2.5V or 3.3V, 200-MHz, 1:18 Clock Distribution Buffer #### **Features** - 200-MHz clock support - LVPECL or LVCMOS/LVTTL clock input - LVCMOS/LVTTL compatible inputs - 18 clock outputs: drive up to 36 clock lines - · 60 ps typical output-to-output skew - Dual or single supply operation: - -3.3V core and 3.3V outputs - -3.3V core and 2.5V outputs - -2.5V core and 2.5V outputs - Pin compatible with MPC940L, MPC9109 - Available in Commercial and Industrial temperature - 32-pin LQFP package ### **Description** The CY29940 is a low-voltage 200-MHz clock distribution buffer with the capability to select either a differential LVPECL or a LVCMOS/LVTTL compatible input clock. The two clock sources can be used to provide for a test clock as well as the primary system clock. All other control inputs are LVC-MOS/LVTTL compatible. The eighteen outputs are 2.5V or 3.3V LVCMOS/LVTTL compatible and can drive 50Ω series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:36. Low output-to-output skews make the CY29940 an ideal clock distribution buffer for nested clock trees in the most demanding of synchronous systems. ### Pin Description[1] | Pin | Name | PWR | I/O | Description | |--|-----------|------|-------|--| | 5 | PECL_CLK | | I, PU | PECL Input Clock | | 6 | PECL_CLK# | | I, PD | PECL Input Clock | | 3 | TCLK | | I, PD | External Reference/Test Clock Input | | 9, 10, 11, 13, 14,
15, 18, 19, 20, 22,
23, 24, 26, 27, 28,
30, 31, 32 | Q(17:0) | VDDC | 0 | Clock Outputs | | 4 | TCLK_SEL | | I, PD | Clock Select Input. When LOW, PECL clock is selected and when HIGH TCLK is selected. | | 8, 16, 29 | VDDC | | | 3.3V or 2.5V Power Supply for Output Clock Buffers | | 7, 21 | VDD | | | 3.3V or 2.5V Power Supply | | 1, 2, 12, 17, 25 | VSS | | | Common Ground | Note: PD = Internal Pull-Down, PU = Internal Pull-up ## Maximum Ratings^[2] Maximum Input Voltage Relative to V_{SS}: V_{SS} – 0.3V Maximum Input Voltage Relative to V_{DD}:.....V_{DD} + 0.3V Storage Temperature:-65°C to + 150°C Operating Temperature: -40°C to +85°C Maximum ESD Protection......2 kV Maximum Power Supply:5.5V Maximum Input Current:±20 mA This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range: $V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$ Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}). **DC Parameters**^[2]: $V_{DD} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $V_{DDC} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40$ °C to +85°C | Parameter | Description | Conditions | Min. | Тур. | Max. | Unit. | |------------------|---|--|-----------------------|------|-----------------------|-------| | V _{IL} | Input Low Voltage | | V _{SS} | _ | 0.8 | V | | V _{IH} | Input High Voltage | | 2.0 | _ | V_{DD} | V | | I _{IL} | Input Low Current ^[3] | | | _ | -200 | μA | | I _{IH} | Input High Current ^[3] | | | _ | 200 | μΑ | | V _{PP} | Peak-to-Peak Input
Voltage
PECL_CLK | | 500 | - | 1000 | mV | | V _{CMR} | Common Mode Range ^[4] | V _{DD} = 3.3V | V _{DD} – 1.4 | _ | V _{DD} - 0.6 | V | | PECL_CLK | | V _{DD} = 2.5V | V _{DD} – 1.0 | _ | V _{DD} - 0.6 | V | | V _{OL} | Output Low Voltage ^[5, 6, 7] | I _{OL} = 20 mA | - | - | 0.5 | V | | V _{OH} | Output High Voltage ^[5, 6, 7] | $I_{OH} = -20 \text{ mA}, V_{DDC} = 3.3 \text{V}$ | 2.4 | - | _ | V | | | | $I_{OH} = -20 \text{ mA}, V_{DDC} = 2.5 \text{V}$ | 1.8 | - | _ | V | | I _{DDQ} | Quiescent Supply
Current | | - | 5 | 7 | mA | | I _{DD} | Dynamic Supply
Current | V _{DD} = 3.3V, Outputs @ 150 MHz,
CL = 15 pF | - | 285 | _ | mA | | | | V _{DD} = 3.3V, Outputs @ 200 MHz,
CL = 15 pF | - | 335 | _ | | | | | V _{DD} = 2.5V, Outputs @ 150 MHz,
CL = 15 pF | - | 200 | - | | | | | V _{DD} = 2.5V, Outputs @ 200 MHz,
CL = 15 pF | - | 240 | _ | | | Z _{out} | Output Impedance | V _{DD} = 3.3V | 8 | 12 | 16 | Ω | | | | V _{DD} = 2.5V | 10 | 15 | 20 | | | C _{in} | Input Capacitance | | _ | 4 | _ | pF | ## Notes: - Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. - Outputs driving 50Ω transmission lines. - See Figure 1 &2. - 6. See *Figure 1* &∠.7. 50% input duty cycle. Inputs have pull-up/pull-down resistors that effect input current. The VCMR is the difference from the most positive side of the differential input signal. Normal operation is obtained when the "High" input is within the VCMR range and the input lies within the VPP specification. Driving series or parallel terminated 50Ω (or 50Ω to VDD/2) transmission lines **AC Parameters**^[8]: $V_{DD} = 3.3 \text{V} \pm 5\%$ or 2.5V $\pm 5\%$, $V_{DDC} = 3.3 \text{V} \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ | Parameter | Description | Conditions | | Min. | Тур. | Max. | Unit. | | |------------------------|--|--|------------------|------|------|------|-------|--| | F _{max} | Input Frequency | | _ | - | - | 200 | MHz | | | t _{PD} | PECL_CLK to Q Delay ^[5, 6, 11] | V _{DD} = 3.3V | t _{PHL} | 2.0 | _ | 3.2 | ns | | | | =150 MHz</td <td>85°C</td> <td>t_{PLH}</td> <td>2.1</td> <td>-</td> <td>3.4</td> <td></td> | 85°C | t _{PLH} | 2.1 | - | 3.4 | | | | | | V _{DD} = 3.3V | t _{PHL} | 1.9 | _ | 3.1 | | | | | | 70°C | t _{PLH} | 2.0 | - | 3.2 | | | | | | V _{DD_} = 2.5V | t _{PHL} | 2.5 | - | 5.2 | | | | | | 85°C | t _{PLH} | 2.6 | _ | 5 | | | | | | V _{DD} = 2.5V | t _{PHL} | 2.5 | _ | 5 | | | | | | 70°C | t _{PLH} | 2.6 | _ | 5 | | | | t _{PD} | LVCMOS to Q Delay ^[5, 6, 11] | V _{DD} = 3.3V | t _{PHL} | 1.9 | _ | 3 | ns | | | | =150 MHz</td <td>85°C</td> <td>t_{PLH}</td> <td>2.0</td> <td>_</td> <td>3.2</td> | 85°C | t _{PLH} | 2.0 | _ | 3.2 | | | | | | V _{DD} = 3.3V
70°C | t _{PHL} | 1.8 | _ | 2.9 | | | | | | | t _{PLH} | 1.8 | _ | 3.1 | | | | | | V _{DD} = 2.5V
85°C | t _{PHL} | 2.5 | _ | 4 | | | | | | | t _{PLH} | 2.5 | _ | 4 | | | | | | V _{DD} = 2.5V
70°C | t _{PHL} | 2.3 | _ | 3.8 | | | | | | | t _{PLH} | 2.3 | _ | 3.8 | | | | t _J | Total Jitter | V _{DD} = 3.3V @ 150MHz | | _ | _ | 10 | ps | | | FoutDC | Output Duty Cycle ^[5, 6, 7] | FCLK < 134 MHz | 1 | _ | _ | 55 | % | | | | | FCLK > 134 MHz | | _ | _ | 60 | | | | T _{skew} | Output-to-Output Skew ^[5, 6] | V _{DD} = 3.3V | | _ | 60 | 150 | ps | | | | | V _{DD} = 2.5V | | _ | | 200 | | | | T _{skew} (pp) | Part-to-Part Skew ^[9] | PECL, V _{DDC} = 3.3V
PECL, V _{DDC} = 2.5V | | _ | _ | 1.4 | ns | | | | | | | _ | _ | 2.2 | | | | T _{skew} (pp) | Part-to-Part Skew ^[9] | TCLK, V _{DDC} = 3.3V | | _ | _ | 1.2 | ns | | | | | TCLK, V _{DDC} = 2.5V | | _ | _ | 1.7 | | | | T _{skew} (pp) | Part to Part Skew ^[10] | PECL_CLK | | _ | _ | 850 | ps | | | | | TCLK | | _ | _ | 750 | | | | t_R/t_F | Output Clocks Rise/Fall Time ^[5, 6] | 0.7V to 2.0V,
V _{DDC} = 3.3V | | 0.3 | _ | 1.1 | ns | | | | | 0.5V to 1.8V,
V _{DDC} = 2.5V | | 0.3 | - | 1.2 | | | #### Notes: ^{8.} Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs. 9. Across temperature and voltage ranges, includes output skew. 10. For a specific temperature and voltage, includes output skew 11. Parameters tested @ 150 MHz. Figure 1. LVCMOS_CLK CY29940 Test Reference for V_{CC} = 3.3V and V_{CC} = 2.5V Figure 2. PECL_CLK CY29940 Test Reference for V_{CC} = 3.3V and V_{CC} = 2.5V Figure 3. Propagation Delay (TPD) Test Reference Figure 4. LVCMOS Propagation Delay (TPD) Test Reference Figure 5. Output Duty Cycle (FoutDC) Figure 6. Output-to-Output Skew tsk(0) ## **Ordering Information** | Part Number | Package Type | Production Flow | |-------------|-----------------------------|----------------------------| | CY29940AI | 32 Pin LQFP | Industrial, -40°C to +85°C | | CY29940AIT | 32 Pin LQFP – Tape and Reel | Industrial, -40°C to +85°C | | CY29940AC | 32 Pin LQFP | Commercial, 0°C to 70°C | | CY29940ACT | 32 Pin LQFP – Tape and Reel | Commercial, 0°C to 70°C | | Lead-free | | | | CY29940AXI | 32 Pin LQFP | Industrial, -40°C to +85°C | | CY29940AXIT | 32 Pin LQFP – Tape and Reel | Industrial, -40°C to +85°C | | CY29940AXC | 32 Pin LQFP | Commercial, 0°C to 70°C | | CY29940AXCT | 32 Pin LQFP – Tape and Reel | Commercial, 0°C to 70°C | ## **Package Drawing and Dimensions** ## 32-Lead Thin Plastic Quad Flatpack 7 x 7 x 1.4 mm A32.14 All product and company names mentioned in this document may be the trademarks of their respective owners. ## **Document History Page** | REV. | ECN NO. | Issue
Date | Orig. of
Change | Description of Change | |------|---------|---------------|--------------------|--| | ** | 111094 | 02/01/02 | BRK | New data sheet | | *A | 116776 | 08/15/02 | HWT | Incorporate results of final characterization using corporate methods, adde output impedance on page 3 and added output duty cycle on page 4. Add commercial temperature range in the ordering information on page 6 | | *B | 122875 | 12/21/02 | RBI | Add power up requirements to maximum rating information | | *C | 448379 | See ECN | RGL | Add typical value for output-to-output skew Add Lead-free devices |