluate by yourself.

(2) After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the product.

In case of the mounting on flexible PCB, there is a possibility of chip cracking caused by mechanical stress even from small bending or twisting.

When the flexible PCB is considered, please be sure to evaluate by yourself.

3. Thus, the relation between Zx and Zm is shown in the following:

.....

$Zx = \alpha \frac{Zm - \beta}{1 - Zm\Gamma}$	where, α = D / A = 1 β = B / D = Zsm - (1 - Yom Zsm) Zss Γ = C / A = Yom
	Zsm: measured impedance of short chip Zss: residual impedance of short chip* Yom: measured admittance when opening the fixture

*Residual inductance of short chip

Residual Inductance	Series
OnH	LQG15H, LQG18HH
0.480nH	LQP03TN
0.556nH	LQG15W, LQW15A/C
0.771nH	LQH31H, LQW18AN/C

4. Lx and Qx should be calculated with the following equation.

$$Lx = \frac{Im (Zx)}{2\pi f}, \quad Qx = \frac{Im (Zx)}{Re (Zx)}$$

Lx: Inductance of chip Inductors (chip coils) Qx: Q of chip Inductors (chip coils) f: Measuring frequency

RF Inductors Soldering and Mounting

1. Standard Land Pattern Dimensions

A high Q value is achieved when the PCB electrode land pattern is designed so that it does not project beyond the chip Inductors (chip coils) electrode.

Series		Standard Land Dimensions			Land Patte + Solder Re Land Patte Solder Resi (in mm
LQG15H LQG18H		Part Number	a	b	с
LQG15W LQH31H LQP03		LQG15H	0.4	1.4-1.5	0.5-0.6
	U	LQG18H	0.6-0.8	1.8-2.2	0.6-0.8
		LQH31H	1.0	4.5	1.5
LQW15A/C LQW18A		LQP03	0.2-0.3	0.8-0.9	0.2-0.3
LQWIOA	b	LQG15W, LQW15A (Except for _8Z)	0.5	1.2	0.65
		LQW15A_8Z	0.6	1.42	0.66
		LQW15C_0Z	0.4	1.4	0.6
		LQW15C_1Z	0.4	1.4	0.66
		LQW18A (Except for _8Z)	0.6-0.8	1.9-2.0	0.7-1.0
		LQW18A_8Z	0.86	2.0	1.15
		LQW18C	0.7	2.2	1.0

Attention should be paid to potential magnetic coupling effects when using the Inductors (coils) as a resonator.

2. Standard Soldering Conditions

(1) Soldering method

Chip Inductors (Chip coils) can be flow or reflow soldered. Please contact Murata regarding other soldering methods.

As for LQG, LQP, LQW series, please use reflow soldering. Solder: Use Sn-3.0Ag-0.5Cu solder. Flux: Use rosin-based flux, but not strongly acidic flux (with chlorine content exceeding 0.2wt%).

Do not use water-soluble flux.

The flux used for LQW series should use the

rosin-based flux that includes middle activator

equivalent to 0.06wt% to 0.1wt% chlorine.

For additional mounting methods, please contact Murata.

(2) Soldering profile

muRata

Continued on the following page. 🎢

RF Inductors Soldering and Mounting

Continued from the preceding page. \searrow

(3) Reworking with Soldering Iron

Preheating at 150°C for 1 minute is required. Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the products due to the thermal shock.

Soldering iron power output: 80W max. Temperature of soldering iron tip: 350°C Diameter of soldering iron end: 3.0mm max. Soldering time: within 3 s

Please keep the fix time with the soldering iron within 2 times.

3. Mounting Instructions

(1) Land Pattern Dimensions

Large lands reduce Q of the mounted chip. Also, large protruding land areas (bordered by lines having dimensions 'c' and 'd' shown) cause floating and electrode leaching.

(2) Land Pattern Designing (LQW series)

Please follow the recommended patterns. Otherwise, their performance, which includes electrical performance or solderability, may be affected, or result in "position shift" in the soldering process.

(3) PCB Warping

PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

Products should be located in a sideways direction (Length: a<b) to the mechanical stress.

Good example

muRata

Continued on the following page. $earrow \earrow \ea$

Inductors for General Circuits

RF Inductors Soldering and Mounting

Continued from the preceding page. \searrow

(4) Amount of Solder Paste

Excessive solder causes electrode corrosion, while insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste as shown on the right so that solder is applied.

Guideline of solder paste thickness

- \cdot LQW15C: 50 to 100 μm
- \cdot LQP03TN: 60 to 100 μm
- \cdot LQG, LQW15A/LQW18A/C: 100 to 150 μm
- · LQH31H: 200 to 300µm

LQW15A Series:

Too much solder may cause slant or rotation of the chip at the time of solder melting. Please reduce the amount of solder by using a smaller solder area than the land pattern, as shown in the figure at right.

4. Cleaning

The following conditions should be observed when cleaning chip inductors (chip coils):

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol cleaning agents)
- (2) Ultrasonic

Output: 20W/l max.

Duration: 5 minutes max.

Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the PCB and mounted products.

(3) Cleaning agent

The following cleaning agents have been tested on individual components. Evaluation in complete assembly should be done prior to production.

- (a) Alcohol cleaning agents Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agents Pine Alpha ST-100S

(4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agents have been removed with deionized water.

For additional cleaning methods, please contact Murata.

muRata

RF Inductors Packaging

Minimum Quantity and 8mm Width Taping Dimensions (1)

Paper Tape

Part Number	Dimer	nsions	Total Thickness of Tape	Packaging Code (Minimum Qty. [pcs.])		
Part Nulliber	a	b	с	ø180mm reel	ø330mm reel	Bulk
LQG15H	0.62	1.12	0.8 max.	D (10000)	J (50000)	B (1000)
LQG15W	0.69	1.18	0.85 max.	D (10000)	J (40000)	B (100)
LQP03T *1	0.35	0.65/0.67	0.55 max.	D (15000)	J (50000)	B (500)
LQW15A_0Z *2	0.64/0.66/0.69	1.18	0.8 max.	D (10000)	-	B (500)
LQW15A_1Z *3	0.66/0.69	1.18	0.8 max.	D (10000)	-	B (500)
LQW15A_8Z	0.75	1.18	0.8 max.	D (10000)	-	B (500)
LQW15C_0Z *4	0.64/0.66	1.18	0.8 max.	D (10000)	-	B (500)
LQW15C_1Z	0.69	1.18	0.8 max.	D (10000)	-	B (500)

*1 0.67 (LQP03TN_Z2; 0.6-62nH)

0.65 (LQP03TN_Z2; 68-120nH)

*2 0.69 (1.5nH, 2.4-2.8nH, 3.9-4.8nH, 5.8-6.8nH, 8.2-9.9nH, 11nH, 12nH, 15nH)

1.06

0.66 (1.6-1.8nH, 2.9nH, 3.0nH, 3.1nH, 3.2nH, 4.9-5.1nH, 6.9-7.5nH, 10nH, 13nH, 16-23nH, 100nH, 120nH) 0.64 (24-91nH)

*3 0.69 (1.3nH, 1.4nH)

0.66 (2.2-8.4nH)

*4 0.64 (70nH-200nH)

0.66 (18nH-48nH)

(in mm)

Minimum Quantity and 8mm Width Taping Dimensions (2)

Embossed Tape

LQW18AS_0Z

Part Number	Dimensions		Total Thickness of Tape	Packaging	Qty. [pcs.])	
Part Number	a	b	с	ø180mm reel	ø330mm reel	Bulk
LQH31	1.9	3.6	2.0	L (2000)	K (7500)	-

1.1 max.

D (4000)

J (10000)

B (500)

1.86

(in mm)

Inductors for General Circuits

A Note
 • Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Part Number Quick Reference

EMI Suppression Filters (for DC)

Chip Ferrite Bead

BLE18PS
BLE32PN107
BLM03AG
BLM03AX
BLM03BB
BLM03BC 20
BLM03BD 20
BLM03EB
BLM03HB 23
BLM03HD 23
BLM03HG 23
BLM03PG 15
BLM03PX 13
BLM15AG
BLM15AX
BLM15BA
BLM15BB
BLM15BC
BLM15BD
BLM15BX
BLM15EG
BLM15GA
BLM15GG
BLM15HB
BLM15HD
BLM15HG
BLM15HG (150°C available) · · · · · · · · 45
BLM15PD
BLM15PG
BLM15PX
BLM18AG
BLM18AG (150°C available) · · · · · · · · 65
BLM18AG (for conductive glue mounting) 63

BLM18BA
BLM18BB 67
BLM18BD 67
BLM18BD (150°C available) · · · · · · · 72
BLM18EG · · · · · · · · 79
BLM18G
BLM18HB
BLM18HD
BLM18HE
BLM18HG
BLM18KG
BLM18KG (150°C available) · · · · · · · 58
BLM18PG 50
BLM18SG
BLM18SN
BLM21AG
BLM21AG (150°C available)
BLM21BB
BLM21BD 92
BLM21PG
BLM21PG (150°C available) · · · · · · · 85
BLM21SN
BLM31AJ 103
BLM31KN
BLM31KN (150°C available) · · · · · · · 100
BLM31PG
BLM31SN 102
BLM41PG 104

Chip EMIFIL[®]

NFE31ZT····		
NFE61HT ···		
NFL18ZT····		 120
NFZ18SM 1	0 · · · · · · ·	

NFZ32BW_10	123
NFZ32BW_11	126
NFZ5BBW 10	129

Chip Common Mode Choke Coil

DLM11S 143
DLW21S 144
DLW31S 146
DLW32S 147
DLW43M148
DLW43S 149
DLW5AT · · · · · · · 151
DLW5BS154
DLW5BT 155
PLT10H
PLT5BP 157
UCMH0907161

Block Type EMIFIL®

BNX02]		•	• •	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	176	õ	
-------	---	--	---	-----	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-----	---	--

Lead Type

BLL18AG	35
BNX012	€1
DSS1 18	37
/FC2 · · · · · · 19	90

Microchip Transformer (Balun)

DXW21B	••••••	203
--------	--------	-----

Chip Inductors

Inductors for Power Lines

DFE201612P_D 214
DFE252012P_D216
DFEG10040D 222
DFEG12060D 226
DFEG7030D
DFEH10040D
DFEH12060D
DFEH7030D
LQH2HPZ_DR
LQH2HPZ_GR
LQH2HPZ_JR
LQH2MPZ_GR
LQH32CH_23238
LQH32CH_33
LQH32CH_53
LQH32DZ_23
LQH32DZ_53242
LQH32PH_NO
LQH32PH_NC
LQH32PZ_NO
LQH32PZ_NC
LQH3NPZ_GR
LQH3NPZ_JR
LQH3NPZ_ME251
LQH43PH_26
LQH43PZ_26 255
LQH44PZ_GR

LQH5BPZ_T0 257 LQM18PZ_CH 283 LQM18PZ_DH 285 LQM18PZ_FH 286 LQM21PH_GC 291 LQM21PZ_CO 287 LQM21PZ_GO 289 LQM21PZ_GC 291 LQM21PZ_GC 291 LQM21PZ_GC 293 LQM2HPZ_GC 293 LQM2HPZ_GO 299 LQM2HPZ_GO 299 LQM2HPZ_GO 299 LQM2HPZ_GS 302 LQM2HPZ_GS 302 LQM2HPZ_JJ 303 LQM2MPZ_JH 297 MBH10145C 275 MBH12282C 277 MBH12575C 281 MBH6045C High Current 259 MBH6045C Low Rdc 261 MBH7045C Low Rdc 267 MBH7045C Low Rdc 269
MDH10060C
MDH12577C 279
MDH6045C High Current
MDH6045C Low Rdc 265
MDH7045C 271

Inductors for General Circuits

5CCEG	 	 325
FSDVA ·····	 	 326
HEAW·····	 	 324
HEAWS · · · · ·	 	 323
LQH32NH_23	 	 318
LQH32NZ_23	 	 318
LQH43NZ_03	 	 320

LQG15HH_02
LQG15HZ_02
LQG15WH_02 ······ 341
LQG15WZ_02
LQG18HH_00
LQH31HZ_03
LQP03TN_Z2
LQW15AN_0Z
LQW15AN_1Z
LQW15AN_8Z
LQW15CN_0Z
LQW15CN_1Z
LQW18AN_0Z
LQW18AN_1Z
LQW18AN_8Z
LQW18AS_0Z
LQW18CN_0Z

Global Locations

For details please visit www.murata.com

⚠Note

1 Export Control

For customers outside Japan:

No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For customers in Japan:

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.

- Aircraft equipment
- Aerospace equipment
- (3) Undersea equipment
- (4) Power plant equipment
- 5 Medical equipment
- Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment
- B Disaster prevention / crime prevention eauipment
- Data-processing equipment
- Application of similar complexity and/or reliability requirements to the applications listed above

Product specifications in this catalog are as of November 2017. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.

Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.

This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.

7 No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

Murata Manufacturing Co., Ltd.

www.murata.com

