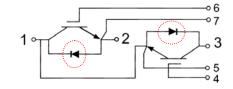
GHIS200A120S3B1 Si IGBT hybrid module with SiC SBDs


Features:

- Low Saturation Voltage: $V_{CE (sat)}$ = 1.80V @ I_C = 200A , T_C =25 $^{\circ}$ C
- Low Switching Loss
- SiC SBD for Freewheeling diode: V_F = 1.60V @ I_F = 200A , T_J =25 $^{\circ}$ C
- 100% RBSOA Tested (2×Ic)
- Low Stray Inductance
- Lead Free, Compliant with RoHS Requirement

Applications:

- Welding Machine/ Cutting Machine
- Induction Heating
- Ultrasonic Device
- PV System
- UPS and SMPS

Maximum Rated Values of IGBT(T_C=25 °C unless otherwise specified)

V _{CES}	Collector-Emitter Blocking Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		±20	V
	Continuous Collector Current	T _C = 80°C	200	Α
Ic	Continuous Collector Current	T _C = 25°C	400	Α
I _{CM}	Repetitive Peak Collector Current	ak Collector Current T _J = 175℃		Α
t _{SC}	Short Circuit Withstand Time	Vithstand Time		μs
P _D	Maximum Power Dissipation per IGBT	sipation per IGBT $ T_{C} = 25^{\circ}C $ $ T_{Jmax} = 175^{\circ}C $		W

Page 1 of 7 Rev. 0.1 4/22/2015

Electrical Characteristics of IGBT (T_C =25 $^{\circ}$ C unless otherwise specified)

Static characteristics

Symbol	Description	Conditions		Min	Тур	Max	Unit
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	IC = 1mA, VCE = VGE		4.0	4.5	5.0	V
V	Collector Emitter Coturation Valtage	$I_{\alpha} = 200\Delta$	T _J = 25℃		1.80	2.00	V
V _{CE(sat)}	$V_{CE(sat)}$ Collector-Emitter Saturation Voltage $V_{GE} = 15V$	T _J = 125℃		2.10		V	
I _{CES}	Collector-Emitter Leakage Current	$V_{GE} = 0V$, $V_{CE} = V_{CES}$, $T_J = 2^{\circ}C$			0	1	mA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE} = \pm 20V,$ $V_{CE} = 0V, T_{J} = 25^{\circ}C$		4	K	200	nA
Cies	Input Capacitance	$V_{CE} = 25V, V_{GE} = 0V,$ f = 1MHz			20.0		nF
Coes	Output Capacitance				1.08		nF

Switching Characteristics

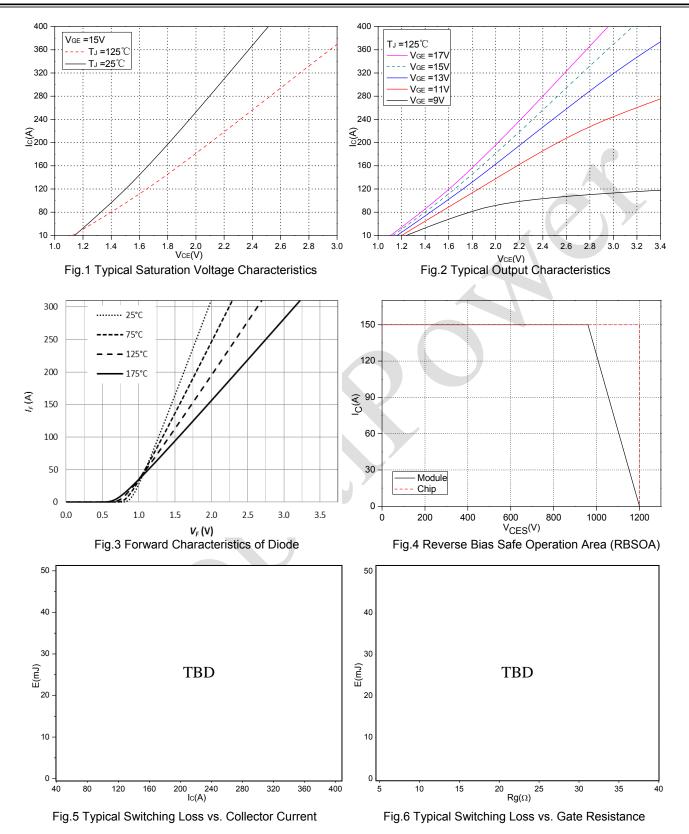
	Turn on Dolov Time		T _J = 25℃		1100		20	
$t_{d(on)}$ Turn-or	Turn-on Delay Time		T _J = 125℃		1080		ns	
4	Dina Tima		T _J = 25℃		200		20	
L _r	t _r Rise Time		T _J = 125℃		205		ns	
+	Turn off Dolay Time		T _J = 25℃		900		no	
td(off)	t _{d(off)} Turn-off Delay Time	V = 600V L = 200A	T _J = 125℃		950		ns	
t _f	t _f Fall Time	Inductive Load	T _J = 25℃		110		ns	
Lt.	Tall Tille		T _J = 125℃		140		115	
_	E _{on} Turn-on Switching Loss		T _J = 25℃		TBD	19.0	mJ	
∟on			T _J = 125℃		TBD	22.9	1110	
E _{off}	Turn-off Switching Loss		T _J = 25℃		TBD	15.2	mJ	
Loff	Turn-on Switching Loss		T _J = 125℃		TBD	19.6	1110	
Qg	Total Gate Charge		T _J = 25℃		2100		nC	
RBSOA	Reverse Bias Safe Operation Area	I_C =400A, V_{CC} =960V, V_P =1200V, Rg = 15 Ω , V_{GE} =+15V to 0V, T_J =150°C			Trapezoid	1		
SCSOA	Short Circuit Safe Operation Area	V_{CC} = 300V, V_{GE} = 15V, T_{J} = 150 °C		10			μs	
$R_{ heta JC}$	IGBT Thermal Resistance: June	ction-To-Case		unction-To-Case 0.14			°C/W	

Page 2 of 7 Rev. 0.1 4/22/2015

Maximum Rated Values of SiC Diode (T_C=25°C unless otherwise specified)

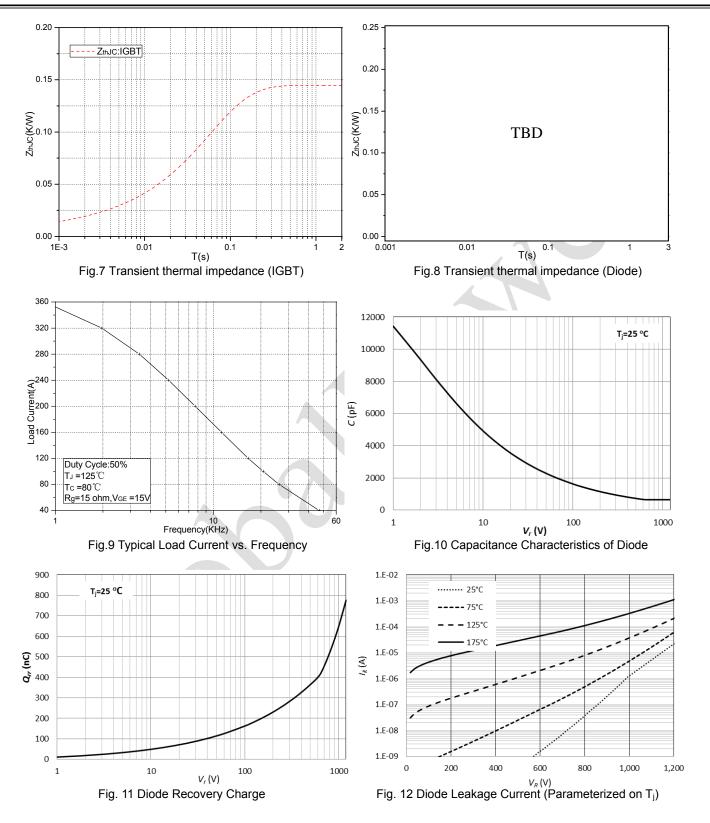
Symbol	Description	Conditions	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	T _j =25 °C	1200	V
I _F	Diode Continuous Forward Current	T _C =125 °C, T _j =175 °C	279	Α
I _{F,SM}	Surge Non-repetitive Forward Current	T_C =125 °C, t_p =8.3 ms sine half wave	900	Α
dv/dt	Diode dv/dt Ruggedness	Turn-on slew rate, repetitive	50	V/ns

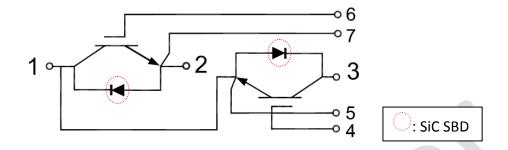
Electrical Characteristics of Diode (T_C=25°C unless otherwise specified)

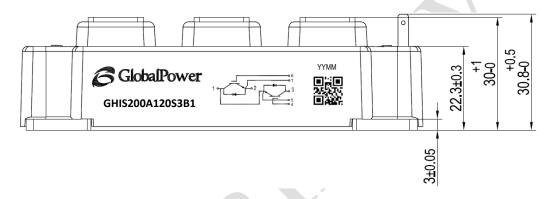

Symbol	Description	Conditions		Min	Тур	Max	Unit
V _R	DC Blocking Voltage	I _R =100 uA		1200			V
V _F	Forward Voltage	$I_F = 200A,$ $V_{GE} = 0V$ $T_J = 25^{\circ}C$ $T_J = 175^{\circ}C$		1.7	1.8		
			T _J = 175℃		2.3	2.8	V
I _R	Reverse leakage Current	V _R =1200V	T _J = 25℃		28	500	μА
		V _R =1200V	T _J = 175℃		1050		
Qc	Total Capacitive Charge	V _R =1200V	T _J = 25℃		776		nC
	Total Capacitance	V _R =1V, f=1 MHz			11428		
С		V _R =600V, f=1 MHz			667		pF
		V _R =1200V, f=1 MHz			647		
$R_{\theta JC}$	Diode Thermal Resistance: Junction-To-Case				TBD	0.21	°C/W

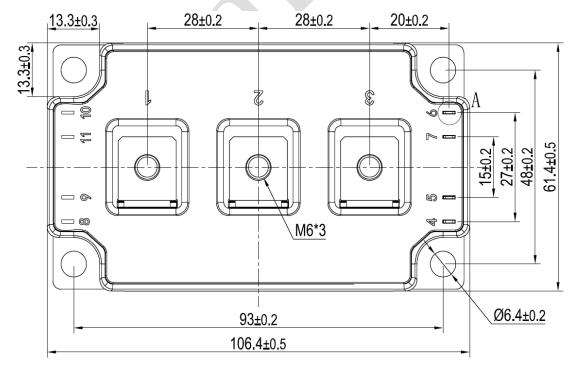
Module

Symbol	Description		Min	Тур	Max	Unit
V _{iso}	Isolation Voltage(All Terminals Shorted)	f = 50Hz, 1minute			2500	V
TJ	Maximum Junction Temperature				175	$^{\circ}$ C
T _{JOP}	Maximum Operating Junction Temperature Range		-40		+150	$^{\circ}$ C
T _{stg}	Storage Temperature		-40		+125	$^{\circ}$
R _{ecs}	Case-To-Sink (Conductive Grease Applied)			0.1		°C/W
Т	Power Terminals Screw:M6		4.0		6.0	N·m
Т	Mounting Screw:M6		4.0		6.0	N·m
G	Weight			230		g


Page 3 of 7 Rev. 0.1 4/22/2015


Page 4 of 7 Rev. 0.1 4/22/2015




Page 5 of 7 Rev. 0.1 4/22/2015

Internal Circuit

Package Outline (Unit: mm):

Page 6 of 7 Rev. 0.1 4/22/2015

Revision History

Date	Revision	Notes
4/22/2015	0.1	Initial release of preliminary datasheet

Global Power Technologies Group

20692 Prism Place Lake Forest, CA 92630 TEL (949) 207-7500 FAX (949) 613-7600

E-mail: info@gptechgroup.com
Web site: www.gptechgroup.com

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.gptechgroup.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at GPTG Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration.

REACh banned substance information (REACh Article 67) is also available upon request.

- This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.
- To obtain additional technical information or to place an order for this product, please contact
 us. The information in this datasheet is provided by Global Power Technologies Group.
 GPTG reserves the right to make changes, corrections, modifications, and improvements of
 datasheet without notice.

Page 7 of 7 Rev. 0.1 4/22/2015