Synchronous Equipment Timing Source for Stratum 3/4E/4 and SMC Systems

ADVANCED COMMUNICATIONS

Description

The ACS8520 is a highly integrated, single-chip solution for the Synchronous Equipment Timing Source (SETS) function in a SONET or SDH Network Element. The device generates SONET or SDH Equipment Clocks (SEC) and Frame Synchronization clocks. The ACS8520 is fully compliant with the required international specifications and standards.

EMTECH

The device supports Free-run, Locked and Holdover modes. It also supports all three types of reference clock source: recovered line clock, PDH network, and node synchronization. The ACS8520 generates independent SEC and BITS/SSU clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock.

Two ACS8520 devices can be used together in a Master/ Slave configuration mode allowing system protection against a single ACS8520 failure.

A microprocessor port is incorporated, providing access to the configuration and status registers for device setup and monitoring. The ACS8520 supports IEEE 1149.1^[5] JTAG boundary scan.

The user can choose between OCXO or TCXO to define the Stratum and/or Holdover performance required.

Block Diagram

Figure 1 Block Diagram of the ACS8520 SETS

DATASHEET

Features

FINAL

- Suitable for Stratum 3, 4E, 4 and SONET Minimum Clock (SMC) or SONET/SDH Equipment Clock (SEC) applications
- Meets Telcordia 1244-CORE^[19] Stratum 3 and GR-253^[17], and ITU-T G.813^[11] Options I and II specifications
- Accepts 14 individual input reference clocks, all with robust input clock source quality monitoring.
- Simultaneously generates nine output clocks, plus two Sync pulse outputs
- Absolute Holdover accuracy better than 3 x 10⁻¹⁰ (manual), 7.5 x 10⁻¹⁴ (instantaneous); Holdover stability defined by choice of external XO
- Programmable PLL bandwidth, for wander and jitter tracking/attenuation, 0.1 Hz to 70 Hz in 10 steps
- Automatic hit-less source switchover on loss of input
- Microprocessor interface Intel, Motorola, Serial, Multiplexed, or boot from EPROM
- Output phase adjustment in 6 ps steps up to ±200 ns
- IEEE 1149.1 JTAG Boundary Scan
- Single 3.3 V operation. 5 V tolerant
- Available in LQFP 100 package
- Lead (Pb) free version available (ACS8520T), RoHS and WEEE compliant.

ADVANCED COMMUNICATIONS Table of Contents

FINAL

Page

Section

Description	
Block Diagram	1
Features	1
Table of Contents	
Pin Diagram	
Pin Description	
Introduction	8
General Description	8
Overview	
Input Reference Clock Ports	
Locking Frequency Modes	
PECL/LVDS/AMI Input Port Selection	11
Clock Quality Monitoring	12
Activity Monitoring	
Frequency Monitoring	14
Selection of Input Reference Clock Source	14
Forced Control Selection	15
Automatic Control Selection	
Ultra Fast Switching	15
Fast External Switching Mode-SCRSW Pin	15
Output Clock Phase Continuity on Source Switchover	16
Modes of Operation	16
Free-run Mode	
Pre-locked Mode	
Locked Mode	
Lost-phase Mode	
Holdover Mode	
Pre-locked2 Mode	
DPLL Architecture and Configuration	
TO DPLL Main Features	
T4 DPLL Main Features	
TO DPLL Automatic Bandwidth Controls	
Phase Detectors	
Phase Lock/Loss Detection.	
Damping Factor Programmability	21
Local Oscillator Clock	
Output Wander	
Jitter and Wander Transfer	
Phase Build-out	
Input to Output Phase Adjustment	
Input Wander and Jitter Tolerance Using the DPLLs for Accurate Frequency and Phase Reporting	
Configuration for Redundancy Protection Alignment of Priority Tables in Master and Slave ACS8520	29
Alignment of Priority Tables in Master and Slave ACS8520 T4 Generation in Master and Slave ACS8520	
Alignment of the Output Clock Phases in Master and Slave ACS8520	
Mighment of the Output Clock Phases in Master and Slave ACS8520 MFrSync and FrSync Alignment-SYNC2K	
Output Clock Ports PECL/LVDS/AMI Output Port Selection	
Output Frequency Selection and Configuration	
output mequency selection and configuration	32

ADVANCED COMMUNICATIONS	FINAL	DATASHEET
Section		Page
Microprocessor Interface		
Introduction to Microprocessor Modes		
Motorola Mode		
Intel Mode		
Multiplexed Mode		
Serial Mode		
EPROM Mode		
Power-On Reset		
Register Map		
Register Organization		
Multi-word Registers		
Register Access		
Interrupt Enable and Clear		
Defaults		
Register Descriptions		
Electrical Specifications		
JTAG		
Over-voltage Protection		
ESD Protection		
Latchup Protection		
Maximum Ratings		
Operating Conditions		
DC Characteristics		
DC Characteristics: AMI Input/Output Port		
Jitter Performance		
Input/Output Timing		
Package Information		
Thermal Conditions		
Application Information		
References		
Abbreviations		
Trademark Acknowledgements		
Revision Status/History		
Notes		
Ordering Information		
Disclaimers		
Contacts		

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Pin Diagram

Figure 2 ACS8520 Pin Diagram Synchronous Equipment Timing Source for Stratum 3/4E/4 and SMC Systems

FINAL

ACS8520 SETS

DATASHEET

Pin Description Table 1 Power Pins

Pin Number	Symbol	I/0	Туре	Description	
12, 13, 16	VD1+, VD3+, VD2+	Р	-	Supply Voltage: Digital supply to gates in analog section, +3.3 Volts $\pm 10\%$.	
26	VAMI+	Р	-	Supply Voltage: Digital supply to AMI output, +3.3 Volts ±10%.	
33, 39	VDD_DIFFa, VDD_DIFFb	Р	-	Supply Voltage: Digital supply for differential ports, +3.3 Volts ±10%.	
44	VDD5	Ρ		Digital Supply for +5 Volts Tolerance to Input Pins. Connect to +5 Vol (±10%) for clamping to +5 Volts. Connect to VDD for clamping to +3. Volts. Leave floating for no clamping, input pins tolerant up to +5.5 Volts.	
50, 61, 85, 86	VDDa, VDDd, VDDc, VDDb	Р	-	Supply Voltage: Digital supply to logic, +3.3 Volts ±10%.	
6	VA1+	Р	-	Supply Voltage: Analog supply to clock multiplying PLL, +3.3 Volts ±10	
19, 91	VA2+, VA3+	Р	-	Supply Voltage: Analog supply to output PLLs, +3.3 Volts ±10%.	
11, 14, 15,	DGND1, DGND3, DGND2,	Р	-	Supply Ground: Digital ground for components in PLLs.	
49, 62, 84, 87	DGNDa, DGNDd, DGNDc, DGNDb	Р	-	Supply Ground: Digital ground for logic.	
29	GND_AMI	Р	-	Supply Ground: Digital ground for AMI output.	
32, 38	GND_DIFFa, GND_DIFFb	Р	-	Supply Ground: Digital ground for differential ports.	
1, 5, 20, 92	AGND, AGND1, AGND2, AGND3	Р	-	Supply Ground: Analog grounds.	

Note...I = Input, O = Output, P = Power, $TTL^{U} = TTL$ input with pull-up resistor, $TTL_{D} = TTL$ input with pull-down resistor.

Table 2 Internally Connected Pins

Pin Number	Symbol	I/0	Туре	Description
3, 4, 17, 22, 96, 97, 98	IC1, IC2, IC3, IC4, IC5, IC6, IC7	-	-	Internally Connected: Leave to Float.

SEMTECH

ADVANCED COMMUNICATIONS

ACS8520 SETS

DATASHEET

Table 3 Other Pins

Pin Number	Symbol	I/0	Туре	Description	
2	TRST	I	TTL _D	JTAG Control Reset Input: TRST = 1 to enable JTAG Boundary Scan mode. TRST = 0 for Boundary Scan stand-by mode, still allowing correct device operation. If not used connect to GND or leave floating.	
7	TMS	I	TTL ^U	JTAG Test Mode Select: Boundary Scan enable. Sampled on rising edge of TCK. If not used connect to VDD or leave floating.	
8	INTREQ	0	TTL/CMOS	Interrupt Request: Active High/Low software Interrupt output.	
9	ТСК	I	TTLD	JTAG Clock: Boundary Scan clock input. If not used connect to GND or leave floating.	
10	REFCLK	I	TTL	Reference Clock: 12.800 MHz (refer to section headed Local Oscillator Clock).	
18	SRCSW	I	TTLD	Source Switching: Force Fast Source Switching. See "Fast External Switching Mode-SCRSW Pin" on page 15.	
21	TDO	0	TTL/CMOS	JTAG Output: Serial test data output. Updated on falling edge of TCK. If not used leave floating.	
23	TDI	I	TTL ^U	JTAG Input: Serial test data Input. Sampled on rising edge of TCK. If not used connect to VDD or leave floating.	
24	1	I	AMI	Input Reference 1: Composite clock 64 kHz + 8 kHz.	
25	12	I	AMI	Input Reference 2: Composite clock 64 kHz + 8 kHz.	
27	T08NEG	0	AMI	Output Reference 8: Composite clock, 64 kHz + 8 kHz negative pulse.	
28	T08P0S	0	AMI	Output Reference 8: Composite clock, 64 kHz + 8 kHz positive pulse.	
30	FrSync	0	TTL/CMOS	Output Reference 10: 8 kHz Frame Sync output.	
31	MFrSync	0	TTL/CMOS	Output Reference 11: 2 kHz Multi-Frame Sync output.	
34, 35	TO6POS, TO6NEG	0	LVDS/PECL	Output Reference 6: Programmable, default 38.88 MHz, default type LVDS.	
36, 37	TO7POS, TO7NEG	0	PECL/LVDS	Output Reference 7: Programmable, default 19.44 MHz, default type PECL.	
40, 41	I5POS, I5NEG	I	LVDS/PECL	Input Reference 5: Programmable, default 19.44 MHz, default type LVDS.	
42, 43	I6POS, I6NEG	I	PECL/LVDS	Input Reference 6: Programmable, default 19.44 MHz, default type PECL.	
45	SYNC2K	I	TTLD	External Sync input: 2 kHz, 4 kHz or 8 kHz for frame alignment.	
46	13	I	TTLD	Input Reference 3: Programmable, default 8 kHz.	
47	14	I	TTLD	Input Reference 4: Programmable, default 8 kHz.	
48	17	I	TTLD	Input Reference 7: Programmable, default 19.44 MHz.	
51	18	I	TTLD	Input Reference 8: Programmable, default 19.44 MHz.	
52	19	Ι	TTLD	Input Reference 9: Programmable, default 19.44 MHz.	
53	l10	I	TTLD	Input Reference 10: Programmable, default 19.44 MHz.	

SEMTECH

ADVANCED COMMUNICATIONS

Page 7

Revision 3.02/October 2005 © Semtech Corp.

Table 3	Other Pins	(cont)
---------	------------	--------

Pin Number	Symbol	I/O	Туре	Description	
54	111	I	TTLD	Input Reference 11: Programmable, default (Master mode) 1.544/2.048 MHz, default (Slave mode) 6.48 MHz.	
55	112	I	TTLD	Input Reference 12: Programmable, default 1.544/2.048 MHz.	
56	113	I	TTLD	Input Reference 13: Programmable, default 1.544/2.048 MHz.	
57	114	I	TTLD	Input Reference 14: Programmable, default 1.544/2.048 MHz.	
58 - 60	UPSEL(2:0)	I	TTLD	Microprocessor Select: Configures the interface for a particular microprocessor type at reset.	
63 - 69	A(6:0)	Ι	TTL _D	Microprocessor Interface Address: Address bus for the microprocessor interface registers. A(0) is SDI in Serial mode - output in EPROM mode only. A(1) is CLKE in serial mode.	
70	CSB	I	TTL ^U	Chip Select (Active <i>Low</i>): This pin is asserted <i>Low</i> by the microprocessor to enable the microprocessor interface - output in EPROM mode only.	
71	WRB	I	TTL ^U	Write (Active <i>Low</i>): This pin is asserted <i>Low</i> by the microprocessor to initiate a write cycle. In Motorola mode, WRB = 1 for Read.	
72	RDB	I	TTL ^U	Read (Active <i>Low</i>): This pin is asserted <i>Low</i> by the microprocessor to initiate a read cycle.	
73	ALE	Ι	TTLD	Address Latch Enable: This pin becomes the address latch enable from the microprocessor. When this pin transitions from <i>High</i> to <i>Low</i> , the address bus inputs are latched into the internal registers. ALE = SCLK in Serial mode.	
74	PORB	I	TTLU	Power-On Reset: Master reset. If PORB is forced <i>Low</i> , all internal state are reset back to default values.	
75	RDY	0	TTL/CMOS	Ready/Data Acknowledge: This pin is asserted <i>High</i> to indicate the device has completed a read or write operation.	
76 - 83	AD(7:0)	IO	TTLD	Address/Data: Multiplexed data/address bus depending on the microprocessor mode selection. AD(0) is SD0 in Serial mode.	
88	T01	0	TTL/CMOS	Output Reference 1: Programmable, default 6.48 MHz.	
89	T02	0	TTL/CMOS	Output Reference 2: Programmable, default 38.88 MHz.	
90	T03	0	TTL/CMOS	Output Reference 3: Programmable, default 19.44 MHz.	
93	T04	0	TTL/CMOS	Output Reference 4: Programmable, default 38.88 MHz.	
94	T05	0	TTL/CMOS	Output Reference 5: Programmable, default 77.76 MHz.	
95	Т09	0	TTL/CMOS	Output Reference 9: 1.544/2.048 MHz, as per ITU G.783 ^[9] BITS requirements.	
99	MSTSLVB	I	TTL ^U	Master/Slave Select: Sets the state of the Master/Slave selection register, Reg. 34, Bit 1.	
100	SONSDHB	I	TTL _D	SONET or SDH Frequency Select: Sets the initial power-up state (or state after a PORB) of the SONET/SDH frequency selection registers, Reg. 34, Bit 2 and Reg. 38, Bit 5, Bit 6 and Reg. 64 Bit 4.When set <i>Low</i> , SDH rates are selected (2.048 MHz etc.) and when set <i>High</i> , SONET rates are selected (1.544 MHz etc.) The register states can be changed after power-up by software.	

FINAL

ACS8520 SETS

DATASHEET

Synchronization clock.

One key architectural advantage that the ACS8520 has over traditional solutions is in the use of DPLL technology for precise and repeatable performance over temperature or voltage variations and between parts. The overall PLL bandwidth, loop damping, pull-in range and frequency accuracy are all determined by digital parameters that provide a consistent level of performance. An Analog PLL (APLL) takes the signal from the DPLL output and provides a lower jitter output. The APLL bandwidth is set four orders of magnitude higher than the DPLL bandwidth. This ensures that the overall system performance still maintains the advantage of consistent behavior provided by the digital approach.

SEMTECH

The ACS8520 is a highly integrated, single-chip solution

for the SETS function in a SONET/SDH Network Element,

Synchronization pulses. Digital Phase Locked Loop (DPLL) and direct digital synthesis methods are used in the

device so that the overall PLL characteristics are very

stable and consistent compared to traditional analog

In Free-run mode, the ACS8520 generates a stable, low-

noise clock signal at a frequency to the same accuracy as

the external oscillator, or it can be made more accurate

via software calibration to within ±0.02 ppm. In Locked

mode, the ACS8520 selects the most appropriate input reference source and generates a stable, low-noise clock

signal locked to the selected reference. In Holdover mode,

the ACS8520 generates a stable, low-noise clock signal,

adjusted to match the last known good frequency of the

last selected reference source. A high level of phase and frequency accuracy is made possible by an internal

resolution of up to 54 bits and internal Holdover accuracy

of up to 7.5 x 10^{-14} (instantaneous). In all modes, the

frequency accuracy, jitter and drift performance of the

clock meet the requirements of ITU G.736^[7], G.742^[8], G783^[9], G.812^[10], G.813^[11], G.823^[13], G.824^[14] and Telcordia GR-253-CORE^[17] and GR-1244-CORE^[19].

The ACS8520 supports all three types of reference clock

kHz Frame Synchronization clock and a 2 kHz Multi-Frame

synchronization timing, and node synchronization. The ACS8520 generates independent TO and T4 clocks, an 8

source: recovered line clock, PDH network

for the generation of SEC and Frame/MultiFrame

ADVANCED COMMUNICATIONS

Introduction

PLLs.

The DPLLs are clocked by the external Oscillator module (TCXO or OCXO) so that the Free-run or Holdover frequency stability is only determined by the stability of the external oscillator module. This second key advantage confines all temperature critical components to one well defined and pre-calibrated module, whose performance can be chosen to match the application; for example an TCXO for Stratum 3 applications.

All performance parameters of the DPLLs are programmable without the need to understand detailed PLL equations. Bandwidth, damping factor and lock range can all be set directly, for example. The PLL bandwidth can be set over a wide range, 0.1 Hz to 70 Hz in 18 steps, to cover all SONET/SDH clock synchronization applications.

The ACS8520 supports protection. Two ACS8520 devices can be configured to provide protection against a single ACS8520 failure. The protection maintains alignment of the two ACS8520 devices (Master and Slave) and ensures that both ACS8520 devices maintain the same priority table, choose the same reference input and generate the T0 clock, the 8 kHz Frame Synchronization clock and the 2 kHz Multi-Frame Synchronization clock with the same phase. The ACS8520 includes a multistandard microprocessor port, providing access to the configuration and status registers for device setup and monitoring.

General Description

Overview

FINAL

The following description refers to the Block Diagram (Figure 1 on page 1).

The ACS8520 SETS device has 14 input clocks, generates 11 output clocks, and has a total of 55 possible output frequencies. There are two main paths through the device: T0 and T4. Each path has an independent DPLL and APLL pair.

The TO path is a high quality, highly configurable path designed to provide features necessary for node timing synchronization within a SONET/SDH network. The T4 path is a simpler and less configurable path designed to give a totally independent path for internal equipment synchronization. The device supports use of either or both paths, either locked together or independent.

Of the 14 input references, two are AMI composite clock, two are LVDS/PECL and the remaining ten are TTL/CMOS compatible inputs. All the TTL/CMOS are 3 V and 5 V compatible (with clamping if required by connecting the

DATASHEET

ADVANCED COMMUNICATIONS

FINAL

VDD5 pin). The AMI inputs are ± 1 V typically A.C. coupled. Refer to the electrical characteristics section for more information on the electrical compatibility and details. Input frequencies supported range from 2 kHz to 155.52 MHz.

Common E1, DS1, OC3 and sub-divisions are supported as spot frequencies that the DPLLs will directly lock to. Any input frequency, up to 100 MHz, that is a multiple of 8 kHz can also be locked to via an inbuilt programmable divider.

An input reference monitor is assigned to each of the 14 inputs. The monitors operate continuously such that at all times the status of all of the inputs to the device are known. Each input can be monitored for both frequency and activity, activity alone, or the monitors can be disabled.

The frequency monitors have a "hard" (rejection) alarm limit and a "soft" (flag only) alarm limit for monitoring frequency, whilst the reference is still within its allowed frequency band. Each input reference can be programmed with a priority number allowing references to be chosen according to the highest priority valid input. The two paths (TO and T4) have independent priorities to allow completely independent operation of the two paths. Both paths operate either automatic or external source selection.

For automatic input reference selection, the TO path has a more complex state machine than the T4 path.

The TO and T4 PLL paths support the following common features:

- Automatic source selection according to input priorities and quality level
- Different quality levels (activity alarm thresholds) for each input
- Variable bandwidth, lock range and damping factor
- Direct PLL locking to common SONET/SDH input frequencies or any multiple of 8 kHz
- Automatic mode switching between Free-run, Locked and Holdover states
- Fast detection on input failure and entry into Holdover mode (holds at the last good frequency value)
- Frequency translation between input and output rates via direct digital synthesis
- High accuracy digital architecture for stable PLL dynamics combined with an APLL for low jitter final output clocks.

There are a number of features supported by the TO path that are not supported by the T4 path, although these can also all be externally controlled by software.

The additional TO features supported are:

- Non-revertive mode
- Phase Build-out on source switch (hit-less source switching)
- I/O phase offset control
- Greater programmable bandwidth from 0.1 Hz to 70 Hz in 10 steps (T4 path programmable bandwidth in 3 steps, 18, 35 and 70 Hz)
- Noise rejection on low frequency input
- Manual Holdover frequency control
- Controllable automatic Holdover frequency filtering
- Frame Sync pulse alignment.

Either the software or an internal state machine controls the operation of the DPLL in the TO path. The state machine for the T4 path is very simple and cannot be manually/externally controlled, however the overall operation can be controlled by manual reference source selection. One additional feature of the T4 path is the ability to measure a phase difference between two inputs.

The TO path DPLL always produces an output at 77.76 MHz to feed the APLL, regardless of the frequency selected at the output pins. The T4 path can be operated at a number of frequencies. This is to enable the generation of extra output frequencies, which cannot be easily related to 77.76 MHz. When the T4 path is selected to lock to the T0 path, the T4 DPLL locks to the 8 kHz from the T0 DPLL. This is because all of the frequencies of operation of the T4 path can be divided to 8 kHz and this will ensure synchronization of all the frequencies within the two paths.

Both of the DPLLs' outputs are connected to multiplying and filtering APLLs. The outputs of these APLLs are divided making a number of frequencies simultaneously available for selection at the output clock ports. The various combinations of DPLL, APLL and divider configurations allow for generation of a comprehensive set of frequencies, as listed in Table 14.

To synchronize the lower output frequencies when the TO PLL is locked to a high frequency reference input, an additional input is provided. The SYNC2K pin (pin 45) is used to reset the dividers that generate the 2 kHz and 8 kHz outputs such that the output 2/8 kHz clocks are lined up with the input 2 kHz. This synchronization

ADVANCED COMMUNICATIONS

method allows for example, a master and a slave device to be in precise alignment.

The ACS8520 also supports Sync pulse references of 4 kHz or 8 kHz although in these cases frequencies lower than the Sync pulse reference may not necessarily be in phase.

Input Reference Clock Ports

Table 4 gives details of the input reference ports, showing the input technologies and the range of frequencies supported on each port; the default spot frequencies and default priorities assigned to each port on power-up or by reset are also shown. Note that SDH and SONET networks use different default frequencies; the network type is pinselectable (using either the SONSDHB pin or via software). Specific frequencies and priorities are set by configuration.

SDH and SONET networks use different default frequencies; the network type is selectable using the *cnfg_input_mode* Reg. 34 Bit 2, *ip_sonsdhb*.

- For SONET, *ip_sonsdhb* = 1
- For SDH, *ip_sonsdhb* = 0

On power-up or by reset, the default will be set by the state of the SONSDHB pin (pin 100). Specific frequencies and priorities are set by configuration.

The frequency selection is programmed via the *cnfg_ref_source_frequency* register (Reg. 20 - Reg. 2D).

Locking Frequency Modes

There are three locking frequency modes that can be configured: Direct Lock, Lock 8k and DivN.

Direct Lock Mode

In Direct Lock Mode, the internal DPLL can lock to the selected input at the spot frequency of the input, for example 19.44 MHz performs the DPLL phase comparisons at 19.44 MHz.

In Lock8K and DivN modes (and for special case of 155 MHz), an internal divider is used prior to the DPLL to divide the input frequency before it is used for phase comparisons in the DPLL.

Lock8K Mode

FINAL

Lock8K mode automatically sets the divider parameters to divide the input frequency down to 8 kHz. Lock8K can only be used on the supported spot frequencies (see Table 4 Note(i)). Lock8k mode is enabled by setting the *Lock8k* bit (Bit 6) in the appropriate *cnfg_ref_source_frequency* register location. Using lower frequencies for phase comparisons in the DPLL results in a greater tolerance to input jitter.It is possible to choose which edge of the input reference clock to lock to, by setting *8K edge polarity* (Bit 2 of Reg. 03, *test_register1*).

DivN Mode

In DivN mode, the divider parameters are set manually by configuration (Bit 7 of the *cnfg_ref_source_frequency* register), but must be set so that the frequency after division is 8 kHz.

The DivN function is defined as:

DivN = "Divide by N + 1", i.e. it is the dividing factor used for the division of the input frequency, and has a value of (N+1) where N is an integer from 1 to 12499 inclusive.

Therefore, in DivN mode the input frequency can be divided by any integer value between 2 to 12500. Consequently, any input frequency which is a multiple of 8 kHz, between 8 kHz to 100 MHz, can be supported by using DivN mode.

Note...Any reference input can be set to use DivN independently of the frequencies and configurations of the other inputs. However only one value of N is allowed, so all inputs with DivN selected must be running at the same frequency.

DivN Examples

(a) To lock to 2.000 MHz:

- Set the *cnfg_ref_source_frequency* register to 10XX0000 (binary) to enable DivN, and set the frequency to 8 kHz - the frequency required after division. (XX = "Leaky Bucket" ID for this input).
- (ii) To achieve 8 kHz, the 2 MHz input must be divided by 250. So, if DivN = 250 = (N + 1) then N must be set to 249. This is done by writing F9 hex (249 decimal) to the DivN register pair Reg. 46/47.

(b) To lock to 10.000 MHz:

(i) The *cnfg_ref_source_frequency* register is set to 10XX0000 (binary) to set the DivN and the

FINAL

DATASHEET

frequency to 8 kHz, the post-division frequency. (XX = "Leaky Bucket" ID for this input).

(ii) To achieve 8 kHz, the 10 MHz input must be divided by 1,250. So, if DivN, = 250 = (N+1) then N must be set to 1,249. This is done by writing 4E1 hex (1,249 decimal) to the DivN register pair Reg. 46/47.

Direct Lock Mode 155 MHz.

The max frequency allowed for phase comparison is 77.76MHz, so for the special case of a 155 MHz input set to Direct Lock Mode, there is a divide-by-two function automatically selected to bring the frequency down to within the limits of operation.

PECL/LVDS/AMI Input Port Selection

The choice of PECL or LVDS compatibility is programmed via the *cnfg_differential_inputs* register. Unused PECL differential inputs should be fixed with one input *High* (VDD) and the other input *Low* (GND), or set in LVDS mode and left floating, in which case one input is internally pulled *High* and the other *Low*.

An AMI port supports a composite clock, consisting of a 64 kHz AMI clock with 8 kHz boundaries marked by deliberate violations of the AMI coding rules, as specified in ITU recommendation G.703^[6]. Departures from the nominal pattern are detected within the ACS8520, and may cause reference-switching if too frequent. See section DC Characteristics: AMI Input/Output Port, for more details. If the AMI port is unused, the pins (I1 and I2) should be tied to GND.

Port Number	Channel Number (Bin)	Input Port Technology	Frequencies Supported	Default Priority
11	0001	AMI	64/8 kHz (composite clock, 64 kHz + 8 kHz) Default (SONET): 64/8 kHz Default (SDH): 64/8 kHz	2
12	0010	AMI	64/8 kHz (composite clock, 64 kHz + 8 kHz) Default (SONET): 64/8 kHz Default (SDH): 64/8 kHz	3
13	0011	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 8 kHz Default (SDH): 8 kHz	4
14	0100	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 8 kHz Default (SDH): 8 kHz	5
15	0101	LVDS/PECLLVDS default	Up to 155.52 MHz (see Note (ii)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	6
16	0110	PECL/LVDS PECL default	Up to 155.52 MHz (see Note (ii)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	7
17	0111	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	8
18	1000	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	9
19	1001	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	10
110	1010	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	11
111	1011	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (Master) (SONET): 1.544 MHz Default (Master) (SDH): 2.048 MHz Default (Slave) 6.48 MHz	12/1 (Note (iii))
112	1100	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz	13

Table 4 Input Reference Source Selection and Priority Table

EMTECH

DATASHEET

Table 4 Input Reference Source Selection and Priority Table (cont...)

Port Number	Channel Number (Bin)	Input Port Technology	Frequencies Supported	Default Priority
113	1101	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz	14
114	1110	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz	15

FINAL

Notes: (i) TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. The actual spot frequencies are: 2 kHz, 4 kHz, 8 kHz (and N x 8 kHz), 1.544 MHz (SONET)/2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz. SONET or SDH input rate is selected via Reg. 34 Bit 2, ip_sonsdhb).

(ii) PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz (and 311.04 MHz for TO6 only).

(iii) Input port I11 is set at priority 12 on the Master SETS IC and priority 1 on the Slave SETS IC, as default on power up (or PORB). The default setup of Master or Slave I11 priority is determined by the MSTSLVB pin.

Clock Quality Monitoring

Clock quality is monitored and used to modify the priority tables of the local and remote ACS8520 devices. The following parameters are monitored:

- 1. Activity (toggling).
- 2. Frequency (this monitoring is only performed when there is no irregular operation of the clock or loss of clock condition).

In addition, input ports I1 and I2 carry AMI-encoded composite clocks which are monitored by the AMI-decoder blocks. Loss of signal is declared by the decoders when either the signal amplitude falls below +0.3 V or there is no activity for 1 ms.

Any reference source that suffers a loss-of-activity or clock-out-of-band condition will be declared as unavailable.

Clock quality monitoring is a continuous process which is used to identify clock problems. There is a difference in dynamics between the selected clock and the other reference clocks. Anomalies occurring on non-selected reference sources affect only that source's suitability for selection, whereas anomalies occurring on the selected clock could have a detrimental impact on the accuracy of the output clock.

Anomalies detected by the activity detector are integrated in a Leaky Bucket Accumulator. Occasional anomalies do not cause the Accumulator to cross the alarm setting threshold, so the selected reference source is retained. Persistent anomalies cause the alarm setting threshold to be crossed and result in the selected reference source being rejected. Anomalies on the currently locked-to input reference clock, whether affecting signal purity or signal frequency, could induce jitter or frequency offsets in the output clock, leading to anomalous behavior. Anomalies on the selected clock, therefore, have to be detected as they occur and the phase locked loop must be temporarily isolated until the clock is once again pure. The clock monitoring process cannot be used for this because the high degree of accuracy required dictates that the process be slow. To achieve the immediacy required by the phase locked loop requires an alternative mechanism. The phase locked loop itself contains a fast activity detector such that within approximately two missing input clock cycles, a no-activity flag is raised and the DPLL is frozen in Holdover mode. This flag can also be read as the main_ref_failed bit (from Reg. 06, Bit 6) and can be set to indicate a phase lost state by enabling Reg. 73, Bit 6. With the DPLL in Holdover mode it is isolated from further disturbances. If the input becomes available again before the activity or frequency monitor rejection alarms have been raised, then the DPLL will continue to lock to the input, with little disturbance. In this scenario, with the DPLL in the "locked" state, the DPLL uses "nearest edge locking" mode (±180° capture) avoiding cycle slips or glitches caused by trying to lock to an edge 360° away, as would happen with traditional PLLs.

Activity Monitoring

The ACS8520 has a combined inactivity and irregularity monitor. The ACS8520 uses a Leaky Bucket Accumulator, which is a digital circuit which mimics the operation of an analog integrator, in which input pulses increase the output amplitude but die away over time. Such integrators

are used when alarms have to be triggered either by fairly regular defect events, which occur sufficiently close together, or by defect events which occur in bursts. Events which are sufficiently spread out should not trigger the alarm. By adjusting the alarm setting threshold, the point at which the alarm is triggered can be controlled. The point at which the alarm is cleared depends upon the decay rate and the alarm clearing threshold.

EMTECH

ADVANCED COMMUNICATIONS

On the alarm setting side, if several events occur close together, each event adds to the amplitude and the alarm will be triggered quickly; if events occur a little more spread out, but still sufficiently close together to overcome the decay, the alarm will be triggered eventually. If events occur at a rate which is not sufficient to overcome the decay, the alarm will not be triggered. On the alarm clearing side, if no defect events occur for a sufficient time, the amplitude will decay gradually and the alarm will be cleared when the amplitude falls below the alarm clearing threshold. The ability to decay the amplitude over time allows the importance of defect events to be reduced as time passes by. This means that, in the case of isolated events, the alarm will not be set, whereas, once the alarm becomes set, it will be held on until normal operation has persisted for a suitable time (but if the operation is still erratic, the alarm will remain set). See Figure 3.

Figure 3 Inactivity and Irregularity Monitoring

There is one Leaky Bucket Accumulator per input channel. Each Leaky Bucket can select from four Configurations (Leaky Bucket Configuration 0 to 3). Each Leaky Bucket Configuration is programmable for size, alarm set and reset thresholds, and decay rate.

Each source is monitored over a 128 ms period. If, within a 128 ms period, an irregularity occurs that is not deemed to be due to allowable jitter/wander, then the Accumulator is incremented.

The Accumulator will continue to increment up to the point that it reaches the programmed Bucket size. The "fill rate" of the Leaky Bucket is, therefore, 8 units/second. The "leak rate" of the Leaky Bucket is programmable to be in multiples of the fill rate (x 1, x 0.5, x 0.25 and x 0.125) to give a programmable leak rate from 8 units/sec down to 1 unit/sec. A conflict between trying to "leak" at the same time as a "fill" is avoided by preventing a leak when a fill event occurs.

Disqualification of a non-selected reference source is based on inactivity, or on an out-of-band result from the frequency monitors. The currently selected reference source can be disqualified for phase, frequency, inactivity or if the source is outside the DPLL lock range. If the currently selected reference source is disqualified, the next highest priority, qualified reference source is selected.

Page 13

FINAL

FINAL

DATASHEET

Interrupts for Activity Monitors

The loss of the currently selected reference source will eventually cause the input to be considered invalid, triggering an interrupt. The time taken to raise this interrupt is dependant on the Leaky Bucket Configuration of the activity monitors. The fastest Leaky Bucket setting will still take up to 128 ms to trigger the interrupt. The interrupt caused by the brief loss of the currently selected reference source is provided to facilitate very fast source failure detection if desired. It is triggered after missing just a couple of cycles of the reference source. Some applications require the facility to switch downstream devices based on the status of the reference sources. In order to provide extra flexibility, it is possible to flag the main_ref_failed interrupt (Reg. 06 Bit 6) on the pin TDO. This is simply a copy of the status bit in the interrupt register and is independent of the mask register settings. The bit is reset by writing to the interrupt status register in the normal way. This feature can be enabled and disabled by writing to Reg. 48 Bit 6.

Leaky Bucket Timing

The time taken (in seconds) to raise an inactivity alarm on a reference source that has previously been fully active (Leaky Bucket empty) will be:

(cnfg_upper_threshold_n) / 8

where n is the number of the Leaky Bucket Configuration. If an input is intermittently inactive then this time can be longer. The default setting of *cnfg_upper_threshold_n* is 6, therefore the default time is 0.75 s.

The time taken (in seconds) to cancel the activity alarm on a previously completely inactive reference source is calculated, for a particular Leaky Bucket, as:

[2^(a) x (b - c)]/ 8

where:

a = cnfg_decay_rate_n b = cnfg_bucket_size_n c = cnfg_lower_threshold_n (where n = the number of the relevant Leaky Bucket Configuration in each case).

The default setting is shown in the following:

$$[2^{1} x (8 - 4)] / 8 = 1.0 secs$$

Frequency Monitoring

The ACS8520 performs frequency monitoring to identify reference sources which have drifted outside the

acceptable frequency range measured with respect either to the output clock or to the XO clock.

The *sts_reference_sources* out-of-band alarm for a particular reference source is raised when the reference source is outside the acceptable frequency range. With the default register settings a soft alarm is raised if the drift is outside ± 11.43 ppm and a hard alarm is raised if the drift is outside ± 15.24 ppm. Both of these limits are programmable from 3.8 ppm up to 61 ppm.

The ACS8520 DPLL has a programmable lock and capture range frequency limit up to ± 80 ppm (default is ± 9.2 ppm).

Selection of Input Reference Clock Source

Under normal operation, the input reference sources are selected automatically by an order of priority. But, for special circumstances, such as chip or board testing, the selection may be forced by configuration.

Automatic operation selects a reference source based on its pre-defined priority and its current availability. A table is maintained which lists all reference sources in the order of priority. This is initially defined by the default configuration and can be changed via the microprocessor interface by the Network Manager. In this way, when all the defined sources are active and valid, the source with the highest programmed priority is selected but, if this source fails, the next-highest source is selected, and so on.

Restoration of repaired reference sources is handled carefully to avoid inadvertent disturbance of the output clock. For this, the ACS8520 has two modes of operation; Revertive and Non-revertive.

In Revertive mode, if a re-validated (or newly validated) source has a higher priority than the reference source which is currently selected, a switch over will take place. Many applications prefer to minimize the clock switching events and choose Non-revertive mode.

In Non-revertive mode, when a re-validated (or newly validated) source has a higher priority then the selected source will be maintained. The re-validation of the reference source will be flagged in the *sts_sources_valid* register and, if not masked, will generate an interrupt.

Selection of the re-validated source can take place under software control or if the currently selected source fails.

To enable software control, the software should briefly enable Revertive mode to effect a switch-over to the

DATASHEET

ADVANCED COMMUNICATIONS FIT higher priority source. When there is a reference available with higher priority than the selected reference, there will be NO change of reference source as long as the Non-

SEMTECH

with higher priority than the selected reference, there will be NO change of reference source as long as the Nonrevertive mode remains on, and the currently selected source is valid. A failure of the selected reference will always trigger a switch-over regardless of whether Revertive or Non-revertive mode has been chosen.

Also, in a Master/Slave redundancy-protection scheme, the Slave device(s) must follow the Master device. The alignment of the Master and Slave devices is part of the protection mechanism. The availability of each source is determined by a combination of local and remote monitoring of each source. Each input reference source supplied to each ACS8520 device is monitored locally and the results are made available to other devices.

Forced Control Selection

A configuration register, *force_select_reference_source* Reg. 33, controls both the choice of automatic or forced selection and the selection itself (when forced selection is required). For Automatic choice of source selection, the 4 LSB bit value is set to all zeros or all ones (default). To force a particular input (I_n), the Bit value is set to n (bin). Forced selection is not the normal mode of operation, and the *force_select_reference_source* variable is defaulted to the all-ones value on reset, thereby adopting the automatic selection of the reference source.

Automatic Control Selection

When an automatic selection is required, the force_select_reference_source register LSB 4 bits must be set to all zeros or all ones. The configuration registers, *cnfg_ref_selection_priority*, held in the µP port block, consist of seven, 8-bit registers organized as one 4-bit register per input reference port. Each register holds a 4-bit value which represents the desired priority of that particular port. Unused ports should be given the value, 0000, in the relevant register to indicate they are not to be included in the priority table. On power-up, or following a reset, the whole of the configuration file will be defaulted to the values defined by Table 4. The selection priority values are all relative to each other, with lowervalued numbers taking higher priorities. Each reference source should be given a unique number; the valid values are 1 to 15 (dec). A value of zero disables the reference source. However if two or more inputs are given the same priority number those inputs will be selected on a first in, first out basis. If the first of two same priority number sources goes invalid the second will be switched in. If the

first then becomes valid again, it becomes the second source on the first in, first out basis, and there will not be a switch. If a third source with the same priority number as the other two becomes valid, it joins the priority list on the same first in, first out basis. There is no implied priority based on the channel numbers. Revertive/Non-revertive mode has no effect on sources with the same priority value.

The input port I11 is also for the connection of the synchronous clock of the TO output of the Master device (or the active-Slave device), to be used to align the TO output with the Master (or active-Slave) device if this device is acting in a subordinate-Slave or subordinate-Master role.

Ultra Fast Switching

FINAL

A reference source is normally disqualified after the Leaky Bucket monitor thresholds have been crossed. An option for a faster disqualification has been implemented, whereby if Reg. 48 Bit 5 (*ultra_fast_switch*) is set, then a loss of activity of just a few reference clock cycles will set the *main_ref_failed* alarm and cause a reference switch. This can be configured (see Reg. 06, Bit 6) to cause an interrupt to occur instead of, or as well as, causing the reference switch.

The *sts_interrupts* register Reg. 06 Bit 6 (*main_ref_failed*) is used to flag inactivity on the reference that the device is locked to much faster than the activity monitors can support. If Reg. 48 Bit 6 of the *cnfg_monitors* register (*los_flag_on_TDO*) is set, then the state of this bit is driven onto the TDO pin of the device.

Note... The flagging of the loss of the main reference failure on TDO is simply allowing the status of the sts_interrupt bit main_ref_failed (Reg. 06 Bit 6) to be reflected in the state of the TDO output pin. The pin will, therefore, remain High until the interrupt is cleared. This functionality is not enabled by default so the usual JTAG functions can be used. When the TDO output from the ACS8520 is connected to the TDI pin of the next device in the JTAG scan chain, the implementation should be such that a logic change caused by the action of the interrupt on the TDI input should not effect the operation when JTAG is not active.

Fast External Switching Mode-SCRSW Pin

Fast external switching mode, for fast switching between inputs I3 or I5 and I4 or I6, can also be triggered directly from a dedicated pin SRCSW (Figure 4), once the mode has been initialized.

ADVANCED COMMUNICATIONS

FINAL

The mode is initialized by either holding SRCSW pin *High* during reset (SRCSW must remain *High* for at least a further 251 ms after PORB has gone *High* - see following Note), or by writing to Reg. 48 Bit 4. After External Protection Switching mode has been initialized, the value on this pin directly selects either 13/15 (SRCSW *High*) or 14/16 (SRCSW *Low*). If this mode is initialized at reset by pulling the SRCSW pin *High*, then it configures the default frequency tolerance of 13/15 and 14/16 to \pm 80 ppm (Reg. 41 and Reg. 42) as opposed to the normal frequency tolerance of \pm 9.2 ppm. Any of these registers can be subsequently set by external software, if required.

Note... The 251 ms comprises 250 ms allowance for the internal reset to be removed plus 1 ms allowance for APLLs to start-up and become stable.

Selection of either input I3 or I5 is determined by the Priority value of I3; if the programmed priority of I3 is 0, then I5 is selected. Similarly, I6 is selected if the programmed priority of I4 is 0.

Figure 4 13/15 and 14/16 Switching

When external protection switching is enabled, the device will operate as a simple switch. All clock monitoring is disabled and the DPLL will simply be forced to try to lock on to the indicated reference source. Consequently the device will always indicate "locked" state in the *sts_operating* register (Reg. 09, Bits [2:0]).

Output Clock Phase Continuity on Source Switchover

If either PBO is selected on (default), or, if DPLL frequency limit is set to less than \pm 30 ppm or (\pm 9.2 ppm default), the device will always comply with GR-1244-CORE^[19] specification for Stratum 3 (maximum rate of phase change of 81 ns/1.326 ms), for all input frequencies.

Modes of Operation

The ACS8520 has three primary modes of operation (Free-run, Locked and Holdover) supported by three secondary, temporary modes (Pre-locked, Lost-phase and Pre-locked2). These are shown in the State Transition Diagram for the TO DPLL, Figure 5.

The ACS8520 can operate in Forced or Automatic control. On reset, the ACS8520 reverts to Automatic Control, where transitions between states are controlled completely automatically. Forced Control can be invoked by configuration, allowing transitions to be performed under external control. This is not the normal mode of operation, but is provided for special occasions such as testing, or where a high degree of hands-on control is required.

Free-run Mode

The Free-run mode is typically used following a power-onreset or a device reset before network synchronization has been achieved. In the Free-run mode, the timing and synchronization signals generated from the ACS8520 are based on the 12.800 MHz clock frequency provided from the external oscillator and are not synchronized to an input reference source. By default, the frequency of the output clock is a fixed multiple of the frequency of the external oscillator, and the accuracy of the output clock is equal to the accuracy of the oscillator. However the external oscillator frequency can be calibrated to improve its accuracy by a software calibration routine using register *cnfg_nominal_frequency* (Reg. 3C and 3D). For example a 500 ppm offset crystal could be made to look like one accurate to within ±0.02 ppm.

The transition from Free-run to Pre-locked occurs when the ACS8520 selects a reference source.

Pre-locked Mode

The ACS8520 will enter the Locked state in a maximum of 100 seconds, as defined by GR-1244-CORE^[19] specification, if the selected reference source is of good quality. If the device cannot achieve lock within 100 seconds, it reverts to Free-run mode and another reference source is selected.

Locked Mode

The Locked mode is entered from Pre-locked, Pre-locked2 or Phase-lost mode when an input reference source has been selected and the DPLL has locked. The DPLL is

FINAL

considered to be locked when the phase loss/lock detectors (see "Phase Lock/Loss Detection" on page 21) indicate that the DPLL has remained in phase lock continuously for at least one second. When the ACS8520 is in Locked mode, the output frequency and phase tracks that of the selected input reference source.

Lost-phase Mode

Lost-phase mode is used whenever the phase loss/lock detectors (see "Phase Lock/Loss Detection" on page 21) indicate that the DPLL has lost phase lock. The DPLL will still be trying to lock to the input clock reference, if it exists. If the Leaky Bucket Accumulator calculates that the anomaly is serious, the device disqualifies the reference source. If the device spends more than 100 seconds in Lost-phase mode, the reference is disqualified and a phase alarm is raised on it. If the reference is disqualified, one of the following transitions takes place:

- 1. Go to Pre-locked2;
 - If a known good stand-by source is available.
- 2. Go to Holdover;
 - If no stand-by sources are available.

Holdover Mode

Holdover mode is the operating condition the device enters when its currently selected input source becomes invalid, and no other valid replacement source is available. In this mode, the device resorts to using stored frequency data, acquired when the input reference source was still valid, to control its output frequency.

In Holdover mode, the ACS8520 provides the timing and synchronization signals to maintain the Network Element but is not phase locked to any input reference source. Its output frequency is determined by an averaged version of the DPLL frequency when last in the Locked Mode.

Holdover can be configured to operate in either:

- Automatic mode (Reg. 34 Bit 4, *cnfg_input_mode: man_holdover* set *Low*), or
- Manual mode (Reg. 34 Bit 4, *cnfg_input_mode: man_holdover* set *High*).

Automatic Mode

In Automatic mode, the device can be configured to operate using either:

- Averaged (Reg. 40 Bit 7, *cnfg_holdover_modes, auto_averaging:* set *High*), or
- Instantaneous (Reg. 40 Bit 7, *cnfg_holdover_modes, auto_averaging:* set *Low*).

Averaged

In the Averaged mode, the frequency (as reported by *sts_current_DPLL_frequency*, see Reg. OC, Reg. OD and Reg. 07) is filtered internally using an Infinite Impulse Response filter, which can be set to either:

- Fast (Reg. 40 Bit 6, cnfg_holdover_modes, fast_averaging: set High), giving a -3 dB filter response point corresponding to a period of approximately eight minutes, or
- Slow (Reg. 40 Bit 6, *cnfg_holdover_modes*, *fast_averaging:* set *Low*) giving a -3 dB filter response point corresponding to a period of approximately 110 minutes.

Instantaneous

In Instantaneous mode, the DPLL freezes at the frequency it was operating at the time of entering Holdover mode. It does this by using only its internal DPLL integral path value (as reported in Reg. OC, OD, and O7) to determine output frequency. The DPLL proportional path is not used so that any recent phase disturbances have a minimal effect on the Holdover frequency. The integral value used can be viewed as a filtered version of the locked output frequency over a short period of time. The period being in inverse proportion to the DPLL bandwidth setting.

Manual Mode

(Reg. 34 Bit 4, cnfg_input_mode, man_holdover set *High.*) The Holdover frequency is determined by the value in register cnfg_holdover_frequency (Reg. 3E, Reg. 3F, and part of Reg. 40). This is a 19-bit signed number, with a LSB resolution of 0.0003068 ppm, which gives an adjustment range of ±80 ppm. This value can be derived from a reading of register *sts_current_DPLL_frequency* (Reg. OD, Reg. OC and Reg. 07), which gives, in the same format, an indication of the current output frequency deviation, which would be read when the device is locked. If required, this value could be read by external software and averaged over time. The averaged value could then be fed to the *cnfg_holdover_frequency* register, ready for setting the averaged frequency value when the device enters Holdover mode. The sts current DPLL frequency value is internally derived from the Digital Phase Locked Loop (DPLL) integral path, which represents a short-term average measure of the current frequency, depending on the locked loop bandwidth (Reg. 67) selected.

Note... The state diagram above is for TO DPLL only, and the 3-bit state value refers to the register sts_operating Reg. 09 Bits [2:0] TO_DPLL_operating _mode. By contrast, the T4 DPLL has only automatic operation and can be in one of only two possible states: "Instantaneous Automatic Holdover" with zero frequency offset (its start-up state), or "Locked". The T4 DPLL states are not configurable by the User and there is no "Free-run" state.

F8530D_018AutoModeContStateDia_02

at least one ref valid

ADVANCED COMMUNICATIONS

It is also possible to combine the internal averaging filters with some additional software filtering. For example the internal fast filter could be used as an anti-aliasing filter and the software could further filter this before determining the actual Holdover frequency. To support this feature, a facility to read out the internally averaged frequency has been provided. By setting Reg. 40, Bit 5, *cnfg_holdover_modes, read_average,* the value read back from the *cnfg_holdover_frequency* register will be the filtered value. The filtered value is available regardless of what actual Holdover mode is selected. Clearly this results in the register not reading back the data that was written to it.

Example: Software averaging to eliminate temperature drift.

Select Manual Holdover mode by setting Reg. 34 Bit 4, *cnfg_input_mode, man_holdover High*.

Select Fast Holdover Averaging mode by setting Reg. 40 Bit 6, *cnfg_holdover_modes*, *auto_averaging High* and Reg. 40 Bit 7 *High*.

Select to be able to read back filtered output by setting Reg. 40 Bit 5, *cnfg_holdover_modes*, *read_average High*.

Software periodically reads averaged value from the *cnfg_holdover_frequency* register and the temperature (not supplied from ACS8520). Software processes frequency and temperature and places data in software look-up table or other algorithm. Software writes back appropriate averaged value into the *cnfg_holdover_frequency* register.

Once Holdover mode is entered, software periodically updates the *cnfg_holdover_frequency* register using the temperature information (not supplied from ACS8520).

Mini-holdover Mode

Holdover mode so far described refers to a state to which the internal state machine switches as a result of activity or frequency alarms, and this state is reported in Reg. 09. To avoid the DPLL's frequency being pulled off as a result of a failed input, then the DPLL has a fast mechanism to freeze its current frequency within one or two cycles of the input clock source stopping. Under these circumstances the DPLL enters Mini-holdover mode; the Mini-holdover frequency used being determined by Reg. 40, Bits [4:3], *cnfg_holdover_modes, mini_holdover_mode.* Mini-holdover mode only lasts until one of the following happens:

• A new source has been selected, or

FINAL

- The state machine enters Holdover mode, or
- The original fault on the input recovers.

External Factors Affecting Holdover Mode

If the external TCXO/OCXO frequency is varying due to temperature fluctuations in the room, then the instantaneous value can be different from the average value, and then it may be possible to exceed the 0.05 ppm limit (depending on how extreme the temperature fluctuations are). It is advantageous to shield the TCXO/OCXO to slow down frequency changes due to drift and external temperature fluctuations.

The frequency accuracy of Holdover mode has to meet the ITU-T, ETSI and Telcordia performance requirements. The performance of the external oscillator clock is critical in this mode, although only the frequency stability is important - the stability of the output clock in Holdover is directly related to the stability of the external oscillator.

Pre-locked2 Mode

This state is very similar to the Pre-Locked state. It is entered from the Holdover state when a reference source has been selected and applied to the phase locked loop. It is also entered if the device is operating in Revertive mode and a higher-priority reference source is restored.

Upon applying a reference source to the phase locked loop, the ACS8520 will enter the Locked state in a maximum of 100 seconds, as defined by GR-1244-CORE^[19] specification, if the selected reference source is of good quality.

If the device cannot achieve lock within 100 seconds, it reverts to Holdover mode and another reference source is selected.

DPLL Architecture and Configuration

A Digital PLL gives a stable and consistent level of performance that can be easily programmed for different dynamic behavior or operating range. It is not affected by operating conditions or silicon process variations. Digital synthesis is used to generate all required SONET/SDH output frequencies. The digital logic operates at 204.8 MHz that is multiplied up from the external 12.800 MHz oscillator module. Hence the best resolution

DATASHEET

ADVANCED COMMUNICATIONS

SEMTECH

of the output signals from the DPLL is one 204.8 MHz cycle or 4.9 ns.

Additional resolution and lower final output jitter is provided by a de-jittering Analog PLL that reduces the 4.9 ns p-p jitter from the digital down to 500 ps p-p and 60 ps RMS as typical final outputs measured broadband (from 10 Hz to 1 GHz).

This arrangement combines the advantages of the flexibility and repeatability of a DPLL with the low jitter of an APLL. The DPLLs in the ACS8520 are uniquely very programmable for all PLL parameters of bandwidth (from 0.1 Hz up to 70 Hz), damping factor (from 1.2 to 20), frequency acceptance and output range (from 0 to 80 ppm, typically 9.2 ppm), input frequency (12 common SONET/SDH spot frequencies) and input-to-output phase offset (in 6 ps steps up to 200 ns). There is no requirement to understand the loop filter equations or detailed gain parameters since all high level factors such as overall bandwidth can be set directly via registers in the microprocessor interface. No external critical components are required for either the internal DPLLs or APLLs, providing another key advantage over traditional discrete designs.

The T4 DPLL is similar in structure to the T0 DPLL, but since the T4 is only providing a clock synthesis and input to output frequency translation function, with no defined requirement for jitter attenuation or input phase jump absorption, then its bandwidth is limited to the high end and the T4 does not incorporate many of the Phase Buildout and adjustment facilities of the T0 DPLL.

TO DPLL Main Features

- Two programmable DPLL bandwidth controls (Locked and Acquisition bandwidth), each with 10 steps from 0.1 Hz to 70 Hz
- Programmable damping factor: For optional faster locking and peaking control. Factors = 1.2, 2.5, 5, 10 or 20
- Multiple phase lock detectors
- Input to output phase offset adjustment (Master/Slave), ±200 ns, 6 ps resolution step size
- PBO phase offset on source switching disturbance down to ±5 ns
- Multi-cycle phase detection and locking, programmable up to ±8192 UI - improves jitter tolerance in direct lock mode

- Holdover frequency averaging with a choice of averaging times: 8 minutes or 110 minutes and value can be read out
- Multiple E1 and DS1 outputs supported
- Low jitter MFrSync (2 kHz) and FrSync (8 kHz) outputs.

T4 DPLL Main Features

FINAL

- A single programmable DPLL bandwidth control: 18 Hz, 35 Hz, or 70 Hz
- Programmable damping factor: For optional faster locking and peaking control. Factors = 1.2, 2.5, 5, 10 or 20
- Multiple phase lock detectors
- Multi-cycle phase detection and locking, programmable up to ±8192 UI - improves jitter tolerance in direct lock mode
- DS3/E3 support (44.736 MHz / 34.368 MHz) at same time as OC-N rates from TO
- Low jitter E1/DS1 options at same time as OC-N rates from T0
- Frequencies of n x E1/DS1 including 16 and 12 x E1, and 16 and 24 x DS1 supported
- Low jitter MFrSync (2 kHz) and FrSync (8 kHz) outputs
- Can use the T4 DPLL as an Independent FrSync DPLL
- Can use the phase detector in T4 DPLL to measure the input phase difference between two inputs.

The structure of the TO and T4 PLLs are shown later in Figure 11 in the section on output clock ports. That section also details how the DPLLs and particular output frequencies are configured. The following sections detail some component parts of the DPLL.

TO DPLL Automatic Bandwidth Controls

In Automatic Bandwidth Selection mode (Reg. 3B Bit 7), the TO DPLL bandwidth setting is selected automatically from the Acquisition Bandwidth or Locked Bandwidth configurations programmed in *cnfg_TO_DPLL_acq_bw* Reg. 69 and *cnfg_TO_DPLL_locked_bw* Reg. 67 respectively. If this mode is not selected, the DPLL acquires and locks using only the bandwidth set by .

ADVANCED COMMUNICATIONS

SEMTECH

Phase Detectors

A Phase and Frequency detector is used to compare input and feedback clocks. This operates at input frequencies up to 77.76 MHz. The whole DPLL can operate at spot frequencies from 2 kHz up to 77.76 MHz (155.52 MHz is internally divided down to 77.76 MHz). A common arrangement however is to use Lock8k mode (See Reg. 22 to 2D, Bit 6) where all input frequencies are divided down to 8 kHz internally. Marginally better MTIE figures may be possible in direct lock mode due to more regular phase updates. This direct locking capability is one of the unique features of the ACS8520.

A patented multi-phase detector is used in order to give an infinitesimally small input phase resolution combined with large jitter tolerance. The following phase detectors are used:

- Phase and frequency detector (±360° or ±180° range)
- An Early/ Late Phase detector for fine resolution
- A multi-cycle phase detector for large input jitter tolerance (up to 8191 UI), which captures and remembers phase differences of many cycles between input and feedback clocks.

The phase detectors can be configured to be immune to occasional missing input clock pulses by using nearest edge detection (\pm 180° capture) or the normal \pm 360° phase capture range which gives frequency locking. The device will automatically switch to nearest edge locking when the multi-UI phase detector is not enabled, and the other phase detectors have detected that phase lock has been achieved. It is possible to disable the selection of nearest edge locking via Reg. 03 Bit 6 set to 1. In this setting, frequency locking will always be enabled.

The balance between the first two types of phase detector employed can be adjusted via registers 6A to 6D. The default settings should be sufficient for all modes. Adjustment of these settings affects only small signal overshoot and bandwidth.

The multi-cycle phase detector is enabled via Reg. 74, Bit 6 set to 1 and the range is set in exponentially increasing steps from ± 1 UI, 3 UI, 7 UI, 15 UI ... up to 8191 UI via Reg. 74, Bits [3:0]. When this detector is enabled it keeps a track of the correct phase position over many cycles of phase difference to give excellent jitter tolerance. This provides an alternative to switching to Lock8k mode as a method of achieving high jitter tolerance. An additional control (Reg. 74 Bit 5) enables the multiphase detector value to be used in the final phase value as part of the DPLL loop. When enabled by setting *High*, the multi cycle phase value will be used in the loop and gives faster pull in (but more overshoot). The characteristics of the loop will be similar to Lock8k mode where again large input phase differences contribute to the loop dynamics. Setting the bit *Low* only uses a max figure of 360 degrees in the loop and will give slower pullin but gives less overshoot. The final phase position that the loop has to pull in to is still tracked and remembered by the multi-cycle phase detector in either case.

Phase Lock/Loss Detection

FINAL

Phase lock/loss detection is handled in several ways. Phase loss can be triggered from:

- The fine phase lock detector, which measures the phase between input and feedback clock
- The coarse phase lock detector, which monitors whole cycle slips
- Detection that the DPLL is at min or max frequency
- Detection of no activity on the input.

Each of these sources of phase loss indication is individually enabled via register bits (see Reg. 73, 74 and 4D). Phase lock or lost is used to determine whether to switch to nearest edge locking and whether to use acquisition or normal bandwidth settings for the DPLL. Acquisition bandwidth is used for faster pull in from an unlocked state.

The coarse phase lock detector detects phase differences of n cycles between input and feedback clocks, where n is set by Reg. 74, Bits [3:0]; the same register that is used for the coarse phase detector range, since these functions go hand in hand. This detector may be used in the case where it is required that a phase loss indication is not given for reasonable amounts of input jitter and so the fine phase loss detector is disabled and the coarse detector is used instead.

Damping Factor Programmability

The DPLL damping factor is set by default to provide a maximum wander gain peak of around 0.1 dB. Many of the specifications (e.g. GR-1244-CORE^[19], G.812^[10] and G.813^[11]) specify a wander transfer gain of less than 0.2 dB. GR-253^[17] specifies jitter (not wander) transfer of less than 0.1 dB. To accommodate the required levels of transfer gain, the ACS8520 provides a choice of damping

FINAL

DATASHEET

factors, with more choice given as the bandwidth setting increases into the frequency regions classified as jitter. Table 5 shows which damping factors are available for selection at the different bandwidth settings, and what the corresponding jitter transfer approximate gain peak will be.

Table 5 Available Damping Factors for different DPLLBandwidths, and associated Jitter Peak Values

Bandwidth	Reg. 6B [2:0]	Damping Factor selected	Gain Peak/ dB
0.1 Hz to 4 Hz	1, 2, 3, 4, 5	5	0.1
8 Hz	1	2.5	0.2
	2, 3, 4, 5	5	0.1
18 Hz	1	1.2	0.4
	2	2.5	0.2
	3, 4, 5	5	0.1
35 Hz	1	1.2	0.4
	2	2.5	0.2
	3	5	0.1
	4, 5	10	0.06
70 Hz	1	1.2	0.4
	2	2.5	0.2
	3	5	0.1
	4	10	0.06
	5	20	0.03

Local Oscillator Clock

The Master system clock on the ACS8520 should be provided by an external clock oscillator of frequency 12.800 MHz. The clock specification is important for meeting the ITU/ETSI and Telcordia performance requirements for Holdover mode. ITU and ETSI specifications permit a combined drift characteristic, at constant temperature, of all non-temperature-related parameters, of up to 10 ppb per day. The same specifications allow a drift of 1 ppm over a temperature range of 0 to +70°C.

Table 6 ITU and ETSI Specification

Parameter	Value
Tolerance	±4.6 ppm over 20 year lifetime
Drift (Frequency Drift	±0.05 ppm/15 seconds @ constant temp.
over supply	±0.01 ppm/day @ constant temp.
voltage range of +2.7 V to +3.3 V)	±1 ppm over temp. range 0 to +70°C

Telcordia specifications are somewhat tighter, requiring a non-temperature-related drift of less than 40 ppb per day and a drift of 280 ppb over the temperature range 0 to +50° C. Please contact Semtech for information on crystal oscillator suppliers

Parameter	Value
Tolerance	±4.6 ppm over 20 year lifetime
Drift (Froquency Drift	±0.05 ppm/15 seconds @ constant temp.
(Frequency Drift over supply	±0.04 ppm/15 seconds @ constant temp.
voltage range of +2.7 V to +3.3 V)	±0.28 ppm/over temp. range 0 to +50°C

Crystal Frequency Calibration

The absolute crystal frequency accuracy is less important than the stability since any frequency offset can be compensated by adjustment of register values in the IC. This allows for calibration and compensation of any crystal frequency variation away from its nominal value. ±50 ppm adjustment would be sufficient to cope with most crystals, in fact the range is an order of magnitude larger due to the use of two 8-bit register locations. The setting of the *conf_nominal_frequency* register allows for this adjustment. An increase in the register value increases the output frequencies by 0.0196229 ppm for each LSB step.

The default register value (in decimal) = 39321(9999 hex) = 0 ppm offset. The minimum to maximum offset range of the register is 0 to 65535 dec, giving an adjustment range of -771 ppm to +514 ppm of the output frequencies, in 0.0196229 ppm steps.

Example: If the crystal was oscillating at 12.800 MHz + 5 ppm, then the calibration value in the register to give a - 5 ppm adjustment in output frequencies to compensate for the crystal inaccuracy, would be: 39321 - (5/0.0196229) = 39066 (dec) = 989A (hex).

DATASHEET

dependent on:

- The magnitudes of wander and jitter on the selected input reference clock (in Locked mode)
- The internal wander and jitter transfer characteristic (in Locked mode)
- The jitter on the local oscillator clock
- The wander on the local oscillator clock (in Holdover mode).

Wander and jitter are treated in different ways to reflect their differing impacts on network design. Jitter is always strongly attenuated, whilst wander attenuation can be varied to suit the application and operating state. Wander and jitter attenuation is performed using a digital phase locked loop (DPLL) with a programmable bandwidth. This gives a transfer characteristic of a low pass filter, with a programmable pole. It is sometimes necessary to change the filter dynamics to suit particular circumstances - one example being when locking to a new source, the filter can be opened up to reduce locking time and can then be tightened again to remove wander. A change between different bandwidths for locking and for acquisition is handled automatically within the ACS8520.

There may be a phase shift across the ACS8520 between the selected input reference source and the output clock over time, mainly caused by frequency wander in the external oscillator module. Higher stability XOs will give better performance for MTIE. The oscillator becomes more critical at DPLL bandwidth near to or below 0.1 Hz since the rate of change of the DPLL may be slow compared to the rate of change of the oscillator frequency. Shielding of the OCXO or TCXO can further slow down the rate of change of temperature and hence frequency, thus improving output wander performance.

The phase shift may vary over time but will be constrained to lie within specified limits. The phase shift is characterized using two parameters, MTIE (Maximum Time Interval Error) and TDEV (Time Deviation) which, although being specified in all relevant specifications, differ in acceptable limits in each one. Typical measurements for the ACS8520 are shown in Figure 6, for Locked mode operation. Figure 7 shows a typical measurement of Phase Error accumulation in Holdover mode operation.

The required performance for phase variation during Holdover is specified in several ways and depends on the relevant specification (See "References" on page 146), for example:

- 1. ETSI ETS-300 462-5^[4], Section 9.1, requires that the short-term phase error during switchover (i.e. Locked to Holdover to Locked) be limited to an accumulation rate no greater than 0.05 ppm during a 15 second interval.
- ETSI ETS-300 462-5^[4], Section 9.2, requires that the long-term phase error in the Holdover mode should not exceed
 {(a1 + a2)S + 0.5bS² + c}
 where

a1 = 50 ns/s (allowance for initial frequency offset)
a2 = 2000 ns/s (allowance for temperature variation)
b =
$$1.16x10^{-4}$$
 ns/s² (allowance for ageing)
c = 120 ns (allowance for entry into Holdover mode).
S = Elapsed time (s) after loss of external ref. input

 ANSI Tin1.101-1999^[1], Section 8.2.2, requires that the phase variation be limited so that no more than 255 slips (of 125 μs each) occur during the first day of Holdover. This requires a frequency accuracy better than:

 $((24x60x60)+(255x125\mu s))/(24x60x60) = 0.37 \text{ ppm}$ Temperature variation is not restricted, except to within the normal bounds of 0 to 50°C.

- 4. Telcordia GR-1244-CORE^[19], Section 5.2, shows that an initial frequency offset of 50 ppb is permitted on entering Holdover, whilst a drift over temperature of 280 ppb is allowed; an allowance of 40 ppb is permitted for all other effects.
- ITU G.822^[12], Section 2.6, requires that the slip rate during category (b) operation (interpreted as being applicable to Holdover mode operation) be limited to less than 30 slips (of 125 µs each) per hour.

 $((60 \times 60) + (30 \times 125 \ \mu s))/(60 \times 60)) = 1.042 \ ppm$

FINAL

SEMTECH

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Figure 7 Phase Error Accumulation of TO PLL Output Port in Holdover Mode

FINAL

Jitter and Wander Transfer The ACS8520 has a programmable jitter and wander transfer characteristic. This is set by the DPLL bandwidth. The -3 dB jitter transfer attenuation point can be set in the range from 0.1 Hz to 70 Hz in 10 steps. The wander and jitter transfer characteristic is shown in Figure 8. Wander on the local oscillator clock will not have a significant effect on the output clock whilst in Locked mode, provided that the DPLL bandwidth is set high enough so that the DPLL can compensate quickly enough for any frequency changes in the crystal.

In Free-run or Holdover mode wander on the crystal is more significant. Variation in crystal temperature or supply voltage both cause drifts in operating frequency, as does ageing. These effects must be limited by careful selection of a suitable component for the local oscillator, as specified in the section See Local Oscillator Clock.

Phase Build-out

Phase Build-out (PBO) is the function to minimize phase transients on the output SEC clock during input reference switching. If the currently selected input reference clock source is lost (due to a short interruption, out of frequency detection, or complete loss of reference) the second, next highest priority reference source will be selected, and a PBO event triggered.

ITU-T G.813^[11] states that the maximum allowable shortterm phase transient response, resulting from a switch from one clock source to another, with Holdover mode entered in between, should be a maximum of 1 µs over a 15 second interval. The maximum phase transient or jump should be less than 120 ns at a rate of change of less than 7.5 ppm and the Holdover performance should be better than 0.05 ppm. The ACS8520 performance is well within this requirement. The typical phase disturbance on clock reference source switching will be less than 5 ns on the ACS8520.

When a PBO event is triggered, the device enters a temporary Holdover state. When in this temporary state, the phase of the input reference is measured, relative to the output. The device then automatically accounts for any measured phase difference and adds the appropriate phase offset into the DPLL to compensate. Following a PBO event, whatever the phase difference on change of input, the output phase transient is minimized to be no greater than 5 ns.

On the ACS8520, PBO can be enabled, disabled or frozen using the microprocessor interface. By default, it is enabled. When PBO is enabled, PBO can also be frozen (at the current offset setting). The device will then ignore any further PBO events occurring on any subsequent

Figure 8 Sample of Wander and Jitter Measured Transfer Characteristics

DATASHEET

ADVANCED COMMUNICATIONS

FINAL

reference switch, and maintain the current phase offset. If PBO is disabled while the device is in the Locked mode, there may be a phase shift on the output SEC clocks as the DPLL locks back to 0 degrees phase error. The rate of phase shift will depend on the programmed bandwidth. Enabling PBO whilst in the Locked stated will also trigger a PBO event.

PBO Phase Offset

In order to minimize the systematic (average) phase error for PBO, a PBO Phase Offset can be programmed in 0.101 ns steps in the *cnfg_phase_offset_pbo* register, Reg.72. The range of the programmable PBO phase offset is restricted to ± 1.4 ns. This can be used to eliminate an accumulation of phase shifts in one direction.

Input to Output Phase Adjustment

When PBO is off, such that the system always tries to align the outputs to the inputs at the 0° position, there is a mechanism provided in the ACS8520 for precise fine tuning of the output phase position with respect to the input. This can be used to compensate for circuit and board wiring delays. The output phase can be adjusted in 6 ps steps up to 200 ns in a positive or negative direction. The phase adjustment actually changes the phase position of the feedback clock so that the DPLL adjusts the output clock phases to compensate. The rate of change of phase is therefore related to the DPLL bandwidth. For the DPLL to track large instant changes in phase, either Lock8k mode should be on, or the coarse phase detector should be enabled. Register *cnfg_phase_offset* at Reg. 70 and 71 controls the output phase, which is only used when Phase Build-out is off (Reg. 48, Bit 2 = 0 and Reg. 76, Bit 4 = 0).

Input Wander and Jitter Tolerance

The ACS8520 is compliant to the requirements of all relevant standards, principally ITU Recommendation G.825^[15], ANSI DS1.101-1999^[1], Telcordia GR1244, GR253, G812, G813 and ETS 300 462-5 (1997).

All reference clock inputs have a tight frequency tolerance but a generous jitter tolerance. Pull-in, hold-in and pull-out ranges are specified in Table 8. Minimum jitter tolerance masks are specified in Figures 9 and 10, and Tables 8 and 10, respectively. The ACS8520 will tolerate wander and jitter components greater than those shown in Figure 9 and Figure 10, up to a limit determined by a combination of the apparent long-term frequency offset caused by wander and the eye-closure caused by jitter (the input source will be rejected if the offset pushes the frequency outside the hold-in range for long enough to be detected, whilst the signal will also be rejected if the eye closes sufficiently to affect the signal purity). Either the Lock8k mode, or one of the extended phase capture ranges should be engaged for high jitter tolerance according to these masks.

All reference clock ports are monitored for quality, including frequency offset and general activity. Single short-term interruptions in selected reference clocks may not cause re- arrangements, whilst longer interruptions, or multiple, short-term interruptions, will cause rearrangements, as will frequency offsets which are sufficiently large or sufficiently long to cause loss-of-lock in the phase-locked loop. The failed reference source will be removed from the priority table and declared as unserviceable, until its perceived quality has been restored to an acceptable level.

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Table 8 Input Reference Source Jitter Tolerance

Jitter Tolerance	Frequency Monitor Acceptance Range	Frequency Acceptance Range (Pull-in)	Frequency Acceptance Range (Hold-in)	Frequency Acceptance Range (Pull-out)
G.703 ^[6]	±16.6 ppm	±4.6 ppm (see Note (i))	±4.6 ppm (see Note (i))	±4.6 ppm (see Note (i))
G.783 ^[9]	-	±9.2 ppm (see Note (ii))	±9.2 ppm (see Note (ii))	±9.2 ppm (see Note (ii))
G.823 ^[13]	-			
GR-1244-CORE ^[19]				

Notes: (i) The frequency acceptance and generation range will be ± 4.6 ppm around the required frequency when the external crystal frequency accuracy is within a tolerance of ± 4.6 ppm.

(ii) The fundamental acceptance range and generation range is ±9.2 ppm with an exact external crystal frequency of 12.800 MHz. This is the default DPLL range, the range is also programmable from 0 to 80 ppm in 0.08 ppm steps.

Figure 9 Minimum Input Jitter Tolerance (OC-3/STM-1)

Table 9	Amplitude an	d Frequency	Values for	⁻ Jitter T	olerance	(OC-3/STM-1))
	/					. /	

STM level	Peak to peak amplitude (unit Interval)			Frequency (Hz)											
	AO	A1	A2	A3	A4	FO	F1	F2	F3	F4	F5	F6	F7	F8	F9
STM-1	2800	311	39	1.5	0.15	12 u	178 u	1.6 m	15.6 m	0.125	19.3	500	6.5 k	65 k	1.3

FINAL

DATASHEET

Figure 10 Minimum Input Jitter Tolerance (DS1/E1)

 Table 10 Amplitude and Frequency Values for Jitter Tolerance (DS1/E1)

Туре	Spec.	Amplitude (UI p-p) Frequency (Hz)					
		A1	A2	F1	F2	F3	F4
DS1	GR-1244-CORE ^[19]	5	0.1	10	500	8 k	40 k
E1	ITU G.823 ^[13]	1.5	0.2	20	2.4 k	18 k	100

Using the DPLLs for Accurate Frequency and Phase Reporting

The frequency monitors in the ACS8520 perform frequency monitoring with a programmable acceptable limit of up to ± 60.96 ppm. The resolution of the measurement is 3.8 ppm and the measured frequency can be read back from Reg. 4C, with channel selection at Reg. 4B. For more accurate measurement of both frequency and phase, the TO and T4 DPLLs and their phase detectors, can be used to monitor both input frequency and phase. The T0 DPLL is always monitoring the currently locked to source, but if the T4 path is not used then the T4 DPLL can be used as a roving phase and frequency meter. Via software control it could be switched to monitor each input in turn and both the phase and frequency can be reported with a very fine resolution.

The registers *sts_current_dpll_frequency* (Reg. OC, Reg. OD and Reg. O7) report the frequency of either the TO or T4 DPLL with respect to the external crystal XO frequency (after calibration via Reg. 3C, 3D if used). The selection of T4 or TO DPLL reporting is made via Reg. 4B, Bit 4. The value is a 19-bit signed number with one LSB representing 0.0003068 ppm (range of ±80 ppm). This value is actually the integral path value in the DPLL, and as such corresponds to an averaged measurement of the input frequency, with an averaging time inversely proportional to the DPLL bandwidth setting. Reading this regularly can show how the currently locked source is varying in value e.g. due to frequency wander on its input.

The input phase, as seen at the DPLL phase detector, can be read back from register *sts_current_phase*, Reg. 77 and 78. T0 or T4 DPLL phase detector reporting is again controlled by Reg. 4B, Bit 4. One LSB corresponds to approximately 0.7 degrees phase difference. For the T0 DPLL this will be reporting the phase difference between the input and the internal feedback clock. The phase result is internally averaged or filtered with a -3 dB attenuation point at approximately 100 Hz. For low DPLL bandwidths, 0.1 Hz for example, this measured phase information from the T0 DPLL gives input phase wander in the frequency band from for example 0.1 Hz to 100 Hz. This could be used to give a crude input MTIE measurement up to an observation period of approximately 1000 seconds using external software.

In addition, the T4 DPLL phase detector can be used to make a phase measurement between two inputs. Reg. 65, Bit 7 is used to switch one input to the T4 phase detector over to the current T0 input. The other phase detector input remains connected to the selected T4 input source, the selected source can be forced via Reg. 35,

Bits [3:0], or changed via the T4 priority (Reg. 18 to 1E, when Reg. 4B, Bit 4 = 1).

Consequently the phase detector from the T4 DPLL could be used to measure the phase difference between the currently selected source and the stand-by source, or it could be used to measure the phase wander of all standby sources with respect to the current source by selecting each input in sequence. An MTIE and TDEV calculation could be made for each input via external processing.

Configuration for Redundancy Protection

When two ACS8520 devices are to be used in a redundancy-protection scheme within a Network Element (NE), one will be designated as Master, one as Slave.

Table 11 How to Align Outputs of Two ACS8520 Devices

Action	Result
If possible, one device (the nominated Slave) should lock to the other device (the nominated Master).	With the Slave locked to the Master, their output frequencies will be guaranteed to be the same.
All programmed priorities within the two devices should be the same, except for the fact that (1)the Master output is designated the highest priority input on the Slave.(2) the Slave output is designated zero priority (disabled) on the Master. (Reg. 18 to 1E)	These two actions ensure that if the Master device fails, the Slave device will switch to lock to the same source that the Master was locked to before it failed.
Any input detected as invalid in one device should be disabled within the other device. (Reg. 0E/0F & 30/31)	
Phase Build-out should be disabled on the Slave whilst it is locked to the Master.	This will ensure that the phase of the Slave is locked to the phase of the Master. It also enables the use of the Phase offset control register to compensate for delays between the Master and Slave.
Revertive mode should be enabled.	This will ensure that the Slave locks to the Master although it may have been locked to another source previously.
The bandwidth of the Slave should be set higher than that of the Master (it is recommended to configure the slave with the highest supported bandwidth).	This ensures that any transient occurring on the output of the Master is followed as closely as possible on the Slave.

It is expected that an NE will use the TO output for its internal operations. The phase of the outputs from the T4 path (TO8 & TO9) will not be aligned, unless the T4 outputs are locked to the TO outputs.

In many applications, the clocks supplied into the system are required to be aligned not only in frequency, but also in phase between the Master and Slave devices. This ensures minimal disturbance when any clock sink switches between Master and Slave.

In order to ensure that the outputs of the two ACS8520s are always aligned in frequency and phase, the procedures in Table 11 should be followed.

In order to maintain the conditions outlined in Table 11 it is necessary for software systems to maintain monitoring and control functions. These monitoring functions should either poll the device or respond to interrupts in order to maintain the correct settings within the two devices. Please refer to the descriptions or registers mentioned in Table 11 and also Regs 34, 3B, 48, 67 and 69, for more details on these associated settings. See also Application Note AN-SETS-7.

Table 12 MSTSLVB Pin Operation

MSTSLVB	Feature	Setting	Reason
1 = Master	Priority of input I11	As programmed (program 0 to ensure it gets disabled)	Make sure that the designated Master device cannot lock to the output of the Slave device.
	Phase Build-out	As programmed in register.	If the system requires PBO, then this being enabled on the Master will give the overall system performance with PBO. The slave only needs to track the Master (no PBO).
	Revertive mode	As programmed in register.	Revertive behavior of the Master in a Master/Slave system will define the overall Revertive behavior of the system.
	TO DPLL bandwidth	As programmed in register (automatic or manual).	Device selects locked or acquisition bandwidth.

FINAL

DATASHEET

ADVANCED COMMUNICATIONS

Table 12 MSTSLVB Pin Operation (cont...)

EMTECH

MSTSLVB	Feature	Setting	Reason
0 = Slave	Priority of input I11	1 (highest priority).	When a Slave, this input is designated as that connected to the output of the Master.
	Phase Build-out	Disabled.	This ensures that the Slave locks to the Master with the minimum phase offset possible.
	Revertive mode	Enabled	This ensures that the Slave always locks to the Master when it is available.
	TO DPLL bandwidth	Forced to the acquisition bandwidth setting.	A higher bandwidth on the Slave ensures closer phase tracking.

For direct hardware control of Master or Slave operation the Master/Slave control pin (MSTSLVB) can be used to externally control some of these functions according to Table 12. These functions can also be controlled via software.

Whilst the Master and Slave outputs could be crossconnected and connected to any input on the alternative device, input I11 has been chosen as the input controlled by the MSTSLVB pin.

Alignment of Priority Tables in Master and Slave ACS8520

In a redundant system where the Slave is normally locked to the Master device, if the Master device fails the Slave device must revert to locking to the same external reference that the Master was locked to. This will ensure that minimum disturbance, both in frequency and phase, is created on the output of the Slave device due to the failure of the Master device. As stated previously (Table 11), it is recommended that the programmed priorities of the reference sources are the same in both devices, apart from the Master/Slave cross-connect inputs.

Both devices can also monitor all their reference sources and determine the validity of each source. It is recommended that the availability of valid sources are also aligned between the two devices. This is achieved by writing the value, as reported by *sts_sources_valid* Reg. OE & OF), from one device into the

FINAL

cnfg_sts_remote_sources_valid register (Reg. 30 & 31) of the other. This will ensure that any source considered invalid by one device is also considered invalid by the other. If a failure of the Master does occur, this will ensure that the Slave will always select the reference that the Master was locked to.

T4 Generation in Master and Slave ACS8520

As specified by the I.T.U., there is no need to align the phases of the T4 outputs in Master and Slave devices. For a fully redundant system, there is a need, however, to ensure that all devices select the same reference source. As there is no need to guarantee the alignment of phase of the T4 outputs, the Slave devices T4 input does not need to lock to the Masters T4 output, but only needs to ensure that it locks to the same external reference source. The actions of aligning the priority tables and available reference sources performed for the TO outputs will be equally valid for the T4 outputs. The only difference being that the input connected to the Master's output is disabled for the T4 path (allowing it only to lock to external references). This can be easily achieved as the T4 and T0 paths have separate programmed priorities. There is no defined Holdover requirement for the T4 path.

Alignment of the Output Clock Phases in Master and Slave ACS8520

When the **ACS8520** is locked to a reference source of frequency f, the output clocks of frequency f will be inphase with the reference source (with Phase Build-out disabled). As all TO output clocks from the **ACS8520** are derived from the same TO frequency, any frequency greater than f at the output will be "falling edge aligned" with the output at frequency f. Any frequency less than f will be effectively a division of f, if possible. Similarly for T4, all T4 output clocks will be phase-related to the T4 input.

The effect of this relationship is that if the Master and Slave devices are cross-connected with 19.44 MHz clocks, their output clocks at 19.44 MHz, 38.88 MHz, 77.76 MHz, 155.52 MHz & 311.04 MHz will be aligned between the 2 devices. However, their outputs of 6.48 MHZ, 1.544 MHz, 2.048 MHz, 2 kHz and 8 kHz etc. would not necessarily be aligned. Whilst most applications would not be affected by the non-alignment of most of these clocks, the non-alignment of the 2 kHz and/or the 8 kHz may cause framing errors.

SEMTECH

There are 2 ways to align the 2 kHz and/or 8 kHz outputs:

FINAL

- 1. the use of the External syncing function, or
- 2. directly locking the Slave to 2 kHz or 8 kHz from the Master.

By directly locking the Slave to the 2 kHz (MFrSync) output of the Master, all frequencies output from the Slave will be in phase alignment with the same frequency generated from the Master. If the Slave is directly locked to the 8 kHz (FrSync) output from the Master, then all frequencies except for 2 kHz MFrSync outputs will be in alignment.

If using the external syncing function then two signals need to be interconnected between the Master and Slave:

- 1. the clock and,
- 2. the Sync signal.

This requires some configuration enhancements. The Sync signal is not locked to, it is sampled using the reference clock and used to realign the generated outputs. The generated outputs are still always locked to the reference clock and related to each other. Details on the Master and Slave interconnection wiring and software configuration can be found in refer to the application note AN-SETS-2. The following section describes the resynchronization operation of the MFrSync via the SYNC2K input.

MFrSync and FrSync Alignment-SYNC2K

The SYNC2K input (pin 45) is monitored by the ACS8520 for consistent phase and correct frequency and if it does not pass these quality checks, an alarm flag is raised (Reg. 08, Bit 7 and Reg. 09, Bit 7). The check for consistent phase involves checking that each input edge is within an expected timing window. The window size is set by Reg. 7C, Bits [6:4]. An internal detector senses that a correct SYNC2K signal is present and only then allows the signal to resynchronize the internal dividers that generate the 8 kHz FrSync and 2 kHz MFrSync outputs. This sequence avoids spurious resynchronizations that may otherwise occur with connections and disconnections of the SYNC2K input.

The SYNC2K input will normally be a 2 kHz frequency, only its falling edge is used. It can however be at a frequencies of 4 kHz or 8 kHz without any change to the register setups. Only alignment of the 8 kHz will be achieved in this case.

DATASHEET Safe sampling of the SYNC2K input is achieved by using the currently selected clock reference source to do the input sampling. This is based on the principle that FrSync alignment is being used on a Slave device that is locked to the clock reference of a Master device that is also providing the 2 kHz SYNC2K input. Phase Build-out mode should be off (Reg. 48, Bit 2 = 0). The 2 kHz MFrSync output from the Master device has its falling edge aligned with the falling edge of the other output clocks, hence the SYNC2K input is normally sampled on the rising edge of the current input reference clock, in order to provide the most margin. Some modification of the expected timing of the SYNC2K with respect to the reference clock can be achieved via Reg. 7B, Bits [1:0]. This allows for the SYNC2K input to arrive either half a reference clock cycle early or up to one and a half cycle late, hence allowing a safe sampling margin to be maintained.

A different sampling resolution is used depending on the input reference frequency and the setting of Reg. 7B Bit 6, cnfg_sync_phase. With this bit Low, the SYNC2K input sampling has a 6.48 MHz resolution, this being the preferred reference frequency to lock to from the Master, in conjunction with the SYNC2K 2 kHz, since it gives the most timing margin on the sampling and aligns all of the higher rate OC-3 derived clocks. When Bit 6 is high the SYNC2K can have a sampling resolution of either 19.44 MHz (when the current locked to reference is 19.44 MHz) or 38.88 MHz (all other frequencies). This would allow for instance a 19.44 MHz and 2 kHz pair to be used for Slave synchronization or for Line card synchronization. Reg. 7B Bit 7, indep_FrSync/MFrSync controls whether the 2 kHz MFrSync and 8 kHz FrSync outputs keep their precise alignment with the other output clocks.

When *indep_FrSync/MFrSync* Reg. 7B Bit 7 is *Low* the FrSyncs and the other higher rate clocks are not independent and their alignment on the falling 8kHz edge is maintained. This means that when Bit Sync_OC-N_rates is High, the OC-N rate dividers and clocks are also synchronized by the SYNC2K input. On a change of phase position of the SYNC2K, this could result in a shift in phase of the 6.48 MHz output clock when a 19.44 MHz precision is used for the SYNC2K input. To avoid disturbing any of the output clocks and only align the MFrSync and FrSync outputs, at the chosen level of precision, then independent Frame Sync mode can be used (Reg. 7B, Bit 7 = 1). Edge alignment of the FrSync output with other clocks outputs may then change depending on the SYNC2K sampling precision used. For

ADVANCED COMMUNICATIONS

FINAL

example, with a 19.44 MHz reference input clock and Reg. 7B, Bits 6 and 7 both *High* (independent mode and Sync OC-N rates), then the FrSync output will still align with the 19.44 MHz output but not with the 6.48 MHz output clock.

The FrSync and MFrSync outputs always come from the TO DPLL path. 2kHz and 8kHz outputs can also be produced at the TO1 to TO7 outputs. These can come from either the TO DPLL or from the T4 DPLL, controlled by Reg. 7A, Bit 7.

If required, this allows the T4 DPLL to be used as a separate PLL for the FrSync and MFrSync path with a 2 kHz input and 2 kHz and 8 kHz Frame Sync outputs.

Output Clock Ports

The device supports a set of main output clocks, TO and T4, and a pair of secondary Sync outputs, FrSync and MFrSync. The two main output clocks, TO and T4, are independent of each other and are individually selectable. The two secondary output clocks, FrSync and MFrSync, are derived from either TO or T4. The frequencies of the main output clocks are selectable from a range of predefined spot frequencies and a variety of output technologies are supported, as defined in Table 13.

PECL/LVDS/AMI Output Port Selection

The choice of PECL or LVDS compatibility is programmed via the *cnfg_differential_outputs* register, Reg. 3A.

AMI port, TO8, supports a composite clock, consisting of a 64 kHz AMI clock with 8 kHz boundaries marked by deliberate violations of the AMI coding rules, as specified in ITU recommendation G.703^[6]. Departures from the nominal pattern are detected within the ACS8520, and may cause reference-switching if too frequent. See "DC Characteristics: AMI Input/Output Port" on page 138., for more details.

Output Frequency Selection and Configuration

The output frequency at many of the outputs is controlled by a number of inter-dependent parameters. These parameters control the selections within the various blocks shown in Figure 11.

The ACS8520 contains two main DPLL/APLL paths. Whilst they are largely independent, there are a number of ways in which these two structures can interact. Figure 11 shows an expansion of the original Block Diagram (Figure 1) for the PLL paths.

TO DPLL and APLLs

The TO DPLL always produces 77.76 MHz regardless of either the reference frequency (frequency at the input pin of the device) or the locking frequency (frequency at the input of the DPLL Phase and Frequency Detector (PFD)).

The input reference is either passed directly to the PFD or via a pre-divider (not shown) to produce the reference input. The feedback 77.76 MHz is either divided or synthesized to generate the locking frequency.

Digital Frequency Synthesis (DFS) is a technique for generating an output frequency using a higher frequency system clock (204.8 MHz in the case of the 77.76 MHz synthesis). However, the edges of the output clock are not ideally placed in time, since all edges of the output clock will be aligned to the active edge of the system clock. This will mean that the generated clock will inherently have jitter on it equivalent to one period of the system clock.

The TO 77M forward DFS block uses DFS clocked by the 204.8 MHz system clock to synthesize the 77.76 MHz and, therefore, has an inherent 4.9 ns of p-p jitter. There is an option to use an APLL, the TO feedback APLL, to filter out this jitter before the 77.76 MHz is used to generate the feedback locking frequency in the TO feedback DFS block. This analog feedback option allows a lower jitter (<1 ns) feedback signal to give maximum performance. The digital feedback option is present so that when the output path is switched to digital feedback the two paths remain synchronized.

The TO 77M forward DFS block is also the block that handles Phase Build-out and any phase offset programmed into the device. Hence, the TO 77M forward DFS and the TO 77M output DFS blocks are locked in frequency but may be offset in phase.

The TO 77M output DFS block also uses the 204.8 MHz system clock and always generates 77.76 MHz for the output clocks (with inherent 4.9 ns of jitter). This is fed to another DFS block and to the TO output APLL. The low frequency TO LF output DFS block is used to produce three frequencies; two of them, Digital1 and Digital2, are available for selection to be produced at outputs TO1-TO7, and the third frequency can produce multiple E1/DS1 rates via the filtering APLLs. The input clock to the TO LF output DFS block is either 77.76 MHz from the TO output APLL (post jitter filtering) or 77.76 MHz direct from the TO 77M output DFS. Utilizing the clock from the TO output APLL will result in lower jitter outputs from the TO LF output DFS block.

EMTECH

FINAL

DATASHEET

Figure 11 PLL Block Diagram

However, when the input to the TO APLL is taken from the TO LF output DFS block, the input to that block comes directly from the TO 77M output DFS block so that a "loop" is not created.

The TO output APLL is for multiplying and filtering. The input to the TO output APLL can be either 77.76 MHz from the TO 77M output DFS block or an alternative frequency from the TO LF output DFS block (offering 77.76 MHz, 12E1, 16E1, 24DS1 or 16DS1). The frequency from the TO output APLL is four times its input frequency i.e. 311.04 MHz when used with a 77.76 MHz input. The TO output APLL is subsequently divided by 1, 2, 4, 6, 8, 12, 16 and 48 and these are available at the TO1-TO7 outputs.

T4 DPLL & APLL

The T4 path is much simpler than the T0 path. This path offers no Phase Build-out or phase offset. The T4 input can be used to either lock to a reference clock input independent of the T0 path, or lock to the T0 path. Unlike the T0 path, the T4 forward DFS block does not always generate 77.76 MHz. The possible frequencies are listed

in the table. Similar to the TO path, the output of the T4 forward DFS block is generated using DFS clocked by the 204.8 MHz system clock and will have an inherent jitter of 4.9 ns.

The T4 feedback DFS also has the facility to be able to use the post T4 APLL (jitter-filtered) clock to generate the feedback locking frequency. Again, this will give the maximum performance by using a low jitter feedback.

The T4 output APLL block is also for multiplying and filtering. The input to the T4 output APLL can come either from the T4 forward DFS block or from the T0 path. The input to the T4 output APLL can be programmed to be one of the following:

- (a) Output from the T4 forward DFS block (12E1, 24DS1, 16E1, 16DS1, E3, DS3, OC-N),
- (b) 12E1 from TO,
- (c) 16E1 from TO,
- (d) 24DS1 from T0,
- (e) 16DS1 from T0.

ADVANCED COMMUNICATIONS

FINAL

The frequency generated from the T4 output APLL block is four times its input frequency i.e. 311.04 MHz when used with a 77.76 MHz input. The T4 output APLL is subsequently divided by 2, 4, 8, 12, 16, 48 and 64 and these are available at the T01-T07 outputs.

The TO8 and TO9 outputs are driven from either the T4 or the T0 path. The TO10 and TO11 outputs are always generated from the T0 path. Reg. 7A Bit 7 selects whether the source of the 2 kHz and 8 kHz outputs available from TO1-TO7 is derived from either the T0 or the T4 paths.

Output Frequency Configuration Steps

The output frequency selection is performed in the following steps:

1. Does the application require the use of the T4 path as an independent PLL path or not. If not, then the T4

path can be utilized to produce extra frequencies locked to the TO path.

- Refer to Table 15, Frequency Divider Look-up, to choose a set of output frequencies- one for each path, T4 and T0. Only one set of frequencies can be generated simultaneously from each path.
- 3. Refer to the Table 15 to determine the required APLL frequency to support the frequency set.
- 4. Refer to Table 16, TO APLL Frequencies, and Table 17, T4 APLL Frequencies, to determine what mode the T0 and T4 paths need to be configured in, considering the output jitter level.
- 5. Refer to Table 18, TO1 TO7 output Frequency Selection, and the column headings in Table 15, Frequency Divider Look-up, to select the appropriate frequency from either of the APLLs on each output as required.

Port Name	Output Port Technology	Frequencies Supported
T01	TTL/CMOS	
T02	TTL/CMOS	
T03	TTL/CMOS	
T04	TTL/CMOS	Fraguency collection on per Table 14 and Table 19
T05	TTL/CMOS	Frequency selection as per Table 14 and Table 18
T06	LVDS/PECL (LVDS default)	
T07	PECL/LVDS (PECL default)	
T08	AMI	64/8 kHz (composite clock, 64 kHz + 8 kHz), fixed frequency.
T09	TTL/CMOS	Fixed frequency, either 1.544 MHz or 2.048 MHz.
T010	TTL/CMOS	FrSync, 8 kHz programmable pulse width and polarity, see Reg. 7A.
T011	TTL/CMOS	MFrSync, 2 kHz programmable pulse width and polarity, see Reg. 7A.

Table 13 Output Reference Source Selection Table

Note...1.544 MHz/2.048 MHz are shown for SONET/SDH respectively. Pin SONSDHB controls default, when High SONET is default.

SEMTECH

ADVANCED COMMUNICATIONS
Table 14 Output Frequency Selection

Frequency (MHz, unless stated otherwise)		TO DPLL Mode	T4 DPLL Mode	T4 APLL Input Mux	Jitter Level (typ)		
l					rms (ps)	p-p (ns)	
2 kHz		77.76 MHz Analog	-	-	60	0.6	
2 kHz		Any digital feedback mode	-	-	1400	5	
8 kHz		77.76 MHz Analog	-	-	60	0.6	
8 kHz		Any digital feedback mode	-	-	1400	5	
1.536	(not TO4/TO5)	-	12E1 mode	Select T4 DPLL	500	2.3	
1.536	(not T04/T05)	-	-	Select TO DPLL 12E1	250	1.5	
1.544	(not T04/T05)	-	16DS1 mode	Select T4 DPLL	200	1.2	
1.544	(not TO4/TO5)	-	-	Select TO DPLL 16DS1	150	1.0	
1.544	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13	
1.544	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18	
2.048		-	12E1 mode	Select T4 DPLL	500	2.3	
2.048		-	-	Select TO DPLL 12E1	250	1.5	
2.048	(not T04/T05)	-	16E1 mode	Select T4 DPLL	400	2.0	
2.048	(not T04/T05)	-	-	Select TO DPLL 16E1	220	1.2	
2.048	(not TO6)	12E1 mode	-	-	900	4.5	
2.048	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13	
2.048	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18	
2.059		-	16DS1 mode	Select T4 DPLL	200	1.2	
2.059		-	-	Select TO DPLL 16DS1	150	1.0	
2.059	(not TO6)	16DS1 mode	-	-	760	2.6	
2.316	(not TO4/TO5)	-	24DS1 mode	Select T4 DPLL	110	0.75	
2.316	(not TO4/TO5)	-	-	Select TO DPLL 24DS1	110	0.75	
2.731		-	16E1 mode	Select T4 DPLL	400	1.5	
2.731		-	-	Select TO DPLL 16E1	220	1.2	
2.731	(not TO6)	16E1 mode	-	-	250	1.6	
2.796	(not T04/T05)	-	DS3 mode	Select T4 DPLL	110	1.0	
3.088		-	24DS1 mode	Select T4 DPLL	110	0.75	
3.088		-	-	Select TO DPLL 24DS1	110	0.75	
3.088	(not TO6)	24DS1 mode	-	-	110	0.75	
3.088	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13	
3.088	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18	

FINAL

ACS8520 SETS

DATASHEET

SEMTECHADVANCED COMMUNICATIONS Table 14 Output Frequency Selection (cont...)

Frequency (MHz, unless stated otherwise)

					rms (ps)	p-p (ns)
3.728		-	DS3 mode	Select T4 DPLL	110	1.0
4.096	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13
4.096	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18
4.296	(not T04/T05)	-	E3 mode	Select T4 DPLL	120	1.0
4.86	(not T04/T05)	-	77.76 MHz mode	Select T4 DPLL	60	0.6
5.728		-	E3 mode	Select T4 DPLL	120	1.0
6.144		12E1 mode	-	-	900	4.5
6.144		-	12E1 mode	Select T4 DPLL	500	2.3
6.144		-	-	Select TO DPLL 12E1	250	1.5
6.176		16DS1 mode	-	-	760	2.6
6.176		-	16DS1 mode	Select T4 DPLL	200	1.2
6.176		-	-	Select TO DPLL 16DS1	150	1.0
6.176	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13
6.176	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18
6.48		-	77.76 MHz mode	Select T4 DPLL	60	0.6
6.48	(not TO6)	77.76 MHz analog	-	-	60	0.6
6.48	(not TO6)	77.76 MHz digital	-	-	60	0.6
8.192		12E1 mode	-	-	900	4.5
8.192		16E1 mode	-	-	250	1.6
8.192		-	16E1 mode	Select T4 DPLL	400	2.0
8.192		-	-	Select TO DPLL 16E1	220	1.2
8.192	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13
8.192	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18
8.235		16DS1 mode	-	-	760	2.6
9.264		24DS1 mode	-	-	110	0.75
9.264		-	24DS1 mode	Select T4 DPLL	110	0.75
9.264		-	-	Select TO DPLL 24DS1	110	0.75
10.923		16E1 mode	-	-	250	1.6
11.184		-	DS3 mode	Select T4 DPLL	110	1.0
12.288		12E1 mode	-	-	900	4.5
12.288		-	12E1 mode	Select T4 DPLL	500	2.3

FINAL

T4 DPLL Mode

TO DPLL Mode

ACS8520 SETS

T4 APLL Input Mux

DATASHEET

Jitter Level (typ)
12.352 v	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13
12.352 v	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18
16.384		12E1 mode	-	-	900	4.5
16.384		16E1 mode	-	-	250	1.6
16.384		-	16E1 mode	Select T4 DPLL	400	2.0
16.384		-	-	Select TO DPLL 16E1	220	1.2
16.384 v	via Digital1 (not TO7) or Digital2 (not TO6)	77.76 MHz Analog	-	-	3800	13
16.384 v	via Digital1 (not TO7) or Digital2 (not TO6)	Any digital feedback mode	-	-	3800	18
16.469		16DS1 mode	-	-	760	2.6
17.184		-	E3 mode	Select T4 DPLL	120	1.0
18.528		24DS1 mode	-	-	110	0.75
18.528		-	24DS1 mode	Select T4 DPLL	110	0.75
18.528		-	-	Select TO DPLL 24DS1	110	0.75
19.44		77.76 MHz analog	-	-	60	0.6
19.44		77.76 MHz digital	-	-	60	0.6
19.44		-	77.76MHz mode	Select T4 DPLL	60	0.6
21.845		16E1 mode	-	-	250	1.6
22.368		-	DS3 mode	Select T4 DPLL	110	1.0
24.576		12E1 mode	-	-	900	4.5
24.576		-	12E1 mode	Select T4 DPLL	500	2.3
24.576		-	-	Select TO DPLL 12E1	250	1.5
24.704		24DS1 mode	-	-	110	0.75
24.704		16DS1 mode	-	-	760	2.6
24.704		-	16DS1 mode	Select T4 DPLL	200	1.2
24.704		-	-	Select TO DPLL 16DS1	150	1.0
25.92		77.76 MHz analog	-	-	60	0.6

Page 37

FINAL

-

-

-

T4 DPLL Mode

-

-

-

-

16DS1 mode

TO DPLL Mode

24DS1 mode

16DS1 mode

Table 14 Output Frequency Selection (cont...)

SEMTECH

ADVANCED COMMUNICATIONS

Frequency (MHz, unless stated otherwise)

12.288

12.352

12.352

12.352

12.352

ACS8520 SETS

T4 APLL Input Mux

Select TO DPLL 12E1

-

-

Select TO DPLL 16DS1

Select T4 DPLL

DATASHEET

Jitter Level (typ)

р-р

(ns)

1.5

0.75

2.6

1.2

1.0

rms

(ps)

250

110

760

200

150

ADVANCED COMMUNICATIONS Table 14 Output Frequency Selection (cont...)

68.736

65.536 (T06/T07 only)

74.112 (TO4/TO5 only)

74.112 (TO4/TO5 only)

74.112 (TO6/TO7 only)

SEMTECH

77.76	77.76 MHz analog	-	-
77.76	77.76 MHz digital	-	-
77.76	-	77.76 MHz mode	Select T4 DPL
89.472 (TO4/TO5 only)	-	DS3 mode	Select T4 DPLI
Revision 3.02/October 2005 © Semtech Corp.	Page 38		

16E1 mode

24DS1 mode

-

_

-

Frequency (MHz, unless stated otherwise)	TO DPLL Mode	T4 DPLL Mode	T4 APLL Input Mux	Jitter Level (typ)	
				rms (ps)	p-p (ns)
25.92	77.76 MHz digital	-	-	60	0.6
32.768	16E1 mode	-	-	250	1.6
32.768	-	16E1 mode	Select T4 DPLL	400	2.0
32.768	-	-	Select TO DPLL 16E1	220	1.2
34.368	-	E3 mode	Select T4 DPLL	120	1.0
37.056	24DS1 mode	-	-	110	0.75
37.056	-	24DS1 mode	Select T4 DPLL	110	0.75
37.056	-	-	Select TO DPLL 24DS1	110	0.75
38.88	77.76 MHz analog	-	-	60	0.6
38.88	77.76 MHz digital	-	-	60	0.6
38.88	-	77.76 MHz mode	Select T4 DPLL	60	0.6
44.736	-	DS3 mode	Select T4 DPLL	110	1.0
49.152 (TO4/TO5 only)	-	12E1 mode	Select T4 DPLL	500	2.3
49.152 (TO4/TO5 only)	-	-	Select TO DPLL 12E1	250	1.5
49.152 (TO6/TO7 only)	12E1 mode	-	-	900	4.5
49.408 (TO4/TO5 only)	-	16DS1 mode	Select T4 DPLL	200	1.2
49.408 (TO4/TO5 only)	-	-	Select TO DPLL 16DS1	150	1.0
49.408 (TO6/TO7 only)	16DS1 mode	-	-	760	2.6
51.84	77.76 MHz analog	-	-	60	0.6
51.84	77.76 MHz digital	-	-	60	0.6
65.536 (TO4/TO5 only)	-	16E1 mode	Select T4 DPLL	400	2.0
65.536 (TO4/TO5 only)	-	-	Select TO DPLL 16E1	220	1.2

-

-

E3 mode

24DS1 mode

FINAL

DATASHEET

250

120

110

110

110

60

60

60

110

-

Select TO DPLL 24DS1

-

Select T4 DPLL

Select T4 DPLL

1.6

1.0

0.75

0.75

0.75

0.6

0.6

0.6

1.0

Revision 3.02/October 2005 © Semtech Corp.

Frequency (MHz, unless stated otherwise)	TO DPLL Mode	T4 DPLL Mode	T4 APLL Input Mux	Jitter Le	vel (typ)
				rms (ps)	p-p (ns)
98.304 (TO6 only)	12E1 mode	-	-	900	4.5
98.816 (TO6 only)	16DS1 mode	-	-	760	2.6
131.07 (TO6 only)	16E1 mode	-	-	250	1.6
137.47 (TO4/TO5 only)	-	E3 mode	Select T4 DPLL	120	1.0
148.22 (TO6 only)	24DS1 mode	-	-	110	0.75
155.52 (TO4/TO5 only)	-	77.76 MHz mode	Select T4 DPLL	60	0.6
155.52 (TO6/TO7 only)	77.76 MHz analog	-	-	60	0.6
155.52 (TO6/TO7 only)	77.76 MHz digital	-	-	60	0.6
311.04 (TO6 only)	77.76 MHz analog	-	-	60	0.6
311.04 (TO6 only)	77.76 MHz digital	-	-	60	0.6

Table 15 Frequency Divider Look-up

SEMTECH

APLL Frequency	APLL/2	APLL/4	APLL/6	APLL/8	APLL/12	APLL/16	APLL/48	APLL/64
311.04	155.52	77.76	51.84	38.88	25.92	19.44	6.48	4.86
274.944	137.472	68.376	-	34.368	-	17.184	5.728	4.296
178.944	89.472	44.736	-	22.368	-	11.184	3.728	2.796
148.224	74.112	37.056	24,704	18.528	12.352	9.264	3.088	2.316
131.072	65.536	32.768	21.84533	16.384	10.92267	8.192	2.730667	2.048
98.816	49.408	24.704	16.46933	12.352	8.234667	6.176	2.058667	1.544
98.304	49.152	24.576	16.384	12.288	8.192	6.144	2.048	1.536

Note...All frequencies in MHz

ACS8520 SETS

ADVANCED COMMUNICATIONS

Table 16 TO APLL Frequencies

TO APLL Frequency	T0 Mode	TO DPLL Frequency Control Register Bits Reg. 65 Bits[2:0]	Output Jitter Level ns (p-p)
311.04	Normal (digital feedback)	000	<0.5
311.04 MHz	Normal (analog feedback)	001	<0.5
98.304 MHz	12E1 (digital feedback)	010	<2
131.072 MHz	16E1 (digital feedback)	011	<2
148.224 MHz	24DS1 (digital feedback)	100	<2
98.816 MHz	16DS1 (digital feedback)	101	<2
-	Do not use	110	-
-	Do not use	111	-

FINAL

Table 17 T4 APLL Frequencies

T4 APLL Frequency	T4 Mode	T4 Forward DFS Frequency (MHz)	T4 DPLL Frequency Control Register Bits Reg. 64 Bits [2:0]	T4 APLL for T0 Enable Register Bit Reg. 65 Bit 6	TO Frequency to T4 APLL Register Bits Reg. 65 Bits [5:4]	Output Jitter Level ns (p-p)
311.04 MHz	Squelched	77.76	000	0	XX	<0.5
311.04 MHz	Normal	77.76	001	0	XX	<0.5
98.304 MHz	12E1	24.576	010	0	XX	<0.5
131.072 MHz	16E1	32.768	011	0	XX	<0.5
148.224 MHz	24DS1	37.056 (2*18.528)	100	0	ХХ	<0.5
98.816 MHz	16DS1	24.704	101	0	XX	<0.5
274.944 MHz	E3	68.736 (2*34.368)	110	0	ХХ	<0.5
178.944 MHz	DS3	44.736	111	0	XX	<0.5
98.304 MHz	T0-12E1	-	ХХХ	1	00	<2
131.072 MHz	T0-16E1	-	ХХХ	1	01	<2
148.224 MHz	T0-24DS1	-	ХХХ	1	10	<2
98.816 MHz	T0-16DS1	-	ХХХ	1	11	<2

ACS8520 SETS

ADVANCED COMMUNICATIONS

SEMTECH

FINAL

DATASHEET

Table 18 TO1 - TO7 Output Frequency Selection

	Output I	Frequency for give	en "Value in Regi	ster" for each Ou	tput Port's Cnfg_	output_frequency	∕ Register
Value in Register	TO1, Reg. 60 Bits [3:0]	TO2, Reg. 60 Bits [7:4]	TO3, Reg. 61 Bits [3:0]	TO4, Reg. 61 Bits [7:4]	T05, Reg. 62 Bits [3:0]	TO6, Reg. 62 Bits [7:4]	TO7, Reg. 63 Bits [3:0]
0000	Off						
0001	2 kHz						
0010	8 kHz						
0011	Digital2	Digital2	Digital2	Digital2	Digital2	TO APLL/2	Digital2
0100	Digital1	Digital1	Digital1	Digital1	Digital1	Digital1	TO APLL/2
0101	TO APLL/48	TO APLL/1	TO APLL/48				
0110	TO APLL/16						
0111	TO APLL/12						
1000	TO APLL/8						
1001	TO APLL/6						
1010	TO APLL/4						
1011	T4 APLL/64	T4 APLL/64	T4 APLL/64	T4 APLL/2	T4 APLL/2	T4 APLL/64	T4 APLL/64
1100	T4 APLL/48						
1101	T4 APLL/16						
1110	T4 APLL/8						
1111	T4 APLL/4						

T4 Low Frequency Outputs

TO8 is an AMI composite clock output. If enabled, this always produces a 64 kHz/8 kHz composite clock. If enabled, TO9 always produces an E1 or DS1 frequency output. Both TO8 and TO9 are generated by DFS within either the T0 or T4 path, as controlled by Reg. 35 Bit 4. The frequencies generated from TO8 and TO9 are independent of the Mode (frequency) of either the T4 or the T0 paths. The amount of jitter generated on the T08 and T09 outputs will be related to the clock period of the source DFS block added to any jitter present on that clock. This is detailed in the following text.

As can be seen in the block diagram, the DFS blocks used to generate these outputs are the T4 feedback DFS block in the case of the T4 path and the T0 LF output DFS block for the T0 path. The T4 feedback DFS block is clocked by the T4 forward DFS, or its APLL. The frequency of the T4 forward DFS block can be determined by referring to Table 17 (T4 APLL frequencies). This is in the region of 65 MHz to89 MHz and can be approximated to have a period of between 11 ns and 15 ns. The output of the T4 forward DFS block will have an inherent p-p jitter of approximately 4.9 ns. The clock to the T4 feedback DFS block will have <1 ns of jitter when the T4 path is in analog feedback mode (Reg. 35 Bit 6 = 0). However, it will have 4.9 ns when in digital feedback mode.

The TO8 output, being 64 kHz/8 kHz, can be directly divided from the clock to the T4 feedback DFS block; therefore, it will have a similar amount of jitter on it, i.e. <1 ns when using analog feedback, and 4.9 ns when using digital feedback.

The TO9 output will have more jitter because it is synthesized from the clock to the T4 feedback DFS block. The jitter, in addition to that present on the clock to the T4 feedback DFS block, will be equivalent to a period of that clock, i.e. between 11 ns and 15 ns. The jitter present on the TO9 output will range from 11 ns (when the T4 path is in DS3 mode - 89 MHz combined with analog feedback) to 20 ns (when in 16E1 mode - 65 MHz combined with digital feedback).

FINAL

The T4 outputs T08 and T09 can be enabled/disabled via Reg. 63 Bits [5:4].

"Digital" Frequencies

It can be seen from Table 18 (TO1-TO7 output frequency selection) that frequencies listed as Digital1 and Digital2 can be selected. Digital1 is a single frequency selected from the range shown in Table 19. Digital2 is another single frequency selected from the same range. The TO LF output DFS block shown in the diagram and clocked either by the TO 77M output DFS block or via the TO output APLL, generates these two frequencies. The input clock frequency of the DFS is always 77.76 MHz and as such has a period of approximately 12 ns. The jitter generated on the Digital outputs is relatively high, due to the fact that they do not pass through an APLL for jitter filtering. The minimum level of jitter is when the TO path is in analog feedback mode, when the p-p jitter will be approximately 12 ns (equivalent to a period of the DFS

Figure 12 Control of 8k Options.

b) Pulse non-inverted, Reg. IA[3:2] = 0

Digital1 Control Reg.39 Bits [5:4]	Digital1 SONET/ SDH Reg. 38 Bit5	Digital1 Frequency (MHz)
00	0	2.048
01	0	4.096
10	0	8.192
11	0	16.384
00	1	1.544
01	1	3.088
10	1	6.176
11	1	12.352

clock). The maximum jitter is generated when in digital feedback mode, when the total is approximately 17 ns.

TO10, TO11, 2 kHz and 8 kHz Clock Outputs

It can be seen from Table 18 (TO1 - TO7 Output Frequency Selection) that frequencies listed as 2 kHz and 8 kHz can be selected. Whilst the TO10 and TO11 outputs are always supplied from the TO path, the 2 kHz and 8 kHz options available from the TO1 - TO7 outputs are all supplied from either the TO or T4 path (Reg. 7A Bit 7).

The outputs can be either clocks (50:50 mark-space) or pulses and can be inverted. When pulses are configured on the output, the pulse width will be one cycle of the output of TO3 (TO3 must be configured to generate at least 1544 kHz to ensure that pulses are generated correctly). Figure 12 shows the various options with the 8 kHz controls in Reg. 7A. There is an identical arrangement with Reg. 7A Bits [1:0] and the 2 kHz/TO11 outputs. Outputs TO10 and TO11 can be disabled via Reg. 63 Bits [7:6].

d) Pulse inverted, Reg.7A[3:2] = 11

Digital2 Control Reg. 39 Bits[7:6]	Digital2 SONET/SDH Reg.38 Bit6	Digital2 Frequency (MHz)
00	0	2.048
01	0	4.096
10	0	8.192
11	0	16.384
00	1	1.544
01	1	3.088
10	1	6.176
11	1	12.352

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Microprocessor Interface

Introduction to Microprocessor Modes

The ACS8520 incorporates a microprocessor interface, which can be configured for all common microprocessor interface types, via the bus interface mode control pins UPSEL(2:0) as defined in Table 20.

These pins are read at power up and set the interface mode.

The optional EPROM mode allows the internal registers to be loaded from the EPROM when the device comes out of "Power-On Reset" mode. The microprocessor interface type can be altered after power up by Reg. 7F, such that for instance the device could boot up in EPROM mode and then switch to Motorola mode, for example, after the EPROM data has preconditioned the device. Reading of Data from the EPROM at boot up time is handled automatically by the ACS8520. The chip select of the EPROM should be driven from the micro in the case of mixed EPROM and micro communication, in order to avoid conflict between EPROM and ACS8520 access from the microprocessor.

The following sections show the interface timings for each interface type.

UPSEL(2:0)	Mode	Description
111 (7)	OFF	Interface disabled
110 (6)	OFF	Interface disabled
101 (5)	SERIAL	Serial uP bus interface
100 (4)	MOTOROLA	Motorola interface
011 (3)	INTEL	Intel compatible bus interface
010 (2)	MULTIPLEXED	Multiplexed bus interface
001 (1)	EPROM	EPROM read mode
000 (0)	OFF	Interface disabled

Table 20 Microprocessor Interface Mode Selection

Timing diagrams for the different microprocessor modes are presented on pages 44 to 52.

DATASHEET

Table 21 Read Access Timing in MOTOROLA Mode (for use with Figure 13)

t_{d1}

t_{d2}

t_{pw2}

Symbol	Parameter	MIN	TYP	MAX	
t _{su1}	Setup A valid to CSB _{falling edge}	4 ns	-	-	
t _{su2}	Setup WRB valid to CSB _{falling edge}	0 ns	-	-	
t _{d1}	Delay CSB _{falling edge} to AD valid (consecutive Read - Read)	12 ns	-	40 ns	
	Delay CSB _{falling edge} to AD valid (consecutive Write - Read)	16 ns	-	192 ns	
t _{d2}	Delay CSB _{falling edge} to DTACK _{rising edge}	-	-	13 ns	
t _{d3}	Delay CSB _{rising edge} to AD high-Z	-	-	10 ns	
t _{d4}	Delay CSB _{rising edge} to RDY high-Z	-	-	9 ns	
t _{pw1}	CSB Low time (consecutive Read - Read)	25 ns	62 ns	-	
	CSB Low time (consecutive Write - Read)	25 ns	193 ns	-	
t _{pw2}	RDY High time (consecutive Read - Read)	12 ns	-	49 ns	
	RDY High time (consecutive Write - Read)	12 ns	-	182 ns	
t _{h1}	Hold A valid after CSB _{rising edge}	0 ns	-	-	
t _{h2}	Hold WRB valid after CSB _{rising edge}	0 ns	-	-	
t _{h3}	Hold CSB Low after RDY falling edge	0 ns	-	-	
t _p	Time between (consecutive Read - Read) accesses (CSB_{rising edge} to CSB_{falling edge})	15 ns	-	-	
t _p	Time between (consecutive Write - Read) accesses (CSB _{rising edge} to CSB _{falling edge})	160 ns	-	-	

ADVANCED COMMUNICATIONS

EMTECH

Motorola Mode

CSB

WRB

Α

AD

RDY (DTACK)

In MOTOROLA mode, the device is configured to interface with a microprocessor using a 680x0 type bus as parallel data + address. Figure 13 and Figure 14 show the timing diagrams of read and write accesses for this mode.

data

t_{h3}

t_{h2}

t_{h1}

t_{d3}

t_{d4}

Х

Х

Ζ

Ζ

F8110D_007ReadAccMotor_01

t_{pw1}

FINAL

Figure 13 Read Access Timing in MOTOROLA Mode

Х

Х

Ζ

Ζ

t_{su2}

t_{su1}

address

FINAL

DATASHEET

Figure 14 Write Access Timing in MOTOROLA Mode

F8110D_008WriteAccMotor_01

 Table 22
 Write Access Timing in MOTOROLA Mode (for use with Figure 14)

Symbol	Parameter	MIN	TYP	MAX
t _{su1}	Setup A valid to CSB _{falling edge}	4 ns	-	-
t _{su2}	Setup WRB valid to CSB _{falling edge}	0 ns	-	-
t _{su3}	Setup AD valid before CSB _{rising edge}	8 ns	-	-
t _{d2}	Delay CSB _{falling edge} to RDY _{rising edge}	-	-	13 ns
t _{d4}	Delay CSB _{rising edge} to RDY <i>High</i> -Z	-	-	7 ns
t _{pw1}	CSB Low time	25 ns	-	180 ns
t _{pw2}	RDY <i>High</i> time	12 ns	-	166 ns
t _{h1}	Hold A valid after CSB _{rising edge}	8 ns	-	-
t _{h2}	Hold WRB Low after CSB _{rising edge}	0 ns	-	-
t _{h3}	Hold CSB Low after RDY _{falling edge}	0 ns	-	-
t _{h4}	Hold AD valid after CSB _{rising edge}	9 ns	-	-
tp	Time between consecutive accesses (CSB _{rising edge} to CSB _{falling edge})	160 ns	-	-

ADVANCED COMMUNICATIONS

EMTECH

FINAL

DATASHEET

Intel Mode

In Intel mode, the device is configured to interface with a microprocessor using a 80x86 type bus as parallel data + address. Figure 15 and Figure 16 show the timing diagrams of read and write accesses for this mode.

Table 23 Read Access Timing in INTEL Mode (for use with Figure 15)

Symbol	Parameter	MIN	TYP	MAX
t _{su1}	Setup A valid to CSB _{falling edge}	4 ns	-	-
t _{su2}	Setup CSB _{falling edge} to RDB _{falling edge}	0 ns	-	-
t _{d1}	Delay RDB _{falling edge} to AD valid (consecutive Read - Read)	12 ns	-	40 ns
	Delay RDB _{falling edge} to AD valid (consecutive Write - Read)	12 ns	-	193 ns
t _{d2}	Delay CSB _{falling edge} to RDY active	-	-	13 ns
t _{d3}	Delay RDB _{falling edge} to RDY _{falling edge}	-	-	14 ns
t _{d4}	Delay RDB _{rising edge} to AD high-Z	-	-	10 ns
t _{d5}	Delay CSB _{rising edge} to RDY high-Z	-	-	11 ns
t _{pw1}	RDB Low time (consecutive Read - Read)	35 ns	60 ns	-
	RDB Low time (consecutive Write - Read)	35 ns	195 ns	-
t _{pw2}	RDY Low time (consecutive Read - Read)	20 ns	-	45 ns
	RDY Low time (consecutive Write - Read)	20 ns	-	182 ns
t _{h1}	Hold A valid after RDB _{rising edge}	0 ns	-	-
t _{h2}	Hold CSB Low after RDB _{rising edge}	0 ns	-	-
t _{h3}	Hold RDB Low after RDY _{rising edge}	0 ns	-	-
tp	Time between (consecutive Read - Read) accesses (RDB _{rising edge} to RDB _{falling edge} , or RDB _{rising edge} to WRB _{falling edge})	15 ns	-	-
t _p	Time between (consecutive Write - Read) accesses (RDB _{rising edge} to RDB _{falling edge} , or RDB _{rising edge} to WRB _{falling edge})	160 ns	-	-

FINAL

Table 24 Write Access Timing in INTEL Mode (for use with Figure 16)

Symbol	Parameter	MIN	ТҮР	MAX
t _{su1}	Setup A valid to CSB _{falling edge}	4 ns	-	-
t _{su2}	Setup CSB _{falling edge} to WRB _{falling edge}	0 ns	-	-
t _{su3}	Setup AD valid before WRB _{rising edge}	6 ns	-	-
t _{d2}	Delay CSB _{falling edge} to RDY active	-	-	13 ns
t _{d3}	Delay WRB _{falling edge} to RDY _{falling edge}	-	-	14 ns
t _{d5}	Delay CSB _{rising edge} to RDY high-Z	-	-	10 ns
t _{pw1}	WRB Low time	25 ns	185 ns	-
t _{pw2}	RDY Low time	10 ns	-	173 ns
t _{h1}	Hold A valid after WRB _{rising edge}	12 ns	-	-
t _{h2}	Hold CSB Low after WRB _{rising edge}	0 ns	-	-
t _{h3}	Hold WRB Low after RDY _{rising edge}	0 ns	-	-
t _{h4}	Hold AD valid after WRB _{rising edge}	4 ns	-	-
t _p	Time between consecutive accesses (WRB_{rising edge} to WRB_{falling edge'} or WRB_{rising edge} to RDB_{falling edge)	160 ns	-	-

ADVANCED COMMUNICATIONS

EMTECH

Figure 16 Write Access Timing in INTEL Mode

ADVANCED COMMUNICATIONS

EMTECH

FINAL

Multiplexed Mode

In Multiplexed Mode, the device is configured to interface with microprocessors (e.g., Intel's 80x86 family) which share bus signals between address and data. Figures 17 and 18 show the timing diagrams of read and write accesses.

Figure 17 Read Access Timing in MULTIPLEXED Mode

				·- · · - ·	.
Tahle 25	Read Access	Timina in ML	II TIPI EXED Mode	e (for use with Figure 1	7)
	Acad Access	ining in we		, noi use withinguie i	''

Symbol	Parameter	MIN	ТҮР	MAX
t _{su1}	Setup AD address valid to ALE _{falling edge}	5 ns	-	-
t _{su2}	Setup CSB _{falling edge} to RDB _{falling edge}	0 ns	-	-
t _{d1}	Delay RDB _{falling edge} to AD data valid (consecutive Read - Read)	12 ns	-	40 ns
	Delay RDB _{falling edge} to AD data valid (consecutive Write - Read)	17 ns	-	193 ns
t _{d2}	Delay CSB _{falling edge} to RDY active		-	13 ns
t _{d3}	Delay RDB _{falling edge} to RDY _{falling edge}	-	-	15 ns
t _{d4}	Delay RDB _{rising edge} to AD data high-Z	-	-	10 ns
t _{d5}	Delay CSB _{rising edge} to RDY high-Z		-	10 ns
t _{pw1}	RDB Low time (consecutive Read - Read)	35 ns	60 ns	-
	RDB Low time (consecutive Write - Read)	35 ns	200 ns	-
t _{pw2}	RDY Low time (consecutive Read - Read)	20 ns	-	40 ns
	RDY Low time (consecutive Write - Read)	20 ns	-	185 ns
t _{pw3}	ALE <i>High</i> time	5 ns	-	-
t _{h1}	Hold AD address valid after ALE _{falling edge}	9 ns	-	-
t _{h2}	Hold CSB Low after RDB _{rising edge}	0 ns	-	-
t _{h3}	Hold RDB Low after RDY _{rising edge}	0 ns	-	-
t _{p1}	Time between ALE _{falling edge} and RDB _{falling edge}	0 ns	-	-
t _{p2}	Time between (consecutive Read - Read) accesses (RDB_{rising edge} to ALE_{rising edge})	20 ns	-	-
t _{p2}	Time between (consecutive Write - Read) accesses (RDB_{rising edge} to $ALE_{rising edge}$)	160 ns	-	-

FINAL

DATASHEET

ACS8520 SETS

Figure 18 Write Access Timing in MULTIPLEXED Mode

Table 26 Write Access Timing in MULTIPLEXED Mode (For use with Figure 18)

Symbol	Parameter	MIN	TYP	MAX
t _{su1}	Set up AD address valid to ALE _{falling edge}	5 ns	-	-
t _{su2}	Set up CSB _{falling edge} to WRB _{falling edge}	0 ns	-	-
t _{su3}	Set up AD data valid to WRB _{rising edge}	5 ns	-	-
t _{d2}	Delay CSB _{falling edge} to RDY active	-	-	13 ns
t _{d3}	Delay WRB _{falling edge} to RDY _{falling edge}	-	-	15 ns
t _{d5}	Delay CSB _{rising edge} to RDY high-Z	-	-	9 ns
t _{pw1}	WRB Low time	30 ns	188 ns	-
t _{pw2}	RDY Low time	15 ns	-	173 ns
t _{pw3}	ALE <i>High</i> time	5 ns	-	-
t _{h1}	Hold AD address valid after ALE _{falling edge}	9 ns	-	-
t _{h2}	Hold CSB Low after WRB _{rising edge}	0 ns	-	-
t _{h3}	Hold WRB Low after RDY _{rising edge}	0 ns	-	-
t _{h4}	AD data hold valid after WRB _{rising edge}	7 ns	-	-
t _{p1}	Time between ALE _{falling edge} and WRB _{falling edge}	0 ns	-	-
t _{p2}	Time between consecutive accesses (WRB _{rising edge} to ALE _{rising edge})	1600 ns	-	-

ADVANCED COMMUNICATIONS

Serial Mode

In SERIAL Mode, the device is configured to interface with a serial microprocessor bus. Figure 19 and Figure 20 show the timing diagrams of read and write accesses for this mode. The serial interface can be SPI compatible.

FINAL

The Motorola SPI convention is such that address and data is transmitted and received MSB first. On the ACS8520, device address and data are transmitted and received LSB first. Address, read/write control and data on the SDI pin is latched into the device on the rising edge of the SCLK. During a read operation, serial data output on the SDO pin can be read out of the device on either the rising or falling edge of the SCLK depending on the logic level of CLKE (note CLKE=A(1)). For standard Motorola SPI compliance, data should be clocked out of the SDO pin on the rising edge of the SCLK so that it may be latched into the microprocessor on the falling edge of the SCLK.

The serial interface clock (SCLK) is not required to run between accesses (i.e., when CSB = 1).

Figure 19 Read Access Timing in SERIAL Mode

Table 27 Read Access	Timing in SERIAL Mode	(For use with Figure 19)
----------------------	-----------------------	--------------------------

Symbol	Parameter	MIN	TYP	MAX
t _{su1}	Setup SDI valid to SCLK _{rising edge}	4 ns	-	-
t _{su2}	Setup CSB _{falling edge} to SCLK _{rising edge}	14 ns	-	-
t _{d1}	Delay SCLK _{rising edge} (SCLK _{falling edge} for CLKE = 1) to SDO valid	-	-	18 ns
t _{d2}	Delay CSB _{rising edge} to SDO high-Z	-	-	16 ns

DATASHEET

ADVANCED COMMUNICATIONS

Table 27 Read Access Timing in SERIAL Mode (For use with Figure 19) (cont...)

Symbol	Parameter	MIN	TYP	MAX
t _{pw1}	SCLK Low time	22 ns	-	-
t _{pw2}	SCLK <i>High</i> time	22 ns	-	-
t _{h1}	Hold SDI valid after SCLK _{rising edge}	6 ns	-	-
t _{h2}	Hold CSB <i>Low</i> after SCLK _{rising edge} , for CLKE = 0 Hold CSB <i>Low</i> after SCLK _{falling edge} , for CLKE = 1	5 ns	-	-
tp	Time between consecutive accesses (CSB_{rising edge} to CSB_{falling edge})	10 ns	-	-

FINAL

Figure 20 Write Access Timing in SERIAL Mode

Table 28	Write Access	Timing in	SERIAL Mode	(For use	with Figure 20)

Symbol	Parameter	MIN	ТҮР	MAX
t _{su1}	Setup SDI valid to SCLK _{rising edge}	4 ns	-	-
t _{su2}	Setup CSB _{falling edge} to SCLK _{rising edge}	14 ns	-	-
t _{pw1}	SCLK Low time	22 ns	-	-
t _{pw2}	SCLK High time	22 ns	-	-
t _{h1}	Hold SDI valid after SCLK _{rising edge}	6 ns	-	-
t _{h2}	Hold CSB Low after SCLK _{rising edge}	5 ns	-	-
tp	Time between consecutive accesses (CSB_{rising edge} to CSB_{falling edge})	10 ns	-	-

DATASHEET

FINAL

EPROM Mode

This mode is suitable for use with an EPROM, in which configuration data is stored (one-way communication - status information will not be accessible). A state machine internal to the ACS8520 device will perform numerous EPROM read operations to read the data out of the EPROM. In EPROM Mode, the ACS8520 takes control of the bus as Master and reads the device set-up from an AMD AM27C64 type EPROM at lowest speed (250ns) after device set-up (system reset). The EPROM access state machine in the up interface sequences the accesses. Figure 21 shows the access timing of the device in EPROM mode.

Further information can be found in the AMD AM27C64 datasheet.

Figure 21 Access Timing in EPROM mode

Table 29 Access Timing in EPROM mode (For use with Figure 21)

Symbol	Parameter	MIN	ТҮР	MAX
t _{acc}	Delay CSB _{falling edge} or A change to AD valid	-	-	920 ns

Power-On Reset

The Power-On Reset (PORB) pin resets the device if forced *Low*. The reset is asynchronous, the minimum *Low* pulse width is 5 ns. Reset is needed to initialize all of the register values to their defaults. Reset must be asserted at power on, and may be re-asserted at any time to restore defaults. This is implemented simply using an external capacitor to GND along with the internal pull-up resistor. The ACS8520 is held in a reset state for 250 ms after the PORB pin has been pulled *High*. In normal operation PORB should be held *High*.

FINAL

Register Map

Each Register, or register group, is described in the following Register Map (Table 30) and subsequent Register Description Tables.

Register Organization

The ACS8520 SETS uses a total of 118 8-bit register locations, identified by a Register Name and corresponding hexadecimal Register Address. They are presented here in ascending order of Reg. address. and each Register is organized with the most-significant bit positioned in the left-most bit, and bit significance decreasing towards the right-most bit. Some registers carry several individual data fields of various sizes, from single-bit values (e.g. flags) upwards. Several data fields are spread across multiple registers, as shown in the Register Map, Table 30. Shaded areas in the map are "don't care" and writing either 0 or 1 will not affect any function of the device. Bits labelled "Set to zero" or "Set to one" must be set as stated during initialization of the device, either following power- up, or after a Power-On Reset (POR). Failure to correctly set these bits may result in the device operating in an unexpected way.

CAUTION! Do not write to any undefined register addresses as this may cause the device to operate in a test mode. If an undefined register has been inadvertently addressed, the device should be reset to ensure the undefined registers are at default values.

Multi-word Registers

For Multi-word Registers (e.g. Reg. OC and OD), all the words have to be written to their separate addresses, and without any other access taking place, before their combined value can take effect. If the sequence is interrupted, the sequence of writes will be ignored. Reading a multi-word address freezes the other address words of a multi-word address so that the bytes all correspond to the same complete word.

Register Access

Most registers are of one of two types, configuration registers or status registers, the exceptions being the *chip_id* and *chip_revision* registers. Configuration registers may be written to or read from at any time (the complete 8-bit register must be written, even if only one bit is being modified). All status registers may be read at any time and, in some status registers (such as the *sts_interrupts* register), any individual data field may be cleared by writing a 1 into each bit of the field (writing a 0 value into a bit will not affect the value of the bit).

Configuration Registers

Each configuration register reverts to a default value on power-up or following a reset. Most default values are fixed, but some will be pin-settable. All configuration registers can be read out over the microprocessor port.

Status Registers

The Status Registers contain readable registers. They may all be read from outside the chip but are not writeable from outside the chip (except for a clearing operation). All status registers are read via shadow registers to avoid data hits due to dynamic operation. Each individual status register has a unique location.

Interrupt Enable and Clear

Interrupt requests are flagged on pin INTREQ; the active state (*High* or *Low*) is programmable and the pin can either be driven, or set to high impedance when non-active (Reg 7D refers).

Bits in the interrupt status register are set (*High*) by:

- 1. Any reference source becoming valid or going invalid.
- 2. Change in the operating state (e.g. Locked, Holdover)
- 3. A brief loss of the currently selected reference source.
- 4. An AMI input error.

All interrupt sources, see Reg. 05, Reg. 06 and Reg. 08, are maskable via the mask register, each one being enabled by writing a 1 to the appropriate bit. Any unmasked bit set in the interrupt status register will cause the interrupt request pin to be asserted. All interrupts are cleared by writing a 1 to the bit(s) to be cleared in the status register. When all pending unmasked interrupts are cleared the interrupt pin will go inactive.

Defaults

Each Register is given a defined default value at reset and these are listed in the Map and Description Tables. However, some read-only status registers may not necessarily show the same default values after reset as those given in the tables. This is because they reflect the status of the device which may have changed in the time it takes to carry out the read, or through reasons of configuration. In the same way, the default values given for shaded areas could also take different values to those stated.

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

ACS8520 SETS

Table 30 Register Map

Register Name	S_	ŧ.				Dat	a Bit			
RO = Read Only R/W = Read/Write	Address (hex)	Default (hex)	7 (MSB)	6	5	4	3	2	1	0 (LSB)
chip_id (RO)	00	48				umber [7:0] 8 lea				
	01	21			Device part nu	umber [15:8] 8 m	0	its of the chip ID		
chip_revision (RO)	02	00					number [7:0]	-	-	
test_register1 (R/W)	03	14	phase_alarm	disable_180		resync_ analog	Set to 0	8K edge polarity	Set to zero	Set to zero
sts_interrupts (R/W)	05	FF	18 valid change	17 valid change	l6 valid change	15 valid change	l4 valid change	13 valid change	l2 valid change	l1 valid change
	06	3F	operating_ mode	main_ref_ failed	I14 valid change	I13 valid change	I12 valid change	I11 valid change	I10 valid change	I9 valid change
sts_current_DPLL_frequency, see 0C/0D	07	00			child ge	indige.	c		current DPLL fr	-
sts_interrupts (R/W)	08	50	Sync_ip_alarm	T4_status		T4_inputs_ failed	AMI2_Viol	AMI2_LOS	AMI1_Viol	AMI1_LOS
sts_operating (RO)	09	41	SYNC2K_ alarm	rmsoft_alarmsoft_alarm				TO_	_DPLL_operating	g_mode
sts_priority_table (RO)	ОA	00	alam	Highest priority	validated source			Currently se	elected source	
sis_priority_table (ite)	OB	00		0 , ,	ty validated source			2 nd highest prior		IFCA
sts_current_DPLL_frequency[7:0]	0D 0C	00		o mgnest phom	-	e Bits (7:0) of curre	nt NPLL frequer	0 1	ny vandated sol	100
(RO) [15:8]	0C 0D	00				Bits [15:8] of curre	,	5		
(RU) [15:8] [18:16]	00	00			E	ກເຣ [I J.0] UI CUIT	an DPLL Heque	5	16] of current DI	DI I froquency
			10	17	14	15	14		-	
sts_sources_valid (RO)	0E	00	18	17	16	15	14	13	12	11
(20)	OF	00			114	113	112	111	110	19
sts_reference_sources (RO) Status of inputs:			Out-of-band alarm (soft)	Out-of-band alarm (hard)	No activity alarm	Phase lock alarm	Out-of-band alarm (soft)	Out-of band alarm (hard)	No activity alarm	Phase lock alarm
Input pairs (1 & 2)	10	66		Status o	f I2 Input			Status	of I1 Input	
(3 & 4)	11	66			f l4 Input				of I3 Input	
(5 & 6)	12	66		Status of 16 Input					of I5 Input	
(7 & 8)	13	66	Status of I8 Input					of I7 Input		
(9 & 10)	14	66	Status of 10 Input					of I9 Input		
(11 & 12)	15	66	Status of 112 Input					of I11 Input		
(13 & 14)	16	66	Status of 112 Input						of I13 Input	
cnfg_ref_selection_priority (1 & 2)	18	32					programmed_priority I1			
(R/W) (3 & 4)	19	52 54	programmed_priority I2 programmed_priority I4 programmed_priority I6				. 0	ed_priority 13		
(5 & 6)	1 <i>A</i>	76								
	1A 1B	70 98					programmed_priority 15 programmed_priority 17			
(7 & 8)					ed_priority I8					
(9 & 10)	10	BA		1 0	d_priority I10		programmed_priority 19			
(11 & 12)	1D	DC			d_priority I12		programmed_priority I11			
(13 & 14)	1E	FE		. 0	d_priority I14			, 0	ed_priority I13	
cnfg_ref_source_frequency1	20	00		o zero		et_id_1			to zero	
	21			o zero		et_id_2			to zero	
3		00	divn_3	lock8k_3		et_id_3			Irce_frequency_	
4	23	00	divn_4	lock8k_4		et_id_4			Irce_frequency_	
5	24	03	divn_5	lock8k_5		et_id_5		_	Irce_frequency_	
6	25	03	divn_6	lock8k_6		et_id_6			Irce_frequency_	
7	26	03	divn_7	lock8k_7		et_id_7			Irce_frequency_	
8	27	03	divn_8	lock8k_8		et_id_8			Irce_frequency_	
9	28	03	divn_9	lock8k_9		et_id_9			Irce_frequency_	
10	29	03	divn_10	lock8k_10		t_id_10			rce_frequency_3	
11		03	divn_11	lock8k_11	bucke	t_id_11		_	rce_frequency_3	
12	2B	01	divn_12	lock8k_12		t_id_12			rce_frequency_3	
13	2C	01	divn_13	lock8k_13		t_id_13		reference_sou	rce_frequency_3	13
14	2D	01	divn_14	lock8k_14	bucke	t_id_14		reference_sou	rce_frequency_	14
cnfg_sts_remote_sources_valid	30	FF				Remote status,	channels <8:1>	>		
	04	3F					Remote status	, channels <14:9.	>	
	31	51								
(R/W) cnfg_operating_mode (R/W)	31 32	00						TO_	_DPLL_operatin	g_mode

ADVANCED COMMUNICATIONS Table 30 Register Map (cont...)

FI<u>NAL</u>

DATASHEET

Register Name Data Bit Default (hex) RO = Read Only 7 (MSB) 5 3 2 0 (LSB) 6 4 1 R/W = Read/Write cnfg_input_mode auto_extsync_ phalarm_ XO_ edge man_holdover extsync_en ip_sonsdhb master_slaveb reversion_ .34 C_2 (Bit 1 RO, otherwise R/W) еn timeout mode cnfg_T4_path (R/W) 35 40 lock_T4_to_T0 T4_dig_ T4_op_ T4 forced reference source feedback from_TO cnfg_differential_inputs (R/W) 36 02 16_PECL 15_LVDS cnfg_uPsel_pins (RO) 37 02 Microprocessor type cnfg_dig_outputs_sonsdh (R/W) 38 1F dig2_sonsdh dig1_sonsdh cnfg_digtial_frequencies (R/W) 39 08 digital1_frequency digital2_frequency TOT PECL LVDS cnfg_differential_outputs (R/W) TO6 I VDS PECI ЗA C.6 cnfg_auto_bw_sel (R/W) ЗВ FΒ auto_BW_sel TO lim int cnfg_nominal_frequency 3C 99 Nominal frequency [7:0] [7:0 [15:8] 3D 99 Nominal frequency [15:8] (R/W)[7:0] 3E 00 Holdover frequency [7:0] cnfg_holdover_frequency (R/W) Holdover frequency [15:8] [15:8] 3F 00 cnfg_holdover_modes (R/W) 40 88 auto fast_averaging read_average mini_holdover_mode Holdover frequency [18:16] (with Registers 3E and 3F above) averaging cnfg_DPLL_freq_limit (R/W) [7:0] 41 76 DPLL frequency offset limit [7:0] [9:8 42 00 DPLL frequency offset limit [9:8] 12 interrupt not cnfg_interrupt_mask (R/W) [7:0] 43 00 18 interrupt not 17 interrupt not 16 interrupt not 15 interrupt not 14 interrupt not 13 interrupt not 11 interrupt not masked masked masked masked masked masked masked masked [15:8] 44 00 Operating Main_ref_ 114 interrupt 113 interrupt 112 interrupt 111 interrupt 110 interrupt 19 interrupt not failed interrupt not masked masked mode interrupt not masked not masked not masked not masked not masked not masked AMI2 Viol AMI2 LOS [23:16] AMI1_Viol AMI1 LOS 45 Sync_ip_ T4 status T4_inputs_ 00 alarminterrupt interrupt not failed interrupt interrupt not interrupt not interrupt not interrupt not not masked masked masked masked masked not masked masked cnfg_freq_divn (R/W) [7:0] 46 FF divn value [7:0 [13:8] 47 ЗF divn_value [13:8] cnfg_monitors (R/W) 48 05 freq_mon_clk ultra_fast_ ext_switch PBO_freeze PBO_en freq_monitor_ freq_monitor_ los flag on_ TDO hard_enable switch soft_enable hard_frequency_alarm_threshold [3:0] cnfg_freg_mon_threshold (R/W) soft_frequency_alarm_threshold [3:0] 49 23 cnfg_current_freq_mon_ current_soft_frequency_alarm_threshold [3:0] 4A23 current_hard_frequency_alarm_threshold [3:0] threshold (R/W) cnfg_registers_source_select 4R00 T4_T0_select frequency_measurement_channel_select [3:0] (R/W) sts_freq_measurement (R/W) 4C 00 freq_measurement_value [7:0] 4D DPLL Frequency Soft Alarm Limit [6:0] Resolution = 0.628 ppm cnfg_DPLL_soft_limit (R/W) 8E Freq limit Phase loss enable cnfg_upper_threshold_0 (R/W) 50 06 Configuration 0: Activity alarm set threshold [7:0] cnfg_lower_threshold_0 (R/W) 04 51 Configuration 0: Activity alarm reset threshold [7:0] Configuration 0: Activity alarm bucket size [7:0] cnfg_bucket_size_0 (R/W) 08 52 cnfg_decay_rate_0 (R/W) 53 01 Cfg O:decay_rate [1:0] cnfg_upper_threshold_1 (R/W) 54 06 Configuration 1: Activity alarm set threshold [7:0] cnfg_lower_threshold_1 (R/W) 04 Configuration 1: Activity alarm reset threshold [7:0] 55 cnfq_bucket_size_1 (R/W) 56 08 Configuration 1: Activity alarm bucket size [7:0] cnfg_decay_rate_1 (R/W) 57 01 Cfg 1:decay_rate [1:0] cnfg_upper_threshold_2 (R/W) Configuration 2: Activity alarm set threshold [7:0] 58 06 cnfg_lower_threshold_2 (R/W) 59 04 Configuration 2: Activity alarm reset threshold [7:0] cnfg_bucket_size_2 (R/W, 5A 08 Configuration 2: Activity alarm bucket size [7:0] cnfg_decay_rate_2 (R/W) 5B 01 Cfg 2:decay_rate [1:0] cnfg_upper_threshold_3 (R/W) 5C 06 Configuration 3: Activity alarm set threshold [7:0] cnfg_lower_threshold_3 (R/W) 5D 04 Configuration 3: Activity alarm reset threshold [7:0] Configuration 3: Activity alarm bucket size [7:0] cnfg_bucket_size_3 (R/W) 5F08 cnfg_decay_rate_3 (R/W) 5F 01 Cfg 3:decay_rate [1:0]

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

 Table 30 Register Map (cont...)

Register Name	SS (ا				Dat	a Bit				
RO = Read Only R/W = Read/Write	Addre (hex)	Default (hex)	7 (MSB)	6	5	4	3	2	1	0 (LSB)	
cnfg_output_frequency (R/W)											
(TO1 & TO2)	60	85		output_fre	eq_2 (TO2)			output_freq_1 (TO1)			
(TO3 & TO4)	61	86		output_fre	eq_4 (TO4)			output_freq_3 (TO3)			
(TO5 & TO6)	62	8A		output_fre	eq_6 (TO6)			output_freq_5 (TO5)			
(T07 to T011)	63	F6	MFrSync enable	FrSync enable	TO9 enable	TO8 enable		output_fre	output_freq_7 <t07></t07>		
cnfg_T4_DPLL_frequency (R/W)	64	01		Auto Disable T4 output	AMI Duty cycle	T4 SONET/ SDH selection			T4_DPLL_freque	ency	
cnfg_T0_DPLL_frequency (R/W)	65	01	T4 for measuring T0 phase	<i>T4 APLL for T0</i> <i>E1/DS1</i>	TO Freq t	o T4 APLL		TO_DPLL_frequency			
cnfg_T4_DPLL_bw (R/W)	66	00							T4_DPLL_	bandwidth [1:0]	
cnfg_T0_DPLL_locked_bw (R/W)	67	ОВ						TO_DPLL_locked	d_bandwidth [4	0]	
cnfg_TO_DPLL_acq_bw (R/W)	69	OF						TO_DPLL_acquisit	ion_bandwidth	[4:0]	
cnfg_T4_DPLL_damping (R/W)	6A	13		T4_PD2_gain_alog_8K [6:4]					T4_damping [2	:0]	
cnfg_T0_DPLL_damping (R/W)	6B	13		T0_PD2_gain_alog_8K [6:4]					TO_damping [2	::0]	
cnfg_T4_DPLL_PD2_gain (R/W)	6C	С2	T4_PD2_gain_ T4_PD2_gain_alog [6:4] T4_PL enable T4_PL T4_PL					PD2_gain_digital [2:0]			
cnfg_TO_DPLL_PD2_gain (R/W)	6D	С2	TO_PD2_gain_ enable	TO_	_PD2_gain_alog [6:4]		T0_PD2_gain_digital [2:0]			
cnfg_phase_offset (R/W) [7:0]	70	00		I		phase_offse	et_value[7:0]				
[15:8]	71	00				phase_offse	t_value[15:8]				
cnfg_PBO_phase_offset (R/W)	72	00					PBO_pha	se_offset [5:0]			
cnfg_phase_loss_fine_limit (R/W)	73	A2	Fine limit Phase loss enable (1)	No activity for phase loss	Test bit Set to 1			pha.	se_loss_fine_lin	nit [2:0]	
cnfg_phase_loss_coarse_limit (R/W)	74	85	<i>Coarse limit Phase loss enable (2)</i>	Wide range enable	Enable Multi Phase resp.			Phase loss coarse	e limit in UI p-p [3:0]	
cnfg_phasemon (R/W)	76	06	Input noise window enable		<u></u>		•				
sts_current_phase (RO) [7:0]	77	00				current_p	hase[7:0]				
[15:8]	78	00				current_p	hase[15:8]				
cnfg_phase_alarm_timeout (R/W)	79	32					Timeout value	in 2s intervals [5:0]		
cnfg_sync_pulses (R/W)	7A	00	2 k/8 k out from T4		<u> </u>		8 k invert	8 k pulse enable	2 k invert	2 k pulse enable	
cnfg_sync_phase (R/W)	7B	00	indep_FrSync/ MFrSync	Sync_OC-N_ rates					Syn	c_phase	
cnfg_sync_monitor (R/W)	7C	2B	ph_offset_ Sync_monitor_limit Sync_reference_source ramp								
cnfg_interrupt (R/W)	7D	02						GPO interrupt enable	Interrupt tristate enable	Interrupt polarity enable	
cnfg_protection(R/W)	7E	85				protecti	on_value			•	
cnfg_uPsel (R/W)	7F	02 *							r type (*Default ie on UPSEL[2:0	value depends ol)] pins)	

Register Descriptions

FINAL

ACS8520 SETS

DATASHEET

Address (hex): 00

Register Name	chip_id		Description	(RO) 8 least significant bits of the D chip ID.		Default Value	0100 1000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			chip	o_id[7:0]			
Bit No.	Description			Bit Value	Value Descriptio	n	
[7:0]	<i>chip_id</i> Least significant l	byte of the 2-byt	e device ID	48 (hex)			

Address (hex): 01

Register Name	chip_id		Description	(RO) 8 most sig chip ID.	nificant bits of the	Default Value	0010 0001
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			chip_	_id[15:8]			
Bit No.	Description			Bit Value	Value Descriptio	n	
[7:0]	<i>chip_id</i> Most significant b	yte of the 2-byte	e device ID	21 (hex)			

Address (hex): 02

Register Name	chip_revision		Description	(RO) Silicon rev	ision of the device.	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			chip_r	evision[7:0]			
Bit No.	Description			Bit Value	Value Description	า	
[7:0]	<i>chip_revision</i> Silicon revision of th	ne device		00 (hex)			

ADVANCED COMMUNICATIONS

Address (hex): 03

Register Name	test_register1		Description		containing various ot normally used).	Default Value	0001 0100			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O			
phase_alarm	disable_180		resync_analog	Set to zero	8k Edge Polarity	Set to zero	Set to zero			
Bit No.	Description			Bit Value	Value Description	n				
7	<i>phase_alarm (</i> pha Instantaneous re			0 1		TO DPLL reporting phase locked. TO DPLL reporting phase lost.				
6	<i>disable_180</i> Normally the DPL	L will try to lock	to the nearest	0	TO DPLL automatically determines frequency lock					
	edge (±180°) for a new reference. that it is phase lo capture range rev to frequency and into frequency lock frequency lock to seconds. Howeve phase shift of up references are ve	the first 2 secor If the DPLL doe cked after this verts to ±360°, phase locking. cking mode may a new reference r, this may caus to 360° when t	nds when locking to es not determine time, then the which corresponds Forcing the DPLL y reduce the time to se by up to 2 se an unnecessary he new and old	1	enable. TO DPLL forced to	o always frequen	ncy and phase lock.			
5	Not used.			-	-					
4	The analog output synchronization n	t dividers inclue nechanism to er	e-synchronization) de a nsure phase lock at ut and the output.	0	seconds after por Analog dividers a clocks divided do with equivalent fr Hence ensuring t above, are in synd	og divider only synchronized during first 2 onds after power-up. og dividers always synchronized. This keeps th ks divided down from the APLL output, in sync equivalent frequency digital clocks in the DPL ce ensuring that 6.48 MHz output clocks, and ve, are in sync with the DPLL even though only 76 MHz clock drives the APLL.				
3	Test Control Leave unchanged	l or set to 0		0	-					
2	reference source	, this bit allows	or the current input the system to lock edge of the input	0 1	Lock to falling clo Lock to rising clo					
1	Test Control Leave unchanged	l or set to zero		0	-					
0	Test Control Leave unchanged	l or set to zero		0	-					

FINAL

ACS8520 SETS

SEMTECH

Revision 3.02/October 2005 © Semtech Corp.

www.semtech.com

Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit O			
	17	16	15	14	13	12	11			
Bit No.	Description			Bit Value	Value Description	on				
7	<i>I8</i> Interrupt indicatii (if it was invalid), until reset by soft	or invalid (if it wa	as valid). Latched	0 1	Input I8 has not changed status (valid/invalid). Input I8 has changed status (valid/invalid). Writing 1 resets the input to 0.					
6	<i>I7</i> Interrupt indicatii (if it was invalid), until reset by soft	or invalid (if it wa	as valid). Latched	0 1	Input I7 has not changed status (valid/invalid). Input I7 has changed status (valid/invalid). Writing 1 resets the input to 0.					
5	<i>l6</i> Interrupt indicatii (if it was invalid), until reset by sofi	or invalid (if it wa	as valid). Latched	0 1	Input I6 has not changed status (valid/invalid). Input I6 has changed status (valid/invalid). Writing 1 resets the input to 0.					
4	<i>I5</i> Interrupt indicatii (if it was invalid), until reset by soft	or invalid (if it wa	as valid). Latched	0 1	Input I5 has not changed status (valid/invalid). Input I5 has changed status (valid/invalid). Writing 1 resets the input to 0.					
3	<i>I4</i> Interrupt indicatii (if it was invalid), until reset by sofi	or invalid (if it wa	as valid). Latched	0 1	Input I4 has not changed status (valid/invalio Input I4 has changed status (valid/invalid). Writing 1 resets the input to 0.					
2	<i>I3</i> Interrupt indicatii (if it was invalid), until reset by soft	or invalid (if it wa	as valid). Latched	0 1		changed status inged status (vali the input to 0.				
1 <i>I2</i> Interrupt indicating that input I2 has become valid (if it was invalid), or invalid (if it was valid). Latched until reset by software writing a 1 to this bit.			0 1		changed status inged status (vali the input to 0.					
0	<i>I1</i> Interrupt indicatii (if it was invalid), until reset by soft	or invalid (if it wa	as valid). Latched	0 1		changed status inged status (vali the input to 0.				

FINAL

(R/W) Bits [7:0] of the interrupt

status register.

Description

Address (hex): 05

Register Name *sts_interrupts*

Default Value

1111 1111

Address (hex): 06

Register Name *sts_interrupts*

SEMTECH

Register Name	sts_interrupts		Description	status register.			00111111		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
operating_ mode	main_ref_failed	114	113	112	111	110	19		
Bit No.	Description			Bit Value	Value Description				
7	operating_mode			0	Operating mode has not changed. Operating mode has changed. Writing 1 resets the input to 0.				
	Interrupt indicati changed. Latche to this bit.		ating mode has software writing a 1	1					
6	main_ref_failed			0	Input to the TC) DPLL is valid.			
	Interrupt indicati			1) DPLL has failed.			
	the input to beco	s is much quicke ome invalid. This <i>e-run</i> or <i>Holdov</i>	er than waiting for input is not er modes. Latched		Writing 1 reset	ts the input to 0.			
5	114			0	Input I14 has	not changed statu	s (valid/invalid).		
	Interrupt indicati	or invalid (if it v	4 has become valid vas valid). Latched 1 to this bit.	1	Input I14 has changed status (valid/invalid). Writing 1 resets the input to 0.				
4	113			0	Input I13 has	not changed statu	s (valid/invalid).		
	Interrupt indicati	or invalid (if it v	3 has become valid vas valid). Latched 1 to this bit.	1	Input I13 has changed status (valid/invalid). Writing 1 resets the input to 0.				
3	112			0	Input I12 has	not changed statu	s (valid/invalid).		
	Interrupt indicati	or invalid (if it v	2 has become valid vas valid). Latched 1 to this bit.	1	Input I12 has changed status (valid/inva Writing 1 resets the input to 0.				
2	111			0	Input I11 has	not changed statu	s (valid/invalid).		
	Interrupt indicati	or invalid (if it v	1 has become valid vas valid). Latched 1 to this bit.	1	Input I11 has	changed status (va ts the input to 0.			
1	110			0	Input I10 has	not changed statu	s (valid/invalid).		
	Interrupt indicati	or invalid (if it v) has become valid vas valid). Latched 1 to this bit.	1	Input I10 has	changed status (va ts the input to 0.			
0	19			0	Input 19 has not changed status (valid/invalid).				
-	Interrupt indicati	or invalid (if it v	has become valid vas valid). Latched 1 to this bit.	1	Input I9 has not changed status (valid/invali Input I9 has changed status (valid/invalid). Writing 1 resets the input to 0.				

FINAL

(R/W) bits [15:8] of the interrupt

Description

www.semtech.com

ACS8520 SETS

Default Value

DATASHEET

0011 1111

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 07

Register Name	sts_current_DPL [18:16]	L_frequency	Description	(RO) Bits [18:16] of the current DPLL frequency.		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
					sts_cur	rent_DPLL_freque	ency[18:16]
Bit No.	Description			Bit Value	Value Descripti	on	
[7:3]	Not used.			-	-		
[2:0]	for the TO path is	<i>TO_select</i>) of Re <i>source_select</i>) = s reported.		-	See register de sts_current_DP	scription of 'LL_frequency at a	ddress OD hex.

FINAL

Address (hex): 08

Register Name	sts_interrupts		Description	(R/W) Bits [23: status register.	16] of the interrupt	Default Value	0101 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
Sync_ip_alarm	T4_status		T4_inputs_ failed	AMI2_Viol	AMI2_LOS	AMI1_Viol	AMI1_LOS		
Bit No.	Description			Bit Value	Value Description				
7	Sync_ip_alarm			0	Input Frame Sync alarm has not occurred.				
	Interrupt indicating that the Frame Sync input monitor has hit its alarm limit. Latched until reset by software writing a 1 to this bit.			1	Input Frame Syn Writing 1 resets	c alarm has occu the input to 0.	rred.		
6	T4_status			0		PLL has not char			
	it was locked) or	gained lock (if it	PLL has lost lock (if was not locked). riting a 1 to this bit.	1	Input to the T4 E Writing 1 resets	PLL has lost/gain the input to 0.	ned lock.		
5	Not used.			-	-				
4	T4_inputs_failed			0	T4 DPLL has val	id inputs.			
			nputs are available	1	T4 DPLL has no valid inputs.				
	to the T4 DPLL. L writing a 1 to this		et by software		Writing 1 resets	the input to 0.			
3	AMI2_Viol			0	Input I2 has had	no violation erro	r.		
			iolation error has	1		a violation error.			
	occurred on input writing a 1 to this		il reset by software		Writing 1 resets	the input to 0.			

ADVANCED COMMUNICATIONS

Address (hex): 08 (cont...)

Register Name	sts_interrupts		Description Bit 4	(R/W) Bits [23: status register.	16] of the interrupt	Default Value	0101 0000
Bit 7	Bit 6	Bit 5		Bit 3	Bit 2	Bit 1	Bit O
Sync_ip_alarm	T4_status		T4_inputs_ failed	AMI2_Viol	AMI2_LOS	AMI1_Viol	AMI1_LOS
Bit No.	Description			Bit Value	Value Descriptio	n	
2			S error has reset by software	0 1	Input I2 has had no LOS error. Input I2 has had a LOS error. Writing 1 resets the input to 0.		
1	<i>AMI1_Viol</i> Interrupt indicating that an AMI Violation error has occurred on input I1. Latched until reset by software writing a 1 to this bit.			0 1	Input I1 has had no violation error. Input I1 has had a violation error. Writing 1 resets the input to 0.		
0			S error has reset by software	0 1	Input I1 has had Input I1 has had Writing 1 resets	a LOS error.	

FINAL

Address (hex): 09

Register Name	sts_operating		Description	(RO) Current operating state of the device's internal state machine.		Default Value	0100 0001
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
SYNC2K_alarm	T4_DPLL_Lock	<i>TO_DPLL_freq_</i> <i>soft_alarm</i>	T4_DPLL_freq_ soft_alarm		TO_	_DPLL_operating_	mode
Bit No.	Description			Bit Value	Value Description	n	
7	<i>SYNC2K_alarm</i> Reports current status of the external Sync monitor alarm.			0 1		onitor not in alarn onitor in alarm co	

ACS8520 SETS

ACS8520 SETS

	COMMUN		FIN				DATASHE	
Register Name	sts_operating	'	Description	(RO) Current op the device's int machine.	perating state of rernal state	Default Value	0100 0001	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
SYNC2K_alarm	T4_DPLL_Lock	TO_DPLL_freq_ soft_alarm	T4_DPLL_freq_ soft_alarm		TO_	_DPLL_operating_	n_mode	
Bit No.	Description		•	Bit Value	Value Descripti			
6	The T4 DPLL doe as the T0 DPLL,	phase lock status es not have the san as it does not supp O DPLL. It can only ocked.	ne state machine port all the	0 1		ase locked to refe locked to referenc		
	monitoring the T- potentially come loss indicators at that enable them fine phase loss of the coarse phase Bit 7, the phase the input enable from the DPLL bo frequency limits T4 DPLL lock ind latch an indication phase lock detect phase lost or not For this bit to giv T4 DPLL locked st	that the T4 DPLL 4 DPLL phase loss from four sources re enabled by the se n for the T0 DPLL, detector enabled b e loss detector ena- loss indication from ed by Reg. 73 Bit 6 eing at its minimur enabled by Reg. 4 dicator (at Reg. 09 on of phase lost fro ctor such that when bit locked) is set it se t locked state (so F ve a correct current state, then the coa- be temporarily disa	indicators, which indicators, which is. The four phase same registers as follows: the by Reg. 73 Bit 7, abled by Reg. 74 m no activity on and phase loss m or maximum D Bit 7. For the Bit 6) the bit will om the coarse n an indication of stays in that Reg. 09 Bit 6 =0). t reading of the arse phase loss					
	Reg. 74 Bit 7 = 0 read (Reg. 09 Bi	D), then the T4 lock t 6), then the coars be re-enabled aga	ked bit can be se phase loss					
	it is always a cor the coarse phase at any time any co coarse phase los slips) then this ir lock bit (Reg. 09 indicating that a requirement that	dicating "locked" (rect indication and e loss detector ena cycle slips occur th ss detector (which nformation is latch 9 Bit 6) will go low a problem has occu t the coarse phase le sequence is performed to be the product of the section of the section of the section of the section of the section of the section of the section of the se	d no change to able is required. If hat trigger the monitors cycle ed so that the and stay low, irred. It is then a b loss detector's formed during a					

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 09 (cont...)

Register Name	sts_operating		Description	(RO) Current operating state of Default Value 0 the device's internal state machine.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2		Bit 1	Bit O		
SYNC2K_alarm	T4_DPLL_Lock	<i>TO_DPLL_freq_</i> <i>soft_alarm</i>	<i>T4_DPLL_freq_</i> <i>soft_alarm</i>		<i>TO_</i>	_DPLL_operating_	mode		
Bit No.	Description			Bit Value	Value Description	on			
5	and "soft" alarm extent to which i limiting. The "soft the DPLL trackin	oft_alarm s a programmable limit. The frequer t will track a refere t" limit is the poin g a reference will he status of the "s	ncy limit is the ence before t beyond which cause an alarm.	0	TO DPLL tracking its reference within the limits of the programmed "soft" alarm. TO DPLL tracking its reference beyond the limits the programmed "soft" alarm.				
4	and "soft" alarm extent to which i limiting. The "sof the DPLL trackin	coft_alarm is a programmable limit. The frequen t will track a refere ft" limit is the poin g a reference will he status of the "s	acy limit is the ence before t beyond which cause an alarm.	0	T4 DPLL tracking its reference within the limits the programmed "soft" alarm. T4 DPLL tracking its reference beyond the limit the programmed "soft" alarm.				
3	Not used.			-	-				
[2:0]		<i>ting_mode</i> I to report the stat ine controlling the		000 001 010 011 100 101 110 111	Not used. Free Run. Holdover. Not used. Locked. Pre-locked2. Pre-locked. Phase Lost.				

FINAL

ADVANCED COMMUNICATIONS

Address (hex): OA

Register Name	sts_priority_table		Description	(RO) Bits [7:0] o priority table.	of the validated	Default Value	0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
	Highest priority val	idated source		Currently selected source					
Bit No.	Description			Bit Value	Value Description				
[7:4]	Highest priority valid Reports the input ch priority validated son NoteIf an input is this field when other may have been disa (cnfg_sts_remote_s *When Bit 4 (T4_TC (cnfg_registers_sou priority validated son When this Bit 4 = 1 source for the T4 pa	es not appear in then the input . 30 and Reg. 31 g. 4B 0 the highest 0 path is reported. iority validated	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	No valid source available. Input 11 is the highest priority valid source. Input 12 is the highest priority valid source. Input 13 is the highest priority valid source. Input 14 is the highest priority valid source. Input 15 is the highest priority valid source. Input 16 is the highest priority valid source. Input 17 is the highest priority valid source. Input 18 is the highest priority valid source. Input 19 is the highest priority valid source. Input 110 is the highest priority valid source. Input 111 is the highest priority valid source. Input 112 is the highest priority valid source. Input 113 is the highest priority valid source. Input 113 is the highest priority valid source. Not used.					
[3:0]	<i>Currently selected s</i> Reports the input ch selected source. Wh is not necessarily th validated source. <i>NoteIf an input is</i> <i>this field when othe</i> <i>may have been disa</i> <i>(cnfg_sts_remote_s)</i> *When Bit 4 (<i>T4_TC</i> <i>(cnfg_registers_sou</i> selected source for When this Bit 4 = 1 t the T4 path is report a Non-revertive mod same as the highest	annel number en in Non-reve e same as the valid and it do rwise it might, illowed in Reg ources_valid). <u>O_select</u>) of Re rce_select) = (the TO path is he currently so ted. The T4 pa le so this will a	ertive mode, this e highest priority pes not appear in then the input 2. 30 and Reg. 31 g. 4B 0 the currently reported. elected source for th does not have always be the	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1110 1111	Input 12 is the of Input 13 is the of Input 14 is the of Input 15 is the of Input 16 is the of Input 17 is the of Input 18 is the of Input 19 is the of Input 110 is the Input 111 is the Input 112 is the Input 113 is the	ently selected. currently selected s currently selected s	source. source. source. source. source. source. source. l source. l source. l source. l source. l source.		

FINAL

ACS8520 SETS

ADVANCED COMMUNICATIONS

Address (hex): OB

Register Name	sts_priority_table		Description	(RO) Bits [15:8] priority table.] of the validated	Default Value	0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
	3 rd highest priority v	alidated sourc	Ce		2 nd highest prior	ity validated sour	ce		
Bit No.	Description			Bit Value	Value Description				
[7:4]	3 rd highest priority of Reports the input ch priority validated so <i>NoteIf an input is</i> <i>this field when other</i> <i>may have been disa</i> <i>(cnfg_sts_remote_s</i> *When Bit 4 (<i>T4_TC</i> <i>(cnfg_registers_sou</i>) priority validated so When this Bit 4 = 1 the T4 path does not priority validated so	nannel numbe urce. valid and it do rrwise it might allowed in Reg sources_valid) 0_select) of Re urce_select) = urce for the To the value will ot maintain the	r of the 3 rd highest bes not appear in , then the input a. 30 and Reg. 31 eg. 4B 0 the 3 rd highest 0 path is reported. always be zero as	0000 0001 0010 0011 0100 0101 0110 0111 1000 1011 1100 1101 1100 1111 1110	0001Input I1 is the 3^{rd} highest priority valid sour0010Input I2 is the 3^{rd} highest priority valid sour0011Input I3 is the 3^{rd} highest priority valid sour0100Input I3 is the 3^{rd} highest priority valid sour0100Input I4 is the 3^{rd} highest priority valid sour0101Input I5 is the 3^{rd} highest priority valid sour0101Input I6 is the 3^{rd} highest priority valid sour0110Input I7 is the 3^{rd} highest priority valid sour0111Input I7 is the 3^{rd} highest priority valid sour1000Input I8 is the 3^{rd} highest priority valid sour1001Input I9 is the 3^{rd} highest priority valid sour1010Input I10 is the 3^{rd} highest priority valid sour1011Input I11 is the 3^{rd} highest priority valid sour1010Input I12 is the 3^{rd} highest priority valid sour1101Input I13 is the 3^{rd} highest priority valid sour1101Input I14 is the 3^{rd} highest priority valid sour				
[3:0]	2 nd highest priority Reports the input cf highest priority valic NoteIf an input is this field when other may have been disa (cnfg_sts_remote_s * When Bit 4 (T4_TC (cnfg_registers_sou priority validated so When this Bit 4 = 1 th source for the T4 par	bes not appear in , then the input a. 30 and Reg. 31 eg. 4B 0 the 2 nd highest 0 path is reported. et priority validated	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1101 1100 1101 1110 1111	Input I1 is the 2 Input I2 is the 2 Input I3 is the 2 Input I3 is the 2 Input I4 is the 2 Input I5 is the 2 Input I6 is the 2 Input I7 is the 2 Input I8 is the 2 Input I9 is the 2 Input I9 is the 2 Input I10 is the Input I11 is the Input I12 is the Input I13 is the	d sources availab nd highest priority nd highest priori 2 nd highest priori	valid source. valid source. valid source. valid source. valid source. valid source. valid source. valid source. valid source. ty valid source. ty valid source. ty valid source.			

FINAL

ACS8520 SETS

		CATIONS	FIN	IAL			DATASHEET
Address (hex)	:00						
Register Name	sts_current_DPLL [7:0]	_frequency	Description	(RO) Bits [7:0] of frequency.	of the current DPLL	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
		l	Bits [7:0] of sts_cur	rrent_DPLL_frequ	iency		
Bit No.	Description			Bit Value	Value Descriptio	n	
[7:0]	Bits [7:0] of sts_c *When Bit 4 (74_ (<i>cnfg_registers_s</i> for the T0 path is When this Bit 4 = reported.	<i>TO_select</i>) of Re <i>ource_select</i>) = reported.	eg. 4B	-	See register des sts_current_DPL		address OD hex.

Address (hex): OD

Register Name	sts_current_DPLI [15:8]	L_frequency	Description		(RO) Bits [15:8] of the current Default Value 0000 0000 DPLL frequency.				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
			sts_current_DPL	L_frequency[15:	8]				
Bit No.	Description			Bit Value	Value Description	on			
[7:0]	sts_current_DPLI This value in this in in Reg. OC and Ref frequency offset (*When Bit 4 (<i>T4_</i> (<i>cnfg_registers_s</i> for the TO path is When this Bit 4 = reported.	register is combir eg. 07 to represe of the DPLL. <i>TO_select</i>) of Reg <i>cource_select</i>) = 0 reported.	ned with the value nt the current g. 4B D the frequency		respect to the c in Reg. 07, Reg. concatenated. T signed integer. 0.0003068 dec with respect to t crystal calibratic cnfg_nominal_f value is actually can be viewed a rate of change i Bit 3 of Reg. 3B	rystal oscillator fre OD and Reg. OC r This value is a 2's The value multiplie will give the value the XO frequency, on that has been p frequency, Reg. 3C the DPLL integra as an average freq s related to the DI	complement ed by e in ppm offset allowing for any performed, via c and 3D. The I path value so it juency, where the PLL bandwidth. If value will freeze if		

ADVANCED COMMUNICATIONS

Address (hex): OE

Register Name	sts_sources_v	alid	Description	(RO) 8 least sig sts_sources_va	nificant bits of the <i>alid</i> register.	Default Value	0000 0000	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
18	17	16	15	14	13	12	11	
Bit No.	Description			Bit Value Value Description				
7		anding alarms, or	put is valid if either it only has a soft	0 1	Input 18 is invalio Input 18 is valid.	1.		
6	17			0	Input 17 is invalid	d.		
-	Bit indicating if	anding alarms, or	put is valid if either it only has a soft	1	Input 17 is valid.			
5	16			0	Input 16 is invalio	1.		
		anding alarms, or	put is valid if either it only has a soft	1	Input 16 is valid.			
4	15			0	Input 15 is invalio	1.		
		anding alarms, or	put is valid if either it only has a soft	1	Input 15 is valid.			
3	14			0	Input 14 is invalio	1.		
		anding alarms, or	put is valid if either it only has a soft	1	Input I4 is valid.			
2	13			0	Input 13 is invalio	ł.		
	Bit indicating if	anding alarms, or	put is valid if either it only has a soft	1	Input 13 is valid.			
1	12			0	Input I2 is invalio	ł.		
		anding alarms, or	put is valid if either it only has a soft	1	Input I2 is valid.			
0	11			0	Input I1 is invalid	ł.		
		anding alarms, or	put is valid if either it only has a soft	1	Input I1 is valid.			

FINAL

Address (hex): OF

Register Name	sts_sources_vali	d	Description	(RO) 8 most sig sts_sources_va	nificant bits of the alid register.	Default Value	0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
		114	113	112	111	110	19		
Bit No.	Description			Bit Value	Value Description				
[7:6]	Not used.			-	-				
5	114			0	Input I14 is inval				
	Bit indicating if I1 either it has no o soft frequency al	utstanding alarr	nput is valid if ns, or it only has a	1	Input I14 is valid				
4	113			0	Input I13 is inval	id.			
	Bit indicating if I13 is valid. The input is valid if either it has no outstanding alarms, or it only has a soft frequency alarm.			1	Input I13 is valid				
3	112			0	Input I12 is inval	id.			
	Bit indicating if I1 either it has no o soft frequency al	utstanding alarr	nput is valid if ns, or it only has a	1	Input I12 is valid				
2	111			0	Input I11 is inval	id.			
	Bit indicating if I1 either it has no o soft frequency al	utstanding alarr	nput is valid if ns, or it only has a	1	Input I11 is valid				
1	110			0	Input I10 is inval	id.			
	Bit indicating if I1 either it has no o soft frequency al	utstanding alarr	nput is valid if ns, or it only has a	1	Input I10 is valid				
0	19			0	Input 19 is invalid	Ι.			
	Bit indicating if IS it has no outstan frequency alarm.	ding alarms, or	out is valid if either it only has a soft	1	Input 19 is valid.				

FINAL

ACS8520 SETS

Address (hex): 10

Register Name	sts_reference_so Input pairs (1 & 2		Description	(RO except for Reports any ala inputs.	test when R/W) arms active on	Default Value	0110 0110	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	Address 10: Sta Address 11: Sta					Status of I1 Input Status of I3 Input		
	Address 12: Sta					Status of 15 Input		
	Address 13: Sta					Status of 17 Input		
	Address 14: Sta					Status of 19 Input		
	Address 15: Sta	atus of I12 Input			Address 15: S	Status of I11 Input		
	Address 16: Sta	atus of I14 Input			Address 16: S	Status of I13 Input		
Bit No.	Description			Bit Value	e Value Description			
7&3	Out-of-band alarr	n (soft)		0	No alarm.			
	Soft out of band a will not invalidate		. A "soft" alarm	1		Alarm thresholds (r Reg. 4A, Bits [7:4] ted.		
6 & 2	Out-of-band alarr	m (hard)		0	No alarm.			
	Hard out of band will invalidate an		t. A "hard" alarm	1		Alarm thresholds se g. 4A Bits [3:0] if the		
5 & 1	No activity alarm			0	No alarm.			
	Alarm indication from the activity monitors.				Input has an active no activity alarm.			
4 & 0	Phase lock alarm	1		0	No alarm.			
	If the DPLL can not indicate that it is phase locked onto the current source within 100 seconds this alarm will be raised.				Phase lock ala	rm.		

FINAL

Address (hex): 11	As Reg. 10, but for <i>sts_reference_sources</i> , Input pairs	(3 & 4)
Address (hex): 12	As Reg. 10, but for <i>sts_reference_sources,</i> Input pairs	(5 & 6)
Address (hex): 13	As Reg. 10, but for <i>sts_reference_sources</i> , Input pairs	(7 & 8)
Address (hex): 14	As Reg. 10, but for <i>sts_reference_sources,</i> Input pairs	(9 & 10)
Address (hex): 15	As Reg. 10, but for <i>sts_reference_sources,</i> Input pairs	(11 & 12)
Address (hex): 16	As Reg. 10, but for <i>sts_reference_sources</i> , Input pairs	(13 & 14)

DATASHEET

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 18

Register Name	cnfg_ref_selectio (1 & 2)	on_priority	Description	(R/W) Configure priority of input	es the relative C sources I1 and I2.	Default Value (T0)* 0011 0010 (T4)* 0000 0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	cnfg_ref_selec	tion_priority_2		cnfg_ref_selection_priority_1				
Bit No.	Description			Bit Value	Value Description			
[7:4]	<i>cnfg_ref_selection_priority_2</i> This 4-bit value represents the relative priority of input I2. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input I2 unavailable for automatic selection. Input I2 priority value.			
[3:0]	<i>cnfg_ref_selection_priority_1</i> This 4-bit value represents the relative priority of input 11. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input I1 unavailable for automatic selection. Input I1 priority value.			

FINAL

Address (hex): 19

Register Name	cnfg_ref_selection_priority (3 & 4)		Description	(R/W) Configure priority of input	es the relative sources I3 and I4.	Default Value (T0)* 0101 0100 (T4)* 0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	cnfg_ref_seled	ction_priority_4		cnfg_ref_selection_priority_3				
Bit No.	Description			Bit Value	Value Description	l		
[7:4]	<i>cnfg_ref_selection_priority_4</i> This 4-bit value represents the relative priority of input I4. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input 14 unavailab Input 14 priority va	ole for automatic so alue.	election.	

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 19 (cont...)

Register Name	cnfg_ref_selection_priority (3 & 4)		Description	(R/W) Configures the relative priority of input sources I3 and I4.		Default Value (T0)* 0101 0100 (T4)* 0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
cnfg_ref_selection_priority_4				cnfg_ref_selection_priority_3				
Bit No.	Description			Bit Value	Value Descriptio	n		
[3:0]	<i>cnfg_ref_selection_priority_3</i> This 4-bit value represents the relative priority of input I3. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input 13 unavaila Input 13 priority v	ble for automatic value.	selection.	

FINAL

Address (hex): 1A

Register Name	cnfg_ref_selection (5 & 6)	n_priority	Description Bit 4	(R/W) Configure priority of input	es the relative sources 15 and 16.	Default Value (T0)* 0111 0110 (T4)* 0111 0110		
Bit 7	Bit 6	Bit 5		Bit 3	Bit 2	Bit 1	Bit O	
	cnfg_ref_select	tion_priority_6		cnfg_ref_selection_priority_5				
Bit No.	Description			Bit Value	Value Description	1		
[7:4]	<i>cnfg_ref_selection_priority_6</i> This 4-bit value represents the relative priority of input I6. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input I6 unavailable for automatic selection. Input I6 priority value.			
[3:0]	<i>cnfg_ref_selection_priority_5</i> This 4-bit value represents the relative priority of input I5. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111		put I5 unavailable for automatic selection. put I5 priority value.		
ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 1B

Register Name	cnfg_ref_selectio (7 & 8)	on_priority	Description	(R/W) Configures the relative priority of input sources I7 and I8.Default Value(T0)*100 (T4)*				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	cnfg_ref_selection_priority_8				cnfg_ref_selecti	ion_priority_7		
Bit No.	Description			Bit Value	Value Description			
[7:4]	<i>cnfg_ref_selection_priority_8</i> This 4-bit value represents the relative priority of input I8. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input I8 unavailable for automatic selection.1 Input I8 priority value.			
[3:0]	<i>cnfg_ref_selection_priority_7</i> This 4-bit value represents the relative priority of input I7. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input I7 unavailab Input I7 priority va		election.	

FINAL

Register Name	cnfg_ref_selection_priority Description (9 & 10)			(R/W) Configure priority of input I10.		Default Value (T0)* 1011 1010 (T4)* 1011 1010			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 1	Bit O			
cnfg_ref_selection_priority_10				cnfg_ref_selection_priority_9					
Bit No.	Description			Bit Value	Value Descripti	on			
[7:4]	This 4-bit value input 110. The sr priority; zero disa *When Bit 4 (<i>T4</i> (<i>cnfg_registers_</i> the T0 path is co	<i>cnfg_ref_selection_priority_10</i> This 4-bit value represents the relative priority of input 110. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is			Input I10 unava Input I10 priori	ailable for automatic ty value.	selection.		

DATASHEET

ADVANCED COMMUNICATIONS Address (hex): 1C (cont...)

Register Name	cnfg_ref_selection (9 & 10)	on_priority	Description	(R/W) Configure priority of input I10.		Default Value (T0)* 1011 1010 (T4)* 1011 1010		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	cnfg_ref_selection_priority_10			cnfg_ref_sel	ection_priority_9			
Bit No.	Description			Bit Value	Value Descripti	ion		
[3:0]	input I9. The sma priority; zero disa *When Bit 4 (<i>T4</i> (<i>cnfg_registers_</i> : the T0 path is co	epresents the r aller the number ables the input. _ <i>TO_select</i>) of F <i>source_select</i>) nfigured.	Ū	0000 0001-1111	Input 19 unavai Input 19 priority	lable for automatic s value.	selection.	

FINAL

Register Name	cnfg_ref_selecti (11 & 12)	ion_priority	Description	(R/W) Configure priority of input I12.	es the relative sources I11 and	· · ·	1101 1100 0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bi	
cnfg_ref_selection_priority			2		cnfg_ref_sele	ction_priority_11	
Bit No.	Description			Bit Value	Value Description	on	
[7:4]	<i>cnfg_ref_selection_priority_12</i> This 4-bit value represents the relative priority of input 112. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input I12 unava Input I12 priorit	ilable for automatic y value.	selection.

ADVANCED COMMUNICATIONS FINAL DATASHEET Address (hex): 1D (cont...) Register Name cnfg_ref_selection_priority Description (R/W) Configures the relative **Default Value** (11 & 12) priority of input sources I11 and (T0)* 1101 1100 (T4)* 0000 0000 I12. Bit 3 Bit 7 Bit 6 Bit 5 Bit 4 Bit 2 Bit 1 Bit O cnfg_ref_selection_priority_12 cnfg_ref_selection_priority_11 Bit No. Description **Bit Value Value Description** [3:0] cnfg_ref_selection_priority_11 0000 Input I11 unavailable for automatic selection. This 4-bit value represents the relative priority of Input I11 priority value. 0001-1111 input I11. The smaller the number, the higher the priority; zero disables the input. *The priority of input I11 depends on the value of the MASTSLVB pin at power-up. If MASTSLVB is High (master) at power-up, then the priority will default to 12. If MASTSLVB is Low (slave) at power-up, then the priority will default to 1. *When Bit 4 (T4_T0_select) of Reg. 4B (*cnfg_registers_source_select*) = 0 the priority for the TO path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.

Register Name	cnfg_ref_selecti (13 & 14)	ion_priority	Description	(R/W) Configure priority of input I14.	es the relative sources I13 and	Default Value (TO)* 1111 1110 (T4)* 0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	cnfg_ref_seled	ction_priority_14	4		cnfg_ref_seled	ction_priority_13		
Bit No.	Description			Bit Value	Value Description	on		
[7:4]	input I14. The si priority; zero dis *When Bit 4 (74 (<i>cnfg_registers_</i> the TO path is co	represents the r maller the numb ables the input. <i>t_TO_select</i>) of F <i>source_select</i>) = onfigured.	elative priority of ber, the higher the Reg. 4B = 0 the priority for for the T4 path is	0000 0001-1111	Input I14 unava Input I14 priorit	ilable for automatic y value.	selection.	

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 1E (cont...)

Register Name	cnfg_ref_selection_priority Description (13 & 14)			(R/W) Configure priority of input I14.	es the relative sources I13 and	Default Value (T0)* 1111 1110 (T4)* 0000 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	cnfg_ref_selec	tion_priority_14	4		cnfg_ref_sele	ction_priority_13		
Bit No.	Description			Bit Value	Value Description	on		
[3:0]	<i>cnfg_ref_selection_priority_13</i> This 4-bit value represents the relative priority of input 113. The smaller the number, the higher the priority; zero disables the input. *When Bit 4 (<i>T4_T0_select</i>) of Reg. 4B (<i>cnfg_registers_source_select</i>) = 0 the priority for the T0 path is configured. When this Bit 4 = 1 the priority for the T4 path is configured.			0000 0001-1111	Input I13 unava Input I13 priorit	ilable for automatic y value.	selection.	

FINAL

Register Name	cnfg_ref_source_frequency Description _1			(R/W) Configur frequency and for input I1.	ation of the input monitoring	Default Value	0000 0000	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
Set t	o zero	buc	cket_id_1		Set	to zero		
Bit No.	Description			Bit Value	Value Description	on		
[7:6]	Set to zero			00	Set to zero			
[5:4]	<i>bucket_id_1</i> Every input has it	ts own Leaky Bu	icket used for	00	Input I1 activity monitor uses Leaky Bucket Configuration 0.			
	activity monitorin	ig. There are fou		01		monitor uses Lea	ky Bucket	
	to 5F. This 2-bit field selects the configuration used for input I1.			10	Input 11 activity monitor uses Leaky Bucket Configuration 2.			
	·			11	Ũ	monitor uses Lea	ky Bucket	
[3:0]	Set to zero			0000	8 kHz only			

ADVANCED COMMUNICATIONS

Address (hex): 21

Register Name	<i>cnfg_ref_source_frequency</i> Description			(R/W) Configuration of the Default Value 00 frequency and input monitoring for input I2.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
Set to zero <i>bucket_id_2</i>					Set	to zero			
Bit No.	Description			Bit Value	Value Description				
[7:6]	Set to zero			00	Set to zero				
[5:4]	<i>bucket_id_2</i> Every input has it	ts own Leaky Bi	ucket used for	00	Input I2 activity monitor uses Leaky Bucket Configuration 0.				
	activity monitorin	ng. There are for		01	Input I2 activity monitor uses Leaky Bucket Configuration 1.				
		2-bit field select	s the configuration	10	Input I2 activity monitor uses Leaky Bucket Configuration 2.				
	·			11	Input I2 activity monitor uses Leaky Bucket Configuration 3.				
[3:0]	Set to zero			0000	8 kHz only				

FINAL

Address (hex): 22

Use <n> = 3

Register Name	_ <n>, where for Reg 22, n =</n>			(R/W) Configuration of the frequency and input monitoring for input I <n>.</n>		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
divn_ <n></n>	lock8k_ <n></n>	buck	ket_id_ <n></n>		reference_sour	ce_frequency_ <n;< td=""><td>></td></n;<>	>
Bit No.	Description			Bit Value	Value Descripti	on	
7	<i>divn_<n></n></i> This bit selects whether or not input I <n> is divided in the programmable pre-divider prior to being input to the DPLL and frequency monitor- see Reg. 46 and Reg. 47 (<i>cnfg_freq_divn</i>).</n>			0 1		lirectly to DPLL an o DPLL and monit	
6	in the preset pre- DPLL. This results	divider prior to s in the DPLL lo has been divide	ed to 8 kHz. This bit	0 1	Input I <n> fed a Input I<n> fed t</n></n>	lirectly to DPLL. o DPLL via preset	pre-divider.

ADVANCED COMMUNICATIONS

FINAL

ACS8520 SETS

DATASHEET

Address (hex): 22 (cont...) Use <n> = 3

Register Name	cnfg_ref_source _ <n>, where for R 3</n>		Description	(R/W) Configuration of the Default Value 0000 0000 frequency and input monitoring for input I <n>.</n>					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
divn_ <n></n>	lock8k_ <n></n>	bucke	t_id_ <n></n>		reference_source	e_frequency_ <n:< td=""><td>></td></n:<>	>		
Bit No.	Description			Bit Value	Value Description				
[5:4]	<i>bucket_id_<n></n></i> Every input has its	s own Leaky Buc	ket used for	00	Input I <n> activit Configuration 0.</n>	y monitor uses L	eaky Bucket		
	activity monitoring configurations for			01	Input I <n> activit Configuration 1.</n>	y monitor uses L	eaky Bucket		
	to Reg. 5F. This 2-bit field selects the configuration used for input I <n>.</n>				Input I <n> activit Configuration 2.</n>	y monitor uses L	eaky Bucket		
	,			11	Input I <n> activity monitor uses Leaky Bucket Configuration 3.</n>				
[3:0]	reference_source	_frequency_ <n></n>	`	0000	8 kHz.				
	Programs the freq connected to input			0001	1544/2048 kHz (dependant on Bit 2 (<i>ip_sonsd</i> in Reg. 34).				
	this value should			0010	6.48 MHz.				
				0011	19.44 MHz.				
				0100	25.92 MHz.				
				0101	38.88 MHz.				
				0110	51.84 MHz.				
				0111 1000	77.76 MHz. 155.52 MHz.				
				1000	2 kHz.				
				1010	2 KHZ. 4 KHZ.				
				1011-1111	Not used.				

Address (hex): 23	cnfg_ref_source_frequency_4	Use description for Reg. 22, but use $\langle n \rangle = \langle n \rangle$	4	Default = 0000 0000
Address (hex): 24	cnfg_ref_source_frequency_5	Use description for Reg. 22, but use $\langle n \rangle = g$	5	Default = 0000 0011
Address (hex): 25	cnfg_ref_source_frequency_6	Use description for Reg. 22, but use $\langle n \rangle = d$	5	Default = 0000 0011
Address (hex): 26	cnfg_ref_source_frequency_7	Use description for Reg. 22, but use $\langle n \rangle = 2$	7	Default = 0000 0011
Address (hex): 27	cnfg_ref_source_frequency_8	Use description for Reg. 22, but use $\langle n \rangle = \delta$	3	Default = 0000 0011
Address (hex): 28	cnfg_ref_source_frequency_9	Use description for Reg. 22, but use $\langle n \rangle = 9$	7	Default = 0000 0011
Address (hex): 29	cnfg_ref_source_frequency_10	Use description for Reg. 22, but use $\langle n \rangle = 2$	10	Default = 0000 0011
Address (hex): 2A	cnfg_ref_source_frequency_11	Use description for Reg. 22, but use $\langle n \rangle = 2$	11	Default = 0000 0011
Address (hex): 2B	cnfg_ref_source_frequency_12	Use description for Reg. 22, but use $\langle n \rangle = 2$	12	Default = 0000 0001
Address (hex): 2C	cnfg_ref_source_frequency_13	Use description for Reg. 22, but use $\langle n \rangle = 2$	13	Default = 0000 0001
Address (hex): 2D	cnfg_ref_source_frequency_14	Use description for Reg. 22, but use $\langle n \rangle = -2$	14	Default = 0000 0001

ACS8520 SETS

ADVANCED COMMUNICATIONS

FINAL

Register Name	cnfg_sts_remote	e_sources_valid	Description		egister. A register e sources that are her device in a	Default Value	1111 1111	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
18	17	16	15	14	13	12	11	
Bit No.	Description			Bit Value	Value Description	n		
7	If this bit is not s	et, then even if th pear in Reg. OA ar	ered for locking to. is input I8 is valid, nd OB	0 1	Locking to input Locking to input			
6	If this bit is not s	et, then even if th pear in Reg. OA ar	ered for locking to. is input 17 is valid, nd 0B	0 1	Locking to input I7 disallowed. Locking to input I7 allowed.			
5	If this bit is not s	et, then even if th pear in Reg. OA ar	ered for locking to. is input 16 is valid, nd 0B	0 1	Locking to input I6 disallowed. Locking to input I6 allowed.			
4	If this bit is not s	et, then even if th pear in Reg. OA ar	ered for locking to. is input I5 is valid, nd 0B	0 1	Locking to input Locking to input			
3	If this bit is not s	et, then even if th pear in Reg. OA ar	ered for locking to. is input I4 is valid, nd OB	0 1	Locking to input Locking to input			
2	If this bit is not s	et, then even if th pear in Reg. OA ar	ered for locking to. is input I3 is valid, nd OB	0 1	Locking to input Locking to input			
1	If this bit is not s	et, then even if th pear in Reg. OA ar	ered for locking to. is input I2 is valid, nd OB	0 1	Locking to input Locking to input			

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Register Name	cnfg_sts_remo	ote_sources_valid	Description	sources valid re		Default Value	1111 1111
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
18	17	16	15	14	13	12	11
Bit No.	Description			Bit Value	Value Description	on	
0	<i>I1</i> Bit enabling input I1 to be considered for locking to. If this bit is not set, then even if this input I1 is valid, it will still not appear in Reg. OA and OB (<i>sts_priority_table</i>).			0 1	Locking to input Locking to input		

FINAL

Register Name	cnfg_sts_remote_sources_valid Description			(R/W) Bits [13:8] of the remote sources valid register. A register used to disable source that are invalid in another device in a redundancy pair.			0011 1111
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
		114	113	112	111	110	19
Bit No.	Description			Bit Value	Value Description	on	
[7:6]	Not used.			-	-		
5	<i>I14</i> Bit enabling input I14 to be considered for locking to. If this bit is not set, then even if this input I14 is valid, it will still not appear in Reg. OA and OB (<i>sts_priority_table</i>).			0 1	Locking to input Locking to input		
4	to. If this bit is	put I13 to be consi not set, then even Il not appear in Reg able).	if this input I13 is	0 1	Locking to input Locking to input		
3	to. If this bit is	iput I12 to be consi not set, then even Il not appear in Reg able).	if this input I12 is	0 1	Locking to input Locking to input		

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 31 (cont...)

Register Name	cnfg_sts_remote_sources_valid Description			(R/W) Bits [13:8] of the remote sources valid register. A register used to disable source that are invalid in another device in a redundancy pair.			0011 1111	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
			113	112	111	110	19	
Bit No.	Description			Bit Value	Value Description	n		
2	<i>I11</i> Bit enabling input I11 to be considered for locking to. If this bit is not set, then even if this input I11 is valid, it will still not appear in Reg. OA and OB (<i>sts_priority_table</i>).			0 1	Locking to input Locking to input			
1	to. If this bit is r	ut I10 to be consid not set, then even i not appear in Reg. b <i>le</i>).	f this input I10 is	0 1	Locking to input Locking to input			
0	If this bit is not s	ut I9 to be conside set, then even if thi ppear in Reg. OA ar ole).	s input 19 is valid,	0 1	Locking to input Locking to input			

FINAL

Register Name	Name cnfg_operating_mode		Description		to force the state controlling state	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
					TO_	_DPLL_operating_	_mode
Bit No.	Description			Bit Value	Value Description	n	
[7:3]	Not used.				-		

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 32 (cont...)

Register Name	cnfg_operating_m	node	Description	(R/W) Register to force the state Default Value 0000 0000 of the TO DPLL controlling state machine.				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
					TO_D	PLL_operating_	mode	
Bit No.	Description			Bit Value	Value Description	l		
[2:0]	[2:0] <i>TO_DPLL_operating_mode</i> This field is used to control the state of the internal finite state machine controlling the TO DPLL. A value of zero is used to allow the finite state machine to control itself. Any other value will force the state machine to jump into that state. Care should be taken when forcing the state machine. Whilst it is				Automatic (interna Free Run. Holdover. Not used. Locked. Pre-locked2. Pre-locked.	al state machine	e controlled).	
	forced, the internal affect the internal user is responsible functions required functionality.	al monitoring f state machine e for all monite	unctions cannot e, therefore, the pring and control	110 111	Phase Lost.			

FINAL

egister Name	force_select_refe	erence_source	Description	(R/W) Register used to force the Default Value 0000 1111 selection of a particular reference source for the TO DPLL.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
					forced_refer	rence_source			
Bit No.	Description			Bit Value	Value Descriptio	n			
[7:4]	Not used.			-	-				
[3:0]	TO DPLL. Value o the automatic co Using this mecha functions assumi the device is not progress to state input fails, the de Holdover, as it is source. The effect the priority of the ensure selection	e_source ng the source to be f 0 hex will leave th ntrol mechanism w unism will bypass al ing the selected ing in state "Locked" t locked in the usual evice will not chang not allowed to disc of this register is e selected input to of the programme all circumstances,	he selection to ithin the device. I the monitoring but to be valid. If hen it will al manner. If the ge state to qualify the simply to raise '1" (highest). To d input	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101	Automatic state i TO DPLL forced t TO DPLL forced t	o select input 11. o select input 12. o select input 13. o select input 14. o select input 15. o select input 16. o select input 17. o select input 18. o select input 19. o select input 111 o select input 111). 1. 2.		

ADVANCED COMMUNICATIONS

Address (hex): 34

Register Name	cnfg_input_mod	le	Description	(Bit 1 RO, other Register contro modes of the d	olling various input	Default Value	1100 0010*	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
auto_extsync_ en	phalarm_time- out	XO_edge	man_holdover	extsync_en	ip_sonsdhb	master_slaveb	reversion_mode	
Bit No.	Description Bit Value Value Description							
7	<i>auto_extsync_e</i> Bit to enable au	tomatic enabling		0	External Frame Sync enabled/disabled accordin extsync_en.			
	Frame Sync input when locked to source defined Reg. 7C Bits [3:0] (<i>Sync_reference_source</i>).			1	TO DPLL locked	External Frame Sync enabled if <i>extsync_en</i> = 1 TO DPLL locked to source assigned to <i>Sync_reference_source</i> .		
6	<i>phalarm_timeout</i> Bit to enable the automatic time-out facility on phase alarms. When enabled, any source with a			0		n sources only car	ncelled by	
	phase alarms. V	When enabled, and the set of the		1	software. Phase alarms on sources automatically time ou			
5	XO_edge			0	Device uses the oscillator.	rising edge of the	external	
	If the 12.800 MHz oscillator module connected to REFCLK has one edge faster than the other, then for jitter performance reasons, the faster edge should be selected. This bit allows either the rising edge or the falling edge to be selected.			1	Device uses the falling edge of the external oscillator.			
4	man_holdover			0		ncy is determined	automatically.	
	is taken directly	from Reg. 3E/R frequency). If th	is bit is set then it	1		ncy is taken from frequency register		
3	extsync_en			0		c signal- <i>SYNC2K</i>		
	a reference Syn	c pulse on the <i>S</i> s bit may enable y be disabled ac	O DPLL will look for YNC2K input pin. the external Sync cording to	1	External Sync de auto_extsync_e	rived from <i>SYNC2</i> n.	K pin according to	
2		derived. This app 01 (bin) in the e_frequency regis is either 1544 k ffects the SONET	lies only to sters when the Hz or 2048 kHz. WSDH output on	0 1		to 0001 expected et to 0001 expect		
	*The default val		aken from the value					

FINAL

of the SONSDHB pin at power-up.

ACS8520 SETS

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 34 (cont...)

Register Name	cnfg_input_mode Description			(Bit 1 RO, otherwise R/W)Default ValueRegister controlling various inputmodes of the device.			1100 0010*		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 extsync_en	Bit 2	Bit 1	Bit O		
auto_extsync_ en	phalarm_time- out	XO_edge	man_holdover		ip_sonsdhb	master_slaveb	reversion_mode		
Bit No.	Description			Bit Value	Value Description				
1		value of the MA reflects the value this bit will be ac at power-up. Fo in to Master mo ividual registers	e on the pin, the ccording to the r software control, de at all times and (as per Value	0	Revertive mode Phase Build-out Master mode. I11 priority, TO E	cquisition bandwidenabled.	evertive mode,		
0	Non-revertive mo automatically sw	ertive/Non-rever ode, the device v vitch to a higher nt source fails. V	priority source, Vhen in Revertive	0 1	Non-revertive mode.	ode.			

FINAL

Register Name	cnfg_T4_path		Description	Register to configure the inputs Default Value 0100 and other features in the T4 path.				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
lock_T4_to_T0	T4_dig_feed- back		T4_op_from_T0		T4_forced_re	ference_source		
Bit No.	Description			Bit Value	Value Description	on		
7	the input of the T	4 path. This allo	puts, or TO DPLL as ows the T4 DPLL to s of frequencies to ck.	0 1		dependently from the output of the		
6	<i>T4_dig_feedback</i> Bit to select digita		de for the T4 DPLL.	0 1		og feedback mod al feedback mode		
5	Not used.			-				
4	T4_op_from_T0			0 1		II be generated fro II be generated fro		

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 35 (cont...)

Register Name	cnfg_T4_path		Description		figure the inputs ures in the T4 path.	Default Value	0100 0000		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
lock_T4_to_T0	T4_dig_feed- back		T4_op_from_T0		T4_forced_ref	erence_source			
Bit No.	Description			Bit Value	Value Description				
[3:0]	T4_forced_refere	—		0000	T4 DPLL automatic source selection.				
			T4 DPLL to select	0001	T4 DPLL forced to				
	the T4 input to be		in this field allows	0010 0011	T4 DPLL forced to				
	priority and input			0100	T4 DPLL forced to select input I3. T4 DPLL forced to select input I4.				
	priority and input	inormorning runci	10113.	0100	T4 DPLL forced to				
				0110	T4 DPLL forced to				
				0111	T4 DPLL forced to				
				1000	T4 DPLL forced to				
				1001	T4 DPLL forced to	o select input I9.			
				1010	T4 DPLL forced to	o select input I10).		
				1011	T4 DPLL forced to				
				1100	T4 DPLL forced to				
				1101	T4 DPLL forced to				
				1110	T4 DPLL forced to	o select input I14	4.		
				1111	Not used.				

FINAL

Register Name	cnfg_differentia	_inputs	Description		es the differential ICL or LVDS type	Default Value	0000 0010
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
						I6_PECL	I5_LVDS
Bit No.	Description			Bit Value	Value Description	n	
[7:2]	Not used.			-	-		
1	16 PECL			0	16 input LVDS co	mpatible	
·	-		mpatible with either levels.			mpatible (Default).
0	I5_LVDS			0	15 input LVDS co	mpatible (Defaul	i).
	Configures the IS 3 V LVDS or 3 V	•	mpatible with either levels.	1	15 input PECL co		

ADVANCED COMMUNICATIONS

Address (hex): 37

Register Name	cnfg_uPsel_pins		Description	(RO) Register reflecting the value Default Value on the UPSEL device pins.			0000 0010*	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
					upsel_pins_value			
Bit No.	Description			Bit Value	Value Description	n		
[7:3]	Not used.			-	-			
[2:0]	upsel_pins_value This register always the UPSEL pins of th set the mode of the Following power-up, effect on the microp possible to use the p a general purpose in *The default of this on the value of the	e device. At re microprocess these pins ha processor inter pins and regist nput for softwa register is ent	eset this is used to sor interface. ave no further rface, hence it is ter combination as are.	000 001 010 011 100 101 110 111 (value at reset)	Not used. Interface in EPRC Interface in Multi Interface in Intel Interface in Moto Interface in Seria Not used. Not used.	plexed mode. mode. rrola mode.		

FINAL

Address (hex): 38

Register Name	cnfg_dig_outpu	ts_sonsdh	Description	Configures <i>Digital1</i> and <i>Digital2</i> Default Valu output frequencies to be SONET or SDH compatible frequencies.			0001 1111*
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
	dig2_sonsdh	dig1_sonsdh					
Bit No.	Description			Bit Value	Value Descriptio	n	
7	Not used.			-	-		
6	<i>dig2_sonsdh</i> Selects whether the frequencies generated by the <i>Digital2</i> frequency generator are SONET derived or SDH. * Default value of this bit is set by the SONSDHB pin at power-up.			1 0	12352 kHz.		44/3088/6176/ 48/4096/8192/
5	<i>dig1_sonsdh</i> Selects whether the frequencies generated by the <i>Digital1</i> frequency generator are SONET derived or SDH. *Default value of this bit is set by the SONSDHB pin at power-up.			1 0	12352 kHz.		44/3088/6176/ 48/4096/8192/
[4:0]	Not used.			-	-		

ACS8520 SETS

ADVANCED COMMUNICATIONS

Address (hex): 39

Register Name	cnfg_digtial_frequencies		Description		R/W) Configures the actual requencies of <i>Digital1</i> & <i>Digital2</i> .		0000 1000	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
digital2_	digital2_frequency digital1_frequency							
Bit No.	Description			Bit Value	Value Descriptio	n		
[7:6]	digital2_frequency		00	<i>Digital2</i> set to 1544 kHz or 2048 kHz.				
	Configures the fre	equency of Digita	12. Whether this is	01	<i>Digital2</i> set to 3088 kHz or 4096 kHz.			
	SONET or SDH ba	ased is configure	d by Bit 6	10	<i>Digital2</i> set to 6176 kHz or 8192 kHz.			
	(<i>dig2_sonsdh</i>) of	Reg. 38.		11	Digital2 set to 12353 kHz or 16384 kHz.			
[5:4]	digital1_frequence	су		00	Digital1 set to 1	<i>Digital1</i> set to 1544 kHz or 2048 kHz.		
	Configures the fre	equency of Digita	/1. Whether this is	01	Digital1 set to 3088 kHz or 4096 kHz.			
	SONET or SDH ba	ased is configure	d by Bit 5	10	Digital1 set to 6	176 kHz or 8192	kHz.	
	(<i>dig1_sonsdh</i>) of	Reg. 38.	-	11	Digital1 set to 12	2353 kHz or 163	84 kHz.	
[3:0]	Not used.							

FINAL

Address (hex): 3A

Register Name	cnfg_differentia	l_outputs	Description	compatibility of	(R/W) Configures the electrical compatibility of the differential output drivers to be 3 V PECL or 3 V LVDS.			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
				T07_P	PECL_LVDS	CL_LVDS TO6_LVDS_PECL		
Bit No.	Description			Bit Value	Value Description	n		
[7:4]	Not used.			-	-			
[3:2]	<i>TO7_PECL_LVDS</i> Selection of the electrical compatibility of TO7 between 3 V PECL and 3 V LVDS.			00 01 10 11		bled. PECL compatible. LVDS compatible.		
[1:0]	<i>TO6_LVDS_PECL</i> Selection of the electrical compatibility of TO6 between 3 V PECL and 3 V LVDS.			00 01 10 11		bled. PECL compatible. LVDS compatible.		

ACS8520 SETS

ADVANCED COMMUNICATIONS

Address (hex): 3B

Register Name	cnfg_auto_bw_sel		Description	(R/W) Register automatic BW DPLL path	1111 1011			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
auto_BW_sel				TO_lim_int				
Bit No.	Description			Bit Value	Value Description	1		
7	<i>auto_BW_sel</i> Bit to select locked bandwidth (Reg. 67) or acquisition bandwidth (Reg. 69) for the TO DPLL			1	Automatically selects either locked or acquisition bandwidth as appropriate			
				0	Always selects locked bandwidth			
[6:4]	Not used.			-	-			
3	TO_lim_int			1	DPLL value frozer	ı		
	When set to 1 the integral path value of the DPLL is limited or frozen when the DPLL reaches either min or max frequency. This can be used to minimize subsequent overshoot when the DPLL is pulling in. Note that when this happens, the reported frequency value via <i>current_DPLL_freq</i> (Reg. 0C, 0D and 07) is also frozen.			0	DPLL not frozen			
[2:0]	Not used.			-	-			

FINAL

Address (hex): 3C

Register Name	cnfg_nominal_fro [7:0]	equency	Description	(R/W) Bits [7:0 used to calibra oscillator used device.		Default Value	1001 1001
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			cnfg_nominal_f	requency_value[7	:0]		
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	cnfg_nominal_frequency_value[7:0]		-		escription of Reg. 3 _frequency_value[

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex):								
Register Name	cnfg_nominal_fre [15:8]	quency	Description	(R/W) Bits [15:8] of the register Default Value 1001 10 used to calibrate the crystal oscillator used to clock the device.				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
			cnfg_nominal_free	quency_value[15	5:8]			
Bit No.	Description			Bit Value	Value Descripti	on		
[7:0]	<i>cnfg_nominal_fre</i> This register is use (<i>cnfg_nominal_fre</i> offset the frequen +514 ppm and –7 represents 0 ppm This value is an ur The value in Reg. offset the frequen This means that the the value reported <i>sts_current_DPLL</i> will also affect the <i>holdover_frequen</i> <i>cnfg_holdover_freq</i> and the DPLL freq into the <i>cnfg_DPL</i> be noted, howeve is NOT used in the Regs 49, 4A, 4C 8 (<i>cnfg_freq_mon_t</i> <i>cnfg_current_freq</i> <i>sts_freq_measure</i> which all use the up <i>freq_mon_clock</i> in	ed in conjunction equency_value[7 cy of the crystal of 71 ppm. The de offset from 12.8 nsigned integer. 3C/3D is used w cy value used in the value program d in the _frequency (Reg value program cy_value in the equency register uency offset lim L_freq_limit (Reg r, that this "calib e frequency monia d 4D. These regis threshold, mon_thresholk ement, cnfg_DPL uncalibrated crys nitors can also u DPLL by program	n with Reg. 3C (7:0) to be able to oscillator by up to a fault value 300 MHz. within the DPLL to the DPLL only. nmed will affect 107/0D/0C). It ned into (Reg 3E/3F/40) it programmed g 41/42). It must orated" frequency itors affecting sters d, <i>L_soft_limit</i>) stal frequency. use the clock from mming bit		oscillator freque Reg. 3D hex ne an unsigned int 0.0196229 dec	eger. The value m ; will give the value psolute value, the p	Reg. 3C and ated. This value is ultiplied by e in ppm. To	

FINAL

Register Name	cnfg_holdover_fre [7:0]	equency	Description	(R/W) Bits [7:0] of the manual Holdover frequency register.		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			holdover_free	quency_value[7:0]			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	holdover_frequer	ncy_value[7:0]		-	See Reg. 3F (<i>c</i> .	nfg_holdover_frequ	<i>uency</i>) for details.

ACS8520 SETS

Default Value

Bit 1

DATASHEET

0000 0000

Bit O

ADVANCED COMMUNICATIONS FINAL Address (hex): 3F Address (hex): 3F Register Name cnfg_holdover_frequency [15:8] Description (R/W) Bits [15:8] of the manual Holdover frequency register. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

holdover_frequency_value[15:8]

Bit No.	Description	Bit Value	Value Description
[7:0]	<i>holdover_frequency_value</i> [15:8] This value in this register is combined with the value in Reg. 3E and Bits [2:0] of Reg. 40 to represent the programmed Holdover frequency of the TO DPLL.		In order to calculate the Holdover ppm offset of th DPLL with respect to the crystal oscillator frequence the value in Reg. 3E hex and Bits [2:0] of Reg. 40 need to be concatenated. This value is a 2's complement signed integer. The value multiplied
	This register is designed such that software can read the <i>sts_current_DPLL_frequency</i> register (Reg. OC, Reg. OD and Reg. O7) and filter the value. The result will then be in a suitable format to simply write back to the <i>cnfg_holdover_frequency</i> register.		0.0003068 dec will give the value in ppm.
	*This register can be programmed to read back the internally averaged Holdover frequency rather than the programmed value, see Bit 5 of Reg. 40 <i>cnfg_holdover_modes</i> .		

Register Name	cnfg_holdover_modes		Description	(R/W) Register to control the Holdover modes of the TO DPLL.		Default Value	1000 1000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
auto_averaging	fast_averaging	read_average	mini_hold	lover_mode	holdover_frequency_value [18:16]		
Bit No.	Description			Bit Value	ue Value Description		
7	<i>auto_averaging</i> Bit to enable the use of the averaged frequency value during Holdover. This bit is overridden by the manual Holdover control (Bit 4, <i>man_holdover</i> , in		0 1	Averaged frequency not used, Holdover frequenc either manual or instantaneously frozen. Averaged frequency used, providing manual Holdover mode is not engaged.			
6	frequency. Fast a point of approxim	e rate of averaging averaging gives a - nately 8 minutes. onse point of appr	3db response Slow averaging	0 1	Holdover mode is not engaged. Slow Holdover frequency averaging enable Fast Holdover frequency averaging enabled		

ADVANCE	ADVANCED COMMUNICATIONS		FIN	IAL			DATASHEE	
ddress (hex):	40 (cont	.)						
Register Name	cnfg_holdover_modes		Description	(R/W) Register Holdover mode	to control the es of the TO DPLL.	Default Value	1000 1000	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
auto_averaging	fast_averaging	read_average	mini_hold	lover_mode	holdover_frequency_value [18:16]			
Bit No.	Description		Bit Value Value De			on		
5	holdover_freque written to that re frequency. This a averager as part	r mode plus softw	r is the value raged Holdover use the internal Ilgorithm, but use	0 1	value written to Value read from	a <i>holdover_frequ</i> r slow averaged f	uency_value is	
[4:3]	<i>mini_holdover_mode</i> Mini-holdover is a term used to describe the state of the DPLL when it is in locked mode, but it has temporarily lost its input. This may be a temporary state, or last for many seconds whilst an input is checked for inactivity. The DPLL behaves exactly as in Holdover, and the frequency can be determined in the same selection of ways (instantaneously, fast averaged or slow averaged).			00 01 10 11	way as for full H Mini-holdover fro Mini-holdover fro	Mini-holdover frequency determined in the same way as for full Holdover mode. Mini-holdover frequency frozen instantaneously. Mini-holdover frequency taken from fast average Mini-holdover frequency taken from slow average		
[2:0]	holdover_freque	ency_value [18:16]	-	See Reg. 3F (<i>cn</i>	fg_holdover_freq	uency) for details	

ACS8520 SETS

to be concatenated. This value is a unsigned integer

and represents limit *both* positive and negative in

ppm. The value multiplied by 0.078 will give the

value in ppm.

DATACI

oscillator frequency.

to which either the TO or the T4 DPLL will track a

source before limiting- i.e. it represents the pull-in

when compared to the offset of the external crystal oscillator clocking the device. If the oscillator is calibrated using *cnfg_nominal_frequency* Reg. 3C and 3D, then this calibration is automatically taken into account. The DPLL frequency limit limits the offset of the DPLL when compared to the calibrated

range of the DPLLs. The offset of the device is

determined by the frequency offset of the DPLL

ADVANCE	D COMMUNI	CATIONS	FII	NAL			DATASHEET
Address (hex)	: 41						
Register Name	cnfg_DPLL_freq_ [7:0]	limit	Description	(R/W) Bits [7:0] of the DPLL frequency limit register.		Default Value	0111 0110
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			DPLL_freq_l	imit_value[7:0]			
Bit No.	Description			Bit Value	Value Descrip	tion	
[7:0]	<i>DPLL_freq_limit_</i> This register defin	nes the extent of	f frequency offset	-	Bits [1:0] of R	culate the frequence eg. 42 and Bits [7:0)] of Reg. 41 need

EINIA

Address (hex): 42

Register Name	cnfg_DPLL_freq_limit [9:8]		Description	(R/W) Bits [9:8] of the DPLL frequency limit register.		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
						DPLL_freq_i	limit_value[9:8]
Bit No.	Description			Bit Value	Value Description	n	
[7:2]	Not used.			-	-		
[1:0]	DPLL_freq_limit_va	alue[9:8]		-	See Reg. 41 (<i>cn</i>	fg_DPLL_freq_lin	<i>nit</i>) for details.

ADVANCED COMMUNICATIONS

Address (hex): 43

Register Name	Register Name cnfg_interrupt_mask [7:0]		Description	(R/W) Bits [7:0] of the interrupt mask register.		Default Value	0000 0000		
Bit 7	Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
18	17	16	15	14 13 12					
Bit No.	Description			Bit Value	Value Value Description				
7	<i>l8</i> Mask bit for inp	ut 18 interrupt.		0 1	Input I8 cannot generate interrupts. Input I8 can generate interrupts.				
6	<i>17</i> Mask bit for inp	ut I7 interrupt.		0 1	Input I7 cannot generate interrupts. Input I7 can generate interrupts.				
5	<i>l6</i> Mask bit for inp	ut I6 interrupt.		0 1	Input I6 cannot generate interrupts. Input I6 can generate interrupts.				
4	<i>15</i> Mask bit for inp	ut 15 interrupt.		0 1	Input 15 cannot generate interrupts. Input 15 can generate interrupts.				
3	<i>l4</i> Mask bit for inp	ut I4 interrupt.		0 1	Input I4 cannot generate interrupts. Input I4 can generate interrupts.				
2	<i>13</i> Mask bit for inp	ut I3 interrupt.		0 1	Input 13 cannot generate interrupts. Input 13 can generate interrupts.				
1	<i>l2</i> Mask bit for inp	ut I2 interrupt.		0 1	Input I2 cannot generate interrupts. Input I2 can generate interrupts.				
0	<i>l1</i> Mask bit for inp	ut I1 interrupt.		0 1	Input I1 cannot generate interrupts. Input I1 can generate interrupts.				

FINAL

Address (hex): 44

Register Name	cnfg_interrupt_m [15:8]	bask	Description	(R/W) Bits [15:8] of the interrupt mask register.		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
operating_ mode	main_ref_failed	114	113	112	111	110	19
Bit No.	Description			Bit Value	Value Description	on	
7	<i>operating_mode</i> Mask bit for <i>oper</i>	<i>rating_mode</i> int	errupt.	0 1		cannot generate can generate inte	
6	<i>main_ref_failed</i> Mask bit for <i>main_ref_failed</i> interrupt.			0 1	Main reference failure cannot generate interru Main reference failure can generate interrupts.		
5	<i>I14</i> Mask bit for input I14 interrupt.			0 1		t generate interru enerate interrupts	

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 44 (cont...)

Register Name	cnfg_interrupt_mask [15:8]		Description	(R/W) Bits [15:8] of the interrupt mask register.		Default Value	0000 0000	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2	Bit 1	Bit O		
operating_ mode	main_ref_failed 14 13			112	111	110	19	
Bit No.	Description			Bit Value	Value Description			
4	<i>I13</i> Mask bit for input I13 interrupt.			0	Input I13 cannot generate interrupts. Input I13 can generate interrupts.			
3	<i>I12</i> Mask bit for inpu			0	Input I12 canno	t generate interru nerate interrupts	pts.	
2	<i>111</i> Mask bit for inpu	t I11 interrupt.		0 1	Input I11 cannot generate interrupts. Input I11 can generate interrupts.			
1	<i>I10</i> Mask bit for input I10 interrupt.			0 1	Input I10 cannot generate interrupts. Input I10 can generate interrupts.			
0	<i>19</i> Mask bit for input 19 interrupt.			0 1	Input 19 cannot (Input 19 can gen	generate interrup erate interrupts.	ts.	

FINAL

Address (hex): 45

Register Name	cnfg_interrupt_m [23:16]	bask	Description	(R/W) Bits [23: mask register.	16] of the interrupt	Default Value	0000 0000	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
Sync_ip_alarm	T4_status		T4_inputs_ failed	AMI2_Viol	AMI2_LOS	AMI1_Viol	AMI1_LOS	
Bit No.	Description			Bit Value	Value Description			
7	Sync_ip_alarm			0	The external Sync input cannot generate interrupt			
	Mask bit for Sync	<i>:_ip_alarm</i> inter	rupt.	1	The external Syn	ic input can gener	rate interrupts.	
6	T4_status			0	Change in T4 status cannot generate interrupts.			
	Mask bit for T4_s	<i>status</i> interrupt.		1	Change in T4 status can generate interrupts.			
5	Not used.			-	-			
4	T4_inputs_failed			0	Failure of T4 inputs cannot generate interrupts.			
	Mask bit for T4_i		errupt.	1	Failure of T4 inputs can generate interrupts.			
3	AMI2_Viol			0	Input I2 cannot generate AMI violation interrupts			
-	Mask bit for AMI2	2_ <i>Viol</i> interrupt.		1	Input I2 can generate AMI violation interrupts.			
2	AMI2 LOS			0	Input I2 cannot generate AMI LOS interrupts.			
-	Mask bit for AMI2	2_ <i>LOS</i> interrupt		1	Input 12 cannot generate AMI LOS Interrupts. Input 12 can generate AMI LOS interrupts.			

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 45 (cont...)

Register Name	cnfg_interrupt_ma. [23:16]	sk	Description	(R/W) Bits [23:16] of the interrupt Default Value 0000 0000 mask register.				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
Sync_ip_alarm	T4_status		T4_inputs_ failed	AMI2_Viol	AMI2_LOS	AMI1_Viol	AMI1_LOS	
Bit No.	Description			Bit Value	Value Descriptio	n		
1	<i>AMI1_Viol</i> Mask bit for <i>AMI1_Viol</i> interrupt.			0 1	Input I1 cannot generate AMI violation interrupt Input I1 can generate AMI violation interrupts.			
0	<i>AMI1_LOS</i> Mask bit for <i>AMI1_LOS</i> interrupt.			0 1		generate AMI LOS lerate AMI LOS int	•	

FINAL

Address (hex): 46

Register Name	cnfg_freq_divn [7:0]		Description	(R/W) Bits [7:0] of the division De factor for inputs using the DivN feature.		Default Value	1111 1111
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			divn_	value[7:0]			
Bit No.	Description			Bit Value	Value Descripti	on	
[7:0]	divn_value[7:0]			-	See Reg. 47 (<i>ci</i>	<i>nfg_freq_divn</i>) for (details.

Register Name	cnfg_freq_divn [13:8]		Description (R/W) Bits [13:8] of the division factor for inputs using the DivN feature.			Default Value	0011 1111
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
				divn_v	value[13:8]		
Bit No.	Description			Bit Value	Value Description	on	
[7:6]	Not used.			-	-		

DATASHEET

ADVANCED COMMUNICATIONS Address (hex): 47 (cont...)

Register Name	cnfg_freq_divn [13:8]	Description			8] of the division s using the DivN	Default Value	0011 1111
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
				divn_v	alue[13:8]		
Bit No.	Description			Bit Value	Value Descripti	on	
[5:0]	The divn feature s maximum of 100	nteger value by e DivN pre-divider. requencies up to a the maximum is register is 30D3			ency will be divide s 1. i.e. to divide b		

FINAL

Register Name	cnfg_monitors		Description Bit 4	(R/W) Configuration register controlling several input monitoring and switching options.		Default Value	0000 0101*	
Bit 7	Bit 6	Bit 5		Bit 3	Bit 2	Bit 1	Bit O	
freq_mon_clk	los_flag_on_ TDO	ultra_fast_ switch	ext_switch	PBO_freeze	PBO_en	freq_monitor_ soft_enable	freq_monitor_ hard_enable	
Bit No.	Description			Bit Value	Value Description			
7	monitors to be e	source of the cloc ither from the out crystal oscillator.		0 1	Frequency monitors clocked by output of TO DPLI Frequency monitors clocked by crystal oscillator frequency.			
6	from the TO DPL enabled this will 1149.1 JTAG sta pin. When enable	ther the <i>main_rei</i> L is flagged on the not strictly confor ndard for the fun	e TDO pin. If m to the IEEE ction of the TDO I simply mimic the	0 1	Normal mode, TDO complies with IEEE 1149 TDO pin used to indicate the state of the <i>main_ref_fail</i> interrupt status. This allows a s to have a hardware indication of a source fail very rapidly.			
5	mode, the device			0 1	Bucket or frequ	ted source only dise lency monitors. ted source disquali input cycles.		

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 48 (cont...)

Register Name	cnfg_monitors		Description	(R/W) Configur controlling sev monitoring and		Default Value	0000 0101*
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
freq_mon_clk	los_flag_on_ TDO	ultra_fast_ switch	ext_switch	PBO_freeze	PBO_en	freq_monitor_ soft_enable	freq_monitor_ hard_enable
Bit No.	Description			Bit Value	Value Descript	ion	
4	external switchi to lock to a pair priority of input is <i>High</i> , the dew regardless of th programmed pr be forced to loc programmed pr SRCSW pin is <i>L</i> to input I4 rega input. If the pro then it will be for * The default var	of sources. If the 13 is non-zero, the vice will be forced the signal present fority of input 13 is k to input 15 inste- fority of input 14 is <i>ow</i> , the device wi rdless of the sign grammed priority proced to lock to in	vice is only allowed e programmed ten the SRCSW pin to lock to input I3 on that input. If the is zero, then it will ead. If the s non-zero, then the II be forced to lock hal present on that of input I4 is zero, uput I6 instead.	0 1		e switching mode e evice is always forc	enabled. Operating ed to be "locked"
3	operation. If Ph there have been input-output ph unknown. If Pha then it can be fi input-output ph further Phase B disabling Phase	n some source su ase relationship ase Build-out is n rozen. This will m ase relationship, guild-out events to Build-out could	s been enabled and vitches, then the of the TO DPLL is o longer required, aintain the current	0 1	Phase Build-ou Phase Build-ou events will occ	it frozen, no furthe	r Phase Build-out
2	PBO_en Bit to enable Pf switching. When triggered every	time the TO DPLI	e Build-out event is	0 1	degrees phase	it not enabled. TO I It enabled on sourc	
1		coft_enable le frequency mor ces using soft free		0 1		monitor alarms dis monitor alarms en	
0		<i>hard_enable</i> le frequency mor ces using hard fre		0 1		y monitor alarms d y monitor alarms e	

FINAL

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 49

Register Name	cnfg_freq_mon_	threshold	Description	(R/W) Register to set both the hard and soft frequency alarm limits for the monitors on the input reference sources.		Default Value	0010 0011
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
	soft_frequency_	alarm_thresho	ld		hard_frequenc	y_alarm_threshold	d
Bit No.	Description			Bit Value	Value Descript	ion	
[7:4]	<i>soft_frequency_alarm_threshold</i> Threshold to trigger the soft frequency alarms in the <i>sts_reference_sources</i> registers. This is only used for monitoring.			-	To calculate the limit in ppm, add one to the 4 value in the register, and multiply by 3.81 ppr limit is symmetrical about zero. A value of 00 corresponds to an alarm limit of ±11.43 ppm		
[3:0]	<i>hard_frequency_</i> Threshold to trig <u></u> the s <i>ts_referenc</i> cause a referenc	ger the hard fre <i>e_sources</i> regis	quency alarms in sters, which can		value in the reg limit is symmet	e limit in ppm, add jister, and multiply rical about zero. A an alarm limit of ±	by 3.81 ppm. The value of 0011 bir

FINAL

Register Name	cnfg_current_fre threshold	eq_mon_	Description	(R/W) Register to set both the hard and soft frequency alarm limits for the monitors on the currently selected reference source.		Default Value	0010 0011
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
CL	urrent_soft_freque	ncy_alarm_threst	hold	C	urrent_hard_frequ	uency_alarm_thres	shold
Bit No.	Description			Bit Value	Value Descript	ion	
[7:4]	Threshold to trigg sts_reference_so currently selecte source can be m	quency_alarm_th ger the soft freque ources register ap d source.The curr onitored for freque all other sources	ency alarm in the plying to the ently selected ency using	-	value in the reg limit is symmet	e limit in ppm, add jister, and multiply rical about zero. A an alarm limit of ±	by 3.81 ppm. The value of 0010 bin
[3:0]	Threshold to trigg	<i>ources</i> register ap	ency alarm in the		value in the reg limit is symmet	e limit in ppm, add jister, and multiply rical about zero. A an alarm limit of ±	by 3.81 ppm. The value of 0011 bin

ADVANCED COMMUNICATIONS

Address (hex): 4B

Register Name	cnfg_registers_s	ource_select	Description	(R/W) Register source of many	to select the of the registers.	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			T4_T0_select	f	requency_measure	ement_channel_s	elect
Bit No.	Description			Bit Value	Value Description	on	
[7:5]	Not used.			-	-		
4	<i>T4_T0_select</i> Bit to select betw Reg. 0A, 0B (<i>sts_</i> Reg. 0C, 0D and Reg. 18 to 1E (<i>cr</i> Reg. 77, 78 (<i>sts_</i>	_priority_table) 07 (sts_current_ nfg_ref_selectiol	_DPLL_frequency) n_priority)	0 1	TO path register T4 path register		
[3:0]	frequency_meas Register to selec frequency measu (sts_freq_measu	t which input cha irement result ir	annel the 1 Reg. 4C	0000 0001 0010 0011 0100 0101 0110 1000 1001 1010 1011 1100 1101 1110 1111	Frequency meas Frequency meas	s to no input chan surement taken fr surement taken fr	rom input I1. rom input I2. rom input I3. rom input I4. rom input I5. rom input I5. rom input I6. rom input I7. rom input I8. rom input I9. rom input I10. rom input I11. rom input I12. rom input I13. rom input I14.

FINAL

ACS8520 SETS

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 4C

Register Name	sts_freq_measu	rement	Description		from which the surement result	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			freq_meas	urement_value			
Bit No.	Description			Bit Value	Value Descripti	on	
[7:0]	<i>freq_measurement_value</i> This represents the value of the frequency measurement on the channel number selected in Reg. 4B (<i>cnfg_registers_source_select</i>). This value will represent the offset in frequency from the clock to the frequency monitors. This can be either the crystal oscillator to the device, or the output of the TO DPLL as selected in Bit 7 (<i>freq_mon_clk</i>) of Reg. 48 <i>cnfg_monitors</i> .				calculate the of	2's complement s fset in ppm of the ilue should be mu	selected input

FINAL

Register Name	cnfg_DPLL_soft_lim	hit	Description	soft frequency DPLLs. Exceedi	to program the limit of the two ing this limit will beyond triggering a	Default Value	1000 1110
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
freq_lim_ph_ loss			Dł	PLL_soft_limit_v	alue		
Bit No.	Description			Bit Value	Value Description	ı	
7	freq_lim_ph_loss Bit to enable the ph. DPLL hits its hard fre Reg. 41 and Reg. 42 results in the DPLL e time the DPLL track	equency limit 2 (<i>cnfg_DPLL_</i> entering the pl	as programmed in <i>_freq_limit</i>). This nase lost state any	0 1	Phase lost/locked Phase lost forced		
[6:0]	DPLL_soft_limit_val Register to program DPLLs tracks a sour frequency alarm flag sts_operating). This crystal oscillator free programmed calibra	to what exter ce before rais g (Bits 5 and 4 offset is comp quency taking	ing its soft 4 of Reg. 09, pared to the		by 0.628 ppm. Th	ne limit is symme	bly this 7-bit value trical about zero. ent to ±8.79 ppm.

ACS8520 SETS

ADVANCE	O COMMUNI	CATIONS	FIN	NAL			DATASHE
ddress (hex):	: 50						
Register Name	cnfg_upper_thre.	shold_0	Description	activity alarm s	to program the etting limit for Configuration 0.	Default Value	0000 0110
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			upper_thres	shold_0_value			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	by 1, and for eac programmed in R which this does r decremented by When the accum	t operates on a detects that an n erratic, then for s, the accumulat h period of 1, 2, Reg. 53 (<i>cnfg_de</i> not occur, the ac 1. ulator count rea the <i>upper_thres</i>	input has either or each cycle in or is incremented 4, or 8 cycles, as <i>ecay_rate_0</i> , in ccumulator is ches the value <i>hold_0_value</i> , the	-	Value at which inactivity alarm	the Leaky Bucket	will raise an

egister Name	cnfg_lower_threshold_0 Description			. , .	to program the esetting limit for configuration 0.	Default Value 0000 010		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
			lower_thres	shold_0_value				
Bit No.	Description			Bit Value	Value Descripti	on		
[7:0]	during a cycle, it failed or has bee which this occurs	t operates on a detects that an n erratic, then f s, the accumula h period of 1, 2 Reg. 53 (<i>cnfg_d</i> not occur, the ac	or each cycle in tor is incremented , 4, or 8 cycles, as <i>ecay_rate_0</i>), in	-	Value at which inactivity alarm	the Leaky Bucket v	will reset an	

DATASHEET

ADVANCED COMMUNICATIONS

SEMTECH

Address (hex): 52

Register Name	cnfg_bucket_size_0		Description	(R/W) Register to program the maximum size limit for Leaky Bucket Configuration 0.		Default Value	0000 1000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			bucket_s	ize_0_value			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	during a cycle, it of failed or has been which this occurs	t operates on a detects that an n erratic, then f , the accumula h period of 1, 2 leg. 53 (<i>cnfg_a</i> lot occur, the a 1.	for each cycle in tor is incremented , 4, or 8 cycles, as <i>ecay_rate_0</i> , in ccumulator is			the Leaky Bucket even with further in	

FINAL

Register Name	cnfg_decay_rate_0)	Description		to program the k″ rate for Leaky ration 0.	Default Value	0000 0001
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						decay_r	ate_0_value
Bit No.	Description			Bit Value	Value Description	on	
[7:2]	Not used.			-	-		
[1:0]	decay_rate_0_valu	е		00	Bucket decay ra	ate of 1 every 128	ms.
	The Leaky Bucket o	perates on a 1	28 ms cycle. If,	01	Bucket decay ra	ate of 1 every 256	ms.
	during a cycle, it de	tects that an in	nput has either	10		te of 1 every 512	
	failed or has been erratic, then for each cycle in which this occurs, the accumulator is incremented by 1, and for each period of 1, 2, 4, or 8 cycles, as programmed in this register, in which this does not occur, the accumulator is decremented by 1.			11	Bucket decay ra	ite of 1 every 102	4 ms.
	The Leaky Bucket c "decay" at the same effectively at one has the fill rate.	e rate as the "I	fill" cycle, or				

ACS8520 SETS

ADVANCED COMMUNICATIONS FINAL Address (hex): 54

Register Name	cnfg_upper_threshold_1 Description			(R/W) Register to program the Default Value 0000 activity alarm setting limit for Leaky Bucket Configuration 1.				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
			upper_thre.	eshold_1_value				
Bit No.	Description			Bit Value	Value Descripti	on		
[7:0]	by 1, and for each programmed in R which this does n decremented by When the accume	t operates on a detects that an n erratic, then f , the accumula n period of 1, 2 leg. 57 (<i>cnfg_a</i> iot occur, the a 1. ulator count rea he <i>upper_threa</i>	input has either for each cycle in tor is incremented , 4, or 8 cycles, as <i>lecay_rate_1</i>), in ccumulator is aches the value <i>shold_1_value</i> , the		Value at which inactivity alarm	the Leaky Bucket v	will raise an	

Register Name	cnfg_lower_threshold_1 Description				to program the esetting limit for configuration 1.	Default Value 0000 0100	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			lower_thres	shold_1_value			
Bit No.	Description			Bit Value	Value Descripti	on	
[7:0]	during a cycle, it failed or has bee which this occurs	t operates on a detects that an en erratic, then f s, the accumula th period of 1, 2 Reg. 57 (<i>cnfg_d</i> not occur, the ac	or each cycle in tor is incremented , 4, or 8 cycles, as <i>ecay_rate_1</i>), in		Value at which inactivity alarm	the Leaky Bucket v	will reset an

DATASHEET

ADVANCED COMMUNICATIONS

SEMTECH

Address (hex): 56

Register Name	cnfg_bucket_size	<u>9_1</u>	Description	(R/W) Register maximum size Bucket Configu		Default Value	0000 1000 Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	
			bucket_si	ize_1_value			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	by 1, and for eacl programmed in R which this does r decremented by	t operates on a detects that an n erratic, then f s, the accumula h period of 1, 2 Reg. 57 (<i>cnfg_d</i> not occur, the ac 1.	input has either for each cycle in tor is incremented , 4, or 8 cycles, as <i>lecay_rate_1</i>), in			the Leaky Bucket even with further in	

FINAL

Register Name	cnfg_decay_rate_1		Description		to program the k″ rate for Leaky ration 1.	Default Value	0000 0001
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
						decay_rate_1_value	
Bit No.	Description			Bit Value	Value Description	on	
[7:2]	Not used.			-	-		
[1:0]	decay_rate_1_value	è		00	Bucket decay ra	te of 1 every 128	ms.
	The Leaky Bucket o	perates on a ?	128 ms cycle. If,	01	Bucket decay ra	ite of 1 every 256	ms.
	during a cycle, it de	tects that an i	nput has either	10	Bucket decay rate of 1 every 512 ms.		
	failed or has been erratic, then for each cycle in which this occurs, the accumulator is incremente by 1, and for each period of 1, 2, 4, or 8 cycles, a programmed in this register, in which this does n occur, the accumulator is decremented by 1.			11	Bucket decay ra	te of 1 every 102	4 ms.
	The Leaky Bucket ca "decay" at the same effectively at one ha the fill rate.	e rate as the "	fill" cycle, or				

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 58

Register Name	cnfg_upper_threshold_2		Description	(R/W) Register to program the activity alarm setting limit for Leaky Bucket Configuration 2.		Default Value	0000 0110
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			upper_thre	shold_2_value			
Bit No.	Description			Bit Value	Value Descripti	on	
[7:0]	Description <i>upper_threshold_2_value</i> The Leaky Bucket operates on a 128 ms cycle. If, during a cycle, it detects that an input has either failed or has been erratic, then for each cycle in which this occurs, the accumulator is incremented by 1, and for each period of 1, 2, 4, or 8 cycles, as programmed in Reg. 5B (<i>cnfg_decay_rate_2</i>), in which this does not occur, the accumulator is decremented by 1. When the accumulator count reaches the value programmed as the <i>upper_threshold_2_value</i> , the				Value at which inactivity alarm	the Leaky Bucket v	will raise an

FINAL

Register Name	cnfg_lower_threshold_2		Description	(R/W) Register to program the activity alarm resetting limit for Leaky Bucket Configuration 2.		Default Value	0000 0100
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			lower_thres	shold_2_value			
Bit No.	Description			Bit Value	Value Descripti	on	
[7:0]	by 1, and for eac programmed in F which this does r decremented by	t operates on a detects that an n erratic, then f s, the accumula h period of 1, 2 Reg. 5B (<i>cnfg_d</i> not occur, the ac 1.	input has either or each cycle in tor is incremented , 4, or 8 cycles, as <i>ecay_rate_2</i>), in ccumulator is the value at which	-	Value at which inactivity alarm	the Leaky Bucket v	will reset an

ddress (hex)	: 5B						
egister Name	cnfg_decay_rate_2		Description		to program the k" rate for Leaky ration 2.	Default Value	0000 0001
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
						decay_ra	ate_2_value
Bit No.	Description			Bit Value	Value Description	on	
[7:2]	Not used.			-	-		
[1:0]	<i>decay_rate_2_value</i> The Leaky Bucket operates on a 128 ms cycle. If, during a cycle, it detects that an input has either failed or has been erratic, then for each cycle in which this occurs, the accumulator is incremented by 1, and for each period of 1, 2, 4, or 8 cycles, as programmed in this register, in which this does not occur, the accumulator is decremented by 1. The Leaky Bucket can be programmed to "leak" or "decay" at the same rate as the "fill" cycle, or effectively at one half, one quarter, or one eighth of the fill rate.			00 01 10 11	Bucket decay ra Bucket decay ra	ite of 1 every 128 ite of 1 every 256 ite of 1 every 512 ite of 1 every 102	ms. ms.

Register Name	cnfg_bucket_size_2		Description	(R/W) Register maximum size Bucket Configu		Default Value	0000 1000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			bucket_s	ize_2_value			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	bucket_size_2_value The Leaky Bucket ope during a cycle, it detect failed or has been erra which this occurs, the by 1, and for each per programmed in Reg. 5 which this does not oc decremented by 1.	cts that an in atic, then fo accumulato iod of 1, 2, 58 (<i>cnfg_de</i>	nput has either r each cycle in or is incremented 4, or 8 cycles, as <i>cay_rate_2</i>), in	-		the Leaky Bucket (
	The number in the Bu programmed into this		exceed the value				

FINAL

SEMTECH ADVANCED COMMUNICATIONS

ACS8520 SETS

0000 0110

Bit 0

FINAL DATASHEET **ADVANCED COMMUNICATIONS** Address (hex): 5C **Register Name** cnfg_upper_threshold_3 Description (R/W) Register to program the **Default Value** activity alarm setting limit for Leaky Bucket Configuration 3. Bit 6 Bit 5 Bit 4 Bit 2 Bit 7 Bit 3 Bit 1 upper_threshold_3_value Bit No. Description **Bit Value Value Description** [7:0] upper_threshold_3_value Value at which the Leaky Bucket will raise an The Leaky Bucket operates on a 128 ms cycle. If, inactivity alarm. during a cycle, it detects that an input has either failed or has been erratic, then for each cycle in

which this occurs, the accumulator is incremented by 1, and for each period of 1, 2, 4, or 8 cycles, as programmed in Reg. 5F (<i>cnfg_decay_rate_3</i>), in which this does not occur, the accumulator is decremented by 1.	
When the accumulator count reaches the value programmed as the <i>upper_threshold_3_value,</i> the Leaky Bucket raises an input inactivity alarm.	

Register Name	cnfg_lower_threshold_3		Description	(R/W) Register to program the activity alarm resetting limit for Leaky Bucket Configuration 3.		Default Value	0000 0100
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			lower_thres	shold_3_value			
Bit No.	Description			Bit Value	Value Descripti	on	
[7:0]	<i>lower_threshold_3_value</i> The Leaky Bucket operates on a 128 ms cycle. If, during a cycle, it detects that an input has either failed or has been erratic, then for each cycle in which this occurs, the accumulator is incremented by 1, and for each period of 1, 2, 4, or 8 cycles, as programmed in Reg. 5F (<i>cnfg_decay_rate_3</i>), in which this does not occur, the accumulator is decremented by 1. The <i>lower_threshold_3_value</i> is the value at which			-	Value at which inactivity alarm	the Leaky Bucket v	will reset an

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 5E

Register Name	cnfg_bucket_size_3		Description	(R/W) Register to program the maximum size limit for Leaky Bucket Configuration 3.		Default Value	0000 1000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			bucket_s	ize_3_value			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]		t operates on a detects that an n erratic, then f , the accumula n period of 1, 2 eg. 5F (<i>cnfg_d</i> ot occur, the a	input has either for each cycle in tor is incremented , 4, or 8 cycles, as <i>ecay_rate_3</i>), in	-		the Leaky Bucket e	
	The number in the programmed into		ot exceed the value				

FINAL

Register Name	cnfg_decay_rate_3		Description		to program the k″ rate for Leaky ration 3.	Default Value	0000 0001 Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	
						decay_r	ate_3_value
Bit No.	Description			Bit Value	Value Description	on	
[7:2]	Not used.			-	-		
[1:0]	decay_rate_3_value	ò		00	Bucket decay ra	te of 1 every 128	ms.
	The Leaky Bucket op			01	Bucket decay rate of 1 every 256 ms.		
	during a cycle, it det			10	Bucket decay rate of 1 every 512 ms.		
	failed or has been e which this occurs, th by 1, and for each p programmed in this occur, the accumula	ne accumulato eriod of 1, 2, register, in wh	or is incremented 4, or 8 cycles, as hich this does not	11	Bucket decay ra	te of 1 every 102	4 ms.
	The Leaky Bucket ca "decay" at the same effectively at one ha the fill rate.	e rate as the "	fill″ cycle, or				
ADVANCED COMMUNICATIONS

Address (hex): 60

Register Name	cnfg_output_freq (TO1 & TO2)	uency	Description		to configure and uencies available and TO2.	Default Value	1000 0101
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
	output_	freq_2			output_	_freq_1	
Bit No.	Description			Bit Value	Value Description	n	
[7:4]	output_freq_2 Configuration of th output TO2. Many dependent on the the T4 APLL. Thes Reg. 65. For more configuring the ou	of the frequence frequencies of e are configured detail see the d	ies available are the TO APLL and d in Reg. 64 and etailed section on	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1110 1111	Output disabled. 2 kHz. 8 kHz. Digital2 (Reg. 39 Digital1 (Reg. 39 TO APLL frequence TO APLL frequence TO APLL frequence TO APLL frequence TO APLL frequence T4 APLL frequence T4 APLL frequence T4 APLL frequence T4 APLL frequence	<i>cnfg_digital_free</i> cy/48. cy/16. cy/12. cy/8. cy/6. cy/4. cy/64. cy/48. cy/16. cy/16. cy/8.	
[3:0]	output_freq_1 Configuration of th output TO1. Many dependent on the the T4 APLL. Thes Reg. 65. For more configuring the ou	of the frequenc frequencies of e are configured detail see the d	ies available are the TO APLL and d in Reg. 64 and etailed section on	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1101 1110 1111	Output disabled. 2 kHz. 8 kHz. Digital2 (Reg. 39 Digital1 (Reg. 39 TO APLL frequence TO APLL frequence TO APLL frequence TO APLL frequence TO APLL frequence T4 APLL frequence T4 APLL frequence T4 APLL frequence T4 APLL frequence T4 APLL frequence T4 APLL frequence	<i>cnfg_digital_free</i> cy/48. cy/16. cy/12. cy/8. cy/6. cy/4. cy/64. cy/48. cy/48. cy/16. cy/8.	

FINAL

ACS8520 SETS

DATASHEET

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 61

Register Name	cnfg_output_freq (TO3 & TO4)	uency	Description	Description (R/W) Register to configure and enable the frequencies available on outputs TO3 and TO4.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
	output_	freq_4		output_freq_3					
Bit No.	Description			Bit Value	Value Description				
[7:4]	output_freq_4 Configuration of the output TO4. Many dependent on the the T4 APLL. Thes Reg. 65. For more configuring the out	of the frequence frequencies of a are configured detail see the d	ies available are the TO APLL and d in Reg. 64 and etailed section on	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	Output disabled. 2 kHz. 8 kHz. Digital2 (Reg. 39 d Digital1 (Reg. 39 d TO APLL frequency TO APLL frequency TO APLL frequency TO APLL frequency TO APLL frequency T4 APLL frequency T4 APLL frequency T4 APLL frequency T4 APLL frequency T4 APLL frequency	cnfg_dīgital_fred //48. //16. //12. //8. //4. //4. //48. //16. //8.			
[3:0]	output_freq_3 Configuration of the output TO3. Many dependent on the the T4 APLL. Thes Reg. 65. For more configuring the out	of the frequence frequencies of a are configured detail see the d	ies available are the TO APLL and d in Reg. 64 and etailed section on	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	Output disabled. 2 kHz. 8 kHz. Digital2 (Reg. 39 d Digital1 (Reg. 39 d TO APLL frequency TO APLL frequency TO APLL frequency TO APLL frequency TO APLL frequency TO APLL frequency T4 APLL frequency	cnfg_digital_free //48. //16. //12. //8. //4. //48. //48. //16.			

FINAL

ADVANCED COMMUNICATIONS

Address (hex): 62

Register Name	cnfg_output_freq (TO5 & TO6)	uency	Description	Default Value	1000 1010			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
	output_	freq_6		output_freq_5				
Bit No.	Description			Bit Value	Value Description	1		
[7:4]	output_freq_6 Configuration of the output TO6. Many dependent on the the T4 APLL. Thes Reg. 65. For more configuring the out	of the frequence frequencies of a are configured detail see the d	ties available are the TO APLL and d in Reg. 64 and letailed section on	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	Output disabled. 2 kHz. 8 kHz. TO APLL frequenc Digital1 (Reg. 39 TO APLL frequenc TO APLL frequenc TO APLL frequenc TO APLL frequenc TO APLL frequenc T4 APLL frequenc T4 APLL frequenc T4 APLL frequenc T4 APLL frequenc T4 APLL frequenc T4 APLL frequenc	<i>cnfg_digital_frequ</i> y, y/16. y/12. y/8. y/6. y/4. y/64. y/48. y/16. y/16. y/8.	iencies).	
[3:0]	output_freq_5 Configuration of the output TO5. Many dependent on the the T4 APLL. Thes Reg. 65. For more configuring the out	of the frequence frequencies of a are configured detail see the d	ties available are the TO APLL and d in Reg. 64 and letailed section on	0000 0001 0010 0011 0100 0101 0110 0111 1000 1011 1010 1011 1100 1101 1110 1111	Output disabled. 2 kHz. 8 kHz. Digital2 (Reg. 39 Digital1 (Reg. 39 TO APLL frequenc TO APLL frequenc TO APLL frequenc TO APLL frequenc TO APLL frequenc T4 APLL frequenc	<i>cnfg_digital_frequ</i> y/48. y/16. y/12. y/8. y/6. y/4. y/2. y/48. y/16. y/8.		

FINAL

ACS8520 SETS

DATASHEET

(TO7 to TO11)

cnfg_output_frequency

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
MFrSync_en	FrSync_en	TO9_en	TO8_en	output_freq_7				
Bit No.	Description			Bit Value	Value Description	1		
7	<i>MFrSync_en</i> Register bit to en	able the 2 kHz S	Sync output (TO11).	0 1	Output TO11 disa Output TO11 ena			
6	<i>FrSync_en</i> Register bit to en	able the 8 kHz S	Sync output (TO10).	0 1	Output TO10 disa Output TO10 ena			
5	<i>TO9_en</i> Register bit to en	able the BITS o	utput from the TO9.	0 1	Output TO9 disab Output TO9 enab			
4	<i>TO8_en</i> Register bit to en output from TO8.		mposite clock	0 1	Output TO8 disab Output TO8 enab			
[3:0]	output TO7. Man dependent on the the T4 APLL. The	y of the frequen e frequencies of se are configure e detail see the	detailed section on	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	Output disabled. 2 kHz. 8 kHz. Digital2 (Reg. 39 TO APLL frequence TO APLL frequence TO APLL frequence TO APLL frequence TO APLL frequence TO APLL frequence T4 APLL frequence	y/48. y/16. y/12. y/8. y/6. y/4. y/48. y/48. y/16. y/8.	encies).	

FINAL

(R/W) Register to configure and

enable the frequencies available on outputs TO7 through to TO11.

Description

SEMTECH

Register Name

ACS8520 SETS

Default Value

DATASHEET

1111 0110

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 64

Register Name	cnfg_T4_DPLL_f	requency	Description	(R/W) Register DPLL and seve parameters for		Default Value	0000 0001		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
	Auto_squelch_ T4	AMI_op_duty	T4_op_ SONSDH		T4_DPLL_frequency				
Bit No.	Description			Bit Value	Value Descripti	on			
7	Not used.			-	-				
6	Auto_squelch_T4 Register bit to au on T08 and T09	tomatically sque	lch the T4 outputs uts have failed.	0 1		nd TO9 enabled as nd TO9 disabled wł			
5	<i>AMI_op_duty</i> Register bit to co clock output of T			0 1	TO8 output 50: TO8 output 5:8				
4	be either SONET Reg. 35 Bit 4 = C SONET/SDH sele Reg. 34 Bit 2.	nfigure the BITS or SDH frequenc , otherwise this I ection for TO9 is o	bit is ignored and	0 1	TO9 output 2.0 TO9 output 1.5	48 MHz (SDH). 44 MHz (SONET).			
3	Not used.			-					
[2:0]	the DPLL in the T	gure the frequent 4 path. The frequ	cy of operation of uency of the DPLL ne T4 APLL which,	000 001	T4 DPLL mode	= squelched (clock = 77.76 MHz (OC- frequency (before	N rates), giving		
	in turn, affects th	ne frequencies av	vailable at outputs It is also possible	010		= 12E1, giving T4 pre dividers) = 98.3			
	run directly from	the TO DPLL out		011	frequency (befo	= 16E1, giving T4 pre dividers) = 131	.072 MHz.		
			y frequencies are ne T4 DPLL should	100		= 24DS1, giving T ₄ pre dividers) = 148			
	not be squelched and the T4 APLL		input is squelched	101		= 16DS1, giving Ta pre dividers) = 98.8			
				110	T4 DPLL mode	= E3, giving T4 AP pre dividers) = 274	LL output		
				111	T4 DPLL mode	= DS3, giving T4 A pre dividers) = 178	PLL output		

FINAL

ADVANCED COMMUNICATIONS

Address (hex): 65

Register Name	cnfg_T0_DPLL_fi	<i>cnfg_T0_DPLL_frequency</i> Description (R/W) Register to configure th DPLL and several other parameters for the T0 path.		ral other	Default Value	0000 0001			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
T4_meas_T0_ ph	T4_APLL_for_ T0	T0_freq_	to_T4_APLL		TO_DPLL_frequency				
Bit No.	Description			Bit Value	Value Description	on			
7	to measure phas enabled the T4 p	ntrol the feature t e offset from the ath is disabled a to measure the p	nd the phase hase between the	0 1	Normal- T4 Path normal operation. T4 DPLL disabled, T4 phase detector used to measure phase between selected T0 input a selected T4 input.				
6	input from the T4	lect whether the DPLL or the TO I then the frequen	T4 APLL takes its DPLL. If the T0 cy is controlled by	0 1	T4 APLL takes its input from the T4 DPLL. T4 APLL takes its input from the T0 DPLL.				
[5:4]	APLL (TO DPLL m <i>T4_APLL_for_TO</i> , frequency in the *Note that this is TO DPLL itself - w	t the TO frequence ode*) when sele and consequent T4 path. not the operation hich is fixed at out is the multiplied of	ly the APLL output g frequency of the utputting putput from the LF	00 01 10 11	TO DPLL mode = 12E1, giving T4 APLL output frequency (before dividers) = 98.304 MHz. TO DPLL mode = 16E1, giving T4 APLL output frequency (before dividers) = 131.072 MHz. TO DPLL mode = 24DS1, giving T4 APLL output frequency (before dividers) = 148.224 MHz. TO DPLL mode = 16DS1, giving T4 APLL output frequency (before dividers) = 98.816 MHz.				
3	Not used.			-	-				
[2:0]	APLL (TO DPLL m	ure the frequence ode*) and conse	cy driven to the TO equently the APLL	000	TO APLL output 311.04 MHz.		lividers) =		
	output frequency affects the freque Reg. 60 - Reg. 63	encies available a		001		= 77.76 MHz, analo frequency (before o			
	*Note that this is TO DPLL itself - w	not the operatin hich is fixed at o		010	TO DPLL mode = frequency (befor	= 12E1, giving TO A re dividers) = 98.30	04 MHz.		
	77.76 MHz - but i Output DFS block page 33.		output from the LF Diagram" on	011 100	frequency (befor	= 16E1, giving TO A re dividers) = 131.(= 24DS1, giving TO)72 MHz.		
	page 55.			100	frequency (befor	e dividers) = 148.2 = 16DS1, giving T0	224 MHz.		
					frequency (befor	re dividers) = 98.8			
				110 111	Not used.	Not used.			

FINAL

ACS8520 SETS

DATASHEET

ACS8520 SETS

ADVANCED COMMUNICATIONS

FINAL

Address (hex): 66

Register Name	cnfg_T4_DPLL_bw		Description	(R/W) Register to configure the bandwidth of the T4 DPLL.		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
						T4_DPLL	_bandwidth
Bit No.	Description			Bit Value	Value Description	on	
[7:2]	Not used.			-	-		
[1:0]	T4_DPLL_bandwidth			00	T4 DPLL 18 Hz	bandwidth.	
	Register to configure	the bandwi	dth of the T4 DPLL.	01	T4 DPLL 35 Hz	bandwidth.	
				10	T4 DPLL 70 Hz	bandwidth.	
				11	Not used.		

Address (hex): 67

Register Name	cnfg_T0_DPLL_ld	ocked_bw	Description	(R/W) Register to bandwidth of the phase locked to	e TO DPLL, when	Default Value	0000 1011
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
					TO_DPLL_loc	ked_bandwidth	
Bit No.	Description			Bit Value	Value Description	n	
[7:4]	Not used.			-	-		
[3:0]	when locked to a used to control w	gure the bandwin input reference n input reference hether this ban	idth of the TO DPLL ce. Reg. 3B Bit 7 is dwidth is used all of ed to when phase	1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 All other values	TO DPLL 0.3 Hz TO DPLL 0.6 Hz TO DPLL 1.2 Hz TO DPLL 2.5 Hz TO DPLL 4 Hz IO TO DPLL 8 Hz IO TO DPLL 18 Hz I TO DPLL 35 Hz I		

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 69

Register Name	cnfg_TO_DPLL_a	acq_bw	Description	(R/W) Register to configure the Default Value 0000 111 bandwidth of the TO DPLL, when not phase locked to an input.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 1	Bit O			
					TO_DPLL_acqu	isition_bandwidth	1		
Bit No.	Description			Bit Value	Value Description	n			
[7:4]	Not used.			-	-				
[3:0]				1000 1001 1010 1011 1100 1101 1110 1111 0000 0001	TO DPLL 0.3 Hz TO DPLL 0.6 Hz TO DPLL 1.2 Hz TO DPLL 2.5 Hz TO DPLL 4 Hz ac TO DPLL 8 Hz ac TO DPLL 18 Hz a TO DPLL 18 Hz a	acquisition bandw acquisition bandw acquisition bandw acquisition bandw cquisition bandwic cquisition bandwic acquisition bandw acquisition bandw acquisition bandw	vidth. vidth. vidth. vidth. dth. dth. /idth. /idth.		

FINAL

Address (hex): 6A

Register Name	cnfg_T4_DPLL_c	lamping	Description			Default Value	0001 0011
Bit 7	Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit O
	T4_PD2_gain_alog_8k					-	
Bit No.	Description			Bit Value	Value Descripti	on	
7	Not used.			-	-		
[6:4]	when locking to a analog feedback	ol the gain of th a reference of 8 mode. This set election is enab	e Phase Detector 2 kHz or less in ting is only used if led in Reg. 6C Bit 7,			e Phase Detector nce in analog feed	2 when locking to Iback mode.
3	Not used.			-	-		

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 6A (cont...)

Register Name	cnfg_T4_DPLL_dampi	(R/W) Register damping factor along with the g Detector 2 in se	of the T4	DPLL, ase	Default Value	0001 0011		
Bit 7	Bit 6	Bit 4	Bit 3	Bit 2		Bit 1	Bit O	
	T4_PD2	2_gain_alog_8k	-		T4_damping			
Bit No.	Description			Bit Value	Value D	Description	n	
[2:0]	<i>T4_damping</i> Register to configure to DPLL. The bit values co damping factors, dependent selected. Damping factor (011). The Gain Peak for the Value Description (right)	orresponds to c ending on the ba tor of 5 being th Damping Facto	lifferent andwidth he default rs given in the	001 010 011 100 101		ncy selecti 35 Hz 1.2 2.5 5 10 10	·	lowing bandwidth
	Damping Factor	G	ain Peak	110	Not use			
	1.2 2.5 5 10 20	0.	.4 dB .2 dB .1 dB .06 dB .03 dB	111	Not use	ed.		

FINAL

Address (hex): 6B

Register Name	cnfg_T0_DPLL_c	damping	Description	damping factor	to configure the of the TO DPLL, gain of the Phase ome modes.	Default Value	0001 0011		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
	ТС)_PD2_gain_ald	0g_8k		TO_damping				
Bit No.	Description			Bit Value	Value Descripti	on			
7	Not used.			-	-				
[6:4]	when locking to analog feedback	ol the gain of th a reference of & . mode. This set election is enab	ne Phase Detector 2 3 kHz or less in ting is only used if led in Reg. 6D Bit 7,	-		e Phase Detector nce in analog feec	2 when locking to Iback mode.		
3	Not used.			-	-				

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 6B (cont...)

Register Name	cnfg_T0_DPLL_dampi.	ing	Description	(R/W) Register damping factor along with the Detector 2 in se	of the TO gain of the	DPLL, Phase	Default \	/alue	0001 0011
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bi	it 2	Bit	1	Bit O
	TO_PD2	2_gain_alog	<u>_</u> 8k				TO_dai	mping	
Bit No.	Description			Bit Value	Value D	escriptio	n		
[2:0]	<i>TO_damping</i> Register to configure to DPLL. The bit values of damping factors, dependent selected. Damping fact (011). The Gain Peak for the Value Description (right	orresponds ending on th ctor of 5 bein Damping Fa	to different e bandwidth ng the default actors given in the	001 010 011 100 101	frequen ≤4 Hz 5 5 5 5 5 5	cy select 8 Hz 2.5 5 5 5 5 5 5		the follor 35 Hz 1.2 2.5 5 10 10	wing bandwidth 70 Hz 1.2 2.5 5 10 20
	Damping Factor 1.2 2.5 5 10 20		Gain Peak 0.4 dB 0.2 dB 0.1 dB 0.06 dB 0.03 dB	000 110 111	Not use Not use Not use	ed.			

FINAL

Address (hex): 6C

Register Name	cnfg_T4_DPLL_i	PD2_gain	Description	(R/W) Register to configure the Default Value 110 gain of Phase Detector 2 in some modes for the T4 DPLL.			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
T4_PD2_gain_ enable		T4_PD2_gain_a	alog		Ī	Г4_PD2_gain_dig	ital
Bit No.	Description			Bit Value	Value Descriptio	n	
7	T4_PD2_gain_e.	nable		0 1	T4 DPLL Phase [ed according to t < mode k mode	ed. habled and choice he locking mode:

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 6C (cont...)

Register Name	cnfg_T4_DPLL_PD2_	gain	Description	gain of Phase [/W) Register to configure the Default Value 1100 (in of Phase Detector 2 in some odes for the T4 DPLL.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O			
T4_PD2_gain_ enable	T4_F	PD2_gain_alo	9			T4_PD2_gain_dig	ital			
Bit No.	Description			Bit Value	Value Descriptio	n				
[6:4]	<i>T4_PD2_gain_alog</i> Register to control th when locking to a ref analog feedback mod automatic gain selec <i>T4_PD2_gain_enable</i>	erence, highei de. This setting tion is disable	⁻ than 8 kHz, in g is not used if	-		ase Detector 2 w eference in analo	hen locking to a og feedback mode			
3	Not used.			-	-					
[2:0]	<i>T4_PD2_gain_digital</i> Register to control th when locking to a ref mode. This setting is selection is disabled	e gain of Phas erence in digil always used i	al feedback f automatic gain	-		ase Detector 2 w tal feedback mod	hen locking to any le.			

FINAL

Address (hex): 6D

Register Name	cnfg_T0_DPLL_I	PD2_gain	Description		to configure the Detector 2 in some TO DPLL.	Default Value	1100 0010
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
TO_PD2_gain_ enable		TO_PD2_gain_ald	pg		7	⁻ 0_PD2_gain_dig	ital
Bit No.	Description			Bit Value	Value Description	n	
7	TO_PD2_gain_e	nable		0 1	TO DPLL Phase D TO DPLL Phase D of gain determine - digital feedback - analog feedbac - analog feedbac	Detector 2 gain er ed according to the c mode k mode	nabled and choice
[6:4]	when locking to analog feedback	rol the gain of Pha a reference, highe c mode. This settir selection is disable	er than 8 kHz, in ng is not used if	-	Gain value of Pha high frequency re		0
3	Not used.						

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 6D (cont...)

Register Name	egister Name cnfg_TO_DPLL_PD2_gain				to configure the Detector 2 in some FO DPLL.	Default Value	1100 0010
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
TO_PD2_gain_ enable		TO_PD2_gain_	alog			TO_PD2_gain_dig	ital
Bit No.	Description			Bit Value	Value Description	on	
[2:0]		ol the gain of P a reference in c ng is always use		-		nase Detector 2 w ital feedback moo	hen locking to any le.

FINAL

Address (hex): 70

Register Name	cnfg_phase_offset [7:0]		Description	Description (R/W) Bits [7:0 offset control r		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			phase_offs	set_value[7:0]			
Bit No.	Description			Bit Value	Value Descripti	on	
[7:0]	<i>phase_offset_value[</i> Register forming par	-	se offset control.	-	See Reg. 71, <i>ci</i> details.	nfg_phase_offset[<i>15:8]</i> for more

ADVANCE	COMMUNICA	ATIONS	FIN	IAL			DATASHEE
Register Name	cnfg_phase_offset [15:8]		Description	(R/W) Bits [15: offset control r	8] of the phase egister.	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			phase_offse	t_value[15:8]			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	<i>phase_offset_value</i> [Register forming par the phase offset regi is locked to an input internal signals becc order to avoid this, th "ramped" to the new only ever adjusted w then this is not nece "ramping" can be dis <i>cnfg_sync_monitor</i> . This register is ignore Phase Build-out is er Reg. 76.	t of the pha ster is writte , then it is p ome out of s ne phase off value. If th hen the dev ssary, and t sabled, see ed and has	en to when the DPLL ossible that some ynchronization. In fset is automatically e phase offset is vice is in Holdover, his automatic Reg. 7C, no affect when		the contents of This value is a number. The va the extent of th picoseconds. The phase offs "traditional" de represents a fr internal 77.76 represented me value of the reg internal 77.76 If, for example, that is +1 ppm oscillator, then offset, will be d value of 1024 i produce a com output clock. <i>NoteThe exac</i> <i>clock is determ</i> <i>i.e. in Locked in</i> <i>the locked to in</i>	is register is to be a Reg. 70 <i>cnfg_pha</i> 16-bit 2's compler alue multiplied by a papelied phase of the applied phase of the applied phase of the applied phase of the actional portion of MHz cycle and car ore accurately as f gister represents the MHz clock divided the DPLL is locked in frequency with r the period, and he lecreased by 1 ppr into the phase offs plete inversion of the interview of the current prode its accuracy of the e accuracy of the	ase_offset[7:0]. nent signed 6.279 represents ffset in control to a per 6.279 actuall the period of an n, therefore, be follows. Each bit he period of the by 2 ¹¹ . d to a reference espect to a perference espect to a perference espe

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 72

Register Name	cnfg_PBO_phase	e_offset	Description	(R/W) Register time error of Ph events.	to offset the mean nase Build-out	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
				PBO_p	hase_offset		
Bit No.	Description			Bit Value	Value Descriptio	n	
[7:6]	Not used.			-	-		
[5:0]	mean error over designed to be z	se Build-out event rtainty of up to to a phase hit a large number ero. This registed offset into eac ect of moving th	5 ns introduced on the output. The of events is er can be used to h PBO event. This	-	number. The val programmed off than +1.4 ns or	ue multiplied by (ds. Values greate should NOT be

FINAL

Address (hex): 73

Register Name	cnfg_phase_loss	s_fine_limit	Description		to configure some I ers of the TO DPLL	Default Value	1010 0010
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
fine_limit_en	noact_ph_loss	narrow_en			pha	ase_loss_fine_l	limit
Bit No.	Description			Bit Value	Value Description		
7		disabled, phase ne other means v abled when mult Reg. 74,		0 1	Phase loss indicati Phase loss triggere limit programmed Bits [2:0].	ed when phase	error exceeds the
6	and will phase lo when a source b giving tolerance indicated, then f instigated (±360	/, when the DPLL s not consider phock to the neares becomes availabl to missing cycles requency and ph ⁹ locking). This b o indicate phase	detects this hase lock to be lost t edge (±180°) e again, hence s. If phase loss is	0	No activity on refer indication. No activity triggers		

Address (hex): 74

EMTECH

Register Name	cnfg_phase_loss	s_coarse_limit	Description	(R/W) Register to configure some Default Value 1000 0101 of the parameters of the TO DPLL phase detector.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
coarse_lim- phaseloss_en	wide_range_en	multi_ph_resp			phase_loss_	_coarse_limit			
Bit No.	Description			Bit Value	Value Descriptio	'n			
7	whose range is c phase_loss_coal sets the limit in t	hable the coarse p determined by <i>rse_limit</i> Bits [3:0 he number of inpu hase can move by]. This register ut clock cycles (UI)	0 1	detector. Phase loss trigge	riggered by the co ered when phase d in <i>phase_loss_</i>	error exceeds the		

	COMMUN		FIN	AL			DATASHE		
	cnfg_phase_loss_coarse_limit Description			(R/W) Register to configure some Default Value 1000 0101 of the parameters of the TO DPLL phase detector.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
coarse_lim- phaseloss_en	wide_range_en	multi_ph_resp			phase_loss_o	coarse_limit			
Bit No.	Description			Bit Value	Value Description	1			
6	<i>wide_range_en</i> To enable the device to be tolerant to large amounts of applied jitter and still do direct phase locking at the input frequency rate (up to 77.76 MHz), a wide range phase detector and phase lock detector is employed. This bit enables the wide range phase detector. This allows the device to be tolerant to, and therefore keep track of, drifts in input phase of many cycles (UI). The range of the phase detector is set by the same register used for the phase loss coarse limit (Bits [3:0]).			0 1	Wide range phase Wide range phase				
5	detector to be us	se result from the sed in the DPLL al et when this is act	gorithm. Bit 6	0	DPLL phase detec However it will stil position over mar	II remember its	original phase		
	coarse phase de over many thous excellent jitter ar enables that pha algorithm, so tha a faster pull-in of the phase measu can give a slowe frequencies, but overshoot. Setting this bit in with a 19.44 MH dynamic respons	tector can measu ands of input cycl nd wander toleran ase result to be us t a large phase me f the DPLL. If this urement is limited r pull-in rate at hig could also be use a direct locking me lz input, would giv se as a 19.44 MH e, where the input	re and keep track les, thus allowing ice. This bit sed in the DPLL easurement gives bit is not set then I to $\pm 360^{\circ}$ which gher input ed to give less ode, for example e the same z input used with	1	DPLL phase detec phase detector re ±360° X 8191 UI	esult. It can now	measure up to:		
4	Not used.								

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 74 (cont...)

Register Name	cnfg_phase_loss	s_coarse_limit	Description	(R/W) Register to configure some Default Value 1000 0101 of the parameters of the TO DPLL phase detector.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
coarse_lim- phaseloss_en	wide_range_en	multi_ph_resp			phase_loss_c	coarse_limit			
Bit No.	Description			Bit Value	Value Description				
[3:0]	phase_loss_coal	rse_limit		0000	Input phase error	tracked over ±1 l	JI.		
	Sets the range of	f the coarse phas	se loss detector	0001	Input phase error	tracked over ±3 l	JI.		
	and the coarse p	hase detector.		0010	Input phase error	tracked over ±7 l	JI.		
	When locking to	a high frequency	signal, and jitter	0011	Input phase error	tracked over ±15	UI.		
	tolerance greate	r than 0.5 UI is re	equired, then the	0100	Input phase error	tracked over ±31	UI.		
	DPLL can be con	figured to track p	hase errors over	0101	Input phase error	tracked over ±63	UI.		
	many input clock	k periods. This is p	particularly useful	0110	Input phase error	tracked over ±12	27 UI.		
		ndwidths. This reg		0111	Input phase error	tracked over ±25	5 UI.		
	how many UI ove	er which the input	phase can be	1000	Input phase error	tracked over ±51	1 UI.		
	tracked. It also s	ets the range of t	he coarse phase	1001	Input phase error	tracked over ±10	23 UI.		
	loss detector, wh	hich can be used w	with or without the	1010	Input phase error				
	multi-UI phase ca			1011	Input phase error	tracked over ±40	95 UI.		
	This register valu	ue is used by Bits	6 and 7.	1100-1111	Input phase error	tracked over ±81	91 UI.		

FINAL

Address (hex): 76

Register Name	cnfg_phasemon		Description Bit 4		to configure the function for low tts.	Default Value	0000 0110
Bit 7	Bit 6	Bit 5		Bit 3	Bit 2	Bit 1	Bit O
ip_noise_ window							
Bit No.	Description			Bit Value	Value Descripti	on	
7	<i>ip_noise_window</i> Register bit to enab around low-frequen feature ensures tha outside the 5% wind will not be consider any possible phase connection is remov possible.	cy inputs (2, 4 at any edge ca dow where the ed within the I hit when a low	4 and 8 kHz). This used by noise e edge is expected DPLL. This reduces w-frequency	0 1		all edges for phas	
[6:0]	Not used.			-	-		

ADVANCED COMMUNICATIONS

FINAL

Address (hex): 77

Register Name	<i>sts_current_phase</i> [7:0]		Description	(RO) Bits [7:0] phase register.		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			current_	phase[7:0]			
Bit No.	Description			Bit Value	Value Description	n	
[7:0]	<i>current_phase</i> Bits [7:0] of the curre <i>sts_current_phase [1</i>			-	See Reg. 78 <i>sts</i> _	current_phase [15:8] for detail

Address (hex): 78

Register Name	sts_current_phase [15:8]		Description	(RO) Bits [15:8 phase register.] of the current	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			current_	_phase[15:8]			
Bit No.	Description			Bit Value	Value Descript	ion	
[7:0]	<i>current_phase</i> Bits [15:8] of the cur register is used to rea detector of either the according to Reg. 4B is averaged in the ph made available.	ad either fro TO DPLL or Bit 4 <i>T4_TC</i>	m the phase the T4 DPLL, 2_ <i>select.</i> The value	-	with the value This 16-bit valu integer. The va averaged value	is register should b in Reg. 77 <i>sts_curi</i> ue is a 2's complen lue multiplied by 0 e of the current pha easured at the DPL	rent_phase [7:0]. nent signed .707 is the ase error, in

Address (hex): 79

Register Name	cnfg_phase_ala	arm_timeout	Description	(R/W) Register long before a p raised on an in	Default Value	0011 0010	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
				time	out_value		
Bit No.	Description			Bit Value	Value Description	on	
[7:6]	Not used.			-	-		

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 79 (cont...)

Register Name	cnfg_phase_alarm_timeout		•		to configure how hase alarm is put	Default Value	0011 0010
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
				timed	out_value		
Bit No.	Description			Bit Value	Value Description	on	
[5:0]	the TO DPLL is at input has been re- is no way to mea- because it is no I phase alarms can	tempting to loc ejected due to a sure whether it onger selected n either remain -out after 128	a phase alarm, there is good again, by the DPLL. The until reset by second, as selected		time before a pl input. The value seconds. This ti controlling state Pre-locked2 or I	ned integer repres nase alarm will be multiplied by 2 g me value is the tir machine will spe Phase-lost modes the selected inpu	raised on an ives the time in me that the and in Pre-locked, before setting th

FINAL

Address (hex): 7A

Register Name	cnfg_sync_pulses		Description	Sync outputs and TO11 and	to configure the vailable from TO10 select the source nd 8 kHz outputs	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
2k_8k_from_T4				8k_invert	8k_pulse	2k_invert	2k_pulse
Bit No.	Description			Bit Value	Value Descriptio	n	
7	<i>2k_8k_from_T4</i> Register to select th and 8 kHz outputs			0 1		TO7 generated fro TO7 generated fro	
[6:4]	Not used.			-	-		
3	<i>8k_invert</i> Register bit to inve	rt the 8 kHz ou	tput from TO10.	0 1	8 kHz TO10 outp 8 kHz TO10 outp		
2	<i>8k_pulse</i> Register bit to enak to be either pulsed must be enabled to output TO10, and t be defined by the p on TO3.	or 50:50 duty o use "pulsed o hen the pulse v	cycle. Output TO3 output" mode on width on TO10 will	0 1	8 kHz TO10 outp 8 kHz TO10 outp		
1	<i>2k_invert</i> Register bit to inve	rt the 2 kHz ou	tput from TO11.	0 1	2 kHz TO11 outp 2 kHz TO11 outp		

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 7A (cont...)

Register Name	cnfg_sync_pulses			Sync outputs and TO11 and	to configure the vailable from TO10 select the source nd 8 kHz outputs	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
2k_8k_from_T4				8k_invert	8k_pulse	2k_invert	2k_pulse
Bit No.	Description			Bit Value	Value Descriptio	n	
0	2k_pulse Register bit to enable to be either pulsed of must be enabled to output TO10, and the be defined by the pe on TO3.	or 50:50 duty use "pulsed c en the pulse	cycle. Output TO3 output" mode on width on TO11 will	0 1	2 kHz TO11 outp 2 kHz TO11 outp		

FINAL

Address (hex): 7B

Register Name	cnfg_sync_phase	9	Description	(R/W) Register to configure the behavior of the synchronization for the external frame reference.		Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
indep_FrSync/ MFrSync	Sync_OC-N_ rates					Sync_phase	
Bit No.	Description			Bit Value	Value Description	on	
7		ption of either ma ync and other clo from the SYNC2K alignment to all cl	ck outputs during input, or whether	0 1	other output clo		ways aligned with lependent of othe
6	Sync_OC-N_rates This allows the S OC-3 derived cloo between the FrSy allow a finer sam input of either 19	YNC2K input to s cks in order to ma ync output and ou pling precision o	aintain alignment utput clocks and f the SYNC2K	0	SYNC2K input. 6.48 MHz precis as the input refe Allows the SYNC 38.88 MHz inpu and output align the current cloc	sion. 6.48MHz she erence clock.	t is sampled with a bould be provided th a 19.44 MHz or Input sampling Hz is used when MHz, otherwise
[5:2]	Not used.						

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 7B (cont...)

Register Name	cnfg_sync_phase		Description	behavior of the	to configure the synchronization frame reference.	Default Value	0000 0000
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
indep_FrSync/ MFrSync	Sync_OC-N_ rates					Sync_phase	
Bit No.	Description			Bit Value	Value Descriptio	n	
[1:0]	Sync_phase			00	On target.		
	Register to control	the sampling of	of the external Sync	01	0.5 U.I. early		
	input. Nominally th	ne falling edge	of the input is	10	1 U.I. late		
	aligned with the fa The margin is ±0.5	0 0		11	0.5 U.I. late.		

FINAL

Address (hex): 7C

Register Name	cnfg_sync_monit	or	Description	(R/W) Register to configure the Default Value 0010 1011 external Sync input monitor. It also has a bit to control the phase offset automatic ramping feature.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
ph_offset_ramp	Sync_monitor_limit				Sync_refer	ence_source			
Bit No.	Description			Bit Value	Value Descriptio	'n			
7	<i>ph_offset_ramp</i> Register bit to force an internal phase offset calibration, see Reg. 71, <i>Cnfg_Phase_Offset.</i> The calibration routine is transparent to the outside and puts the device in holdover while it internally ramps the phase offset to zero, resets all internal output and feedback dividers and then ramps the phase offset to the current programmed value from Reg. 70 or 71., holdover is then turned off. All this is transparent to the outside with no change in output phase offset visible.			bit is reset to 0 when this is complete.					
[6:4]	synchronize the o block to alarm wh not align with the input clock cycles UI of the selected	allowing the extern outputs, is to use the nen the external Sy output within a ce s. This register defi reference source. ithin this limit, ther	he Sync monitor ync input does ertain number of nes the limit in If the alignment	000 001 010 011 100 101 110 111	Sync alarm raise Sync alarm raise Sync alarm raise Sync alarm raise Sync alarm raise Sync alarm raise Sync alarm raise	ad beyond ± 2 UI. ad beyond ± 3 UI. ad beyond ± 4 UI. ad beyond ± 5 UI. ad beyond ± 5 UI. ad beyond ± 6 UI. ad beyond ± 7 UI.			

DATASHEET

ADVANCED COMMUNICATIONS Address (hex): 7C (cont...)

Register Name	cnfg_sync_monit	or	Description	(R/W) Register to configure the Default Value C external Sync input monitor. It also has a bit to control the phase offset automatic ramping feature.					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
ph_offset_ramp		Sync_monitor_lin	nit		Sync_refer	rence_source			
Bit No.	Description			Bit Value	e Value Description				
[3:0]	with a particular i	c reference can c nput reference. ' abling is selected input will only b ected source. Thi me Sync referen	I in Reg. 34 Bit 7, e enabled when s can be used to ce with a	0000 0001 0010 0111 0100 0101 0110 0111 1000 1001 1011 1100 1101 1101 1110 1111	External Sync as External Sync as	associated with inp associated with inp	ut I2. ut I3. ut I4. ut I5. ut I6. ut I7. ut I8. ut I9. ut I10. ut I10. ut I11. ut I12. ut I13.		

FINAL

Address (hex): 7D

Register Name	cnfg_interrupt		Description	(R/W) Register to configure interrupt output.		Default Value	0000 0010
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
					GPO_en	tristate_en	int_polarity
Bit No.	Description			Bit Value	Value Descrip	tion	
[7:3]	Not used.			-			
2	GPO_en			0	Interrupt outp	ut pin used for inter	rupts.
	(Interrupt General output pin is not re allow the pin to be output. The pin wil polarity control bit,	equired, then se used as a gene I be driven to th	tting this bit will ral purpose	1	Interrupt outp	ut pin used for GPO	purpose.
1	<i>tristate_en</i> The interrupt can b connected directly with other sources	to a processor,		0 1		lways driven when i nly driven when act nen inactive.	

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

Address (hex): 7D (cont...)

Register Name	cnfg_interrupt		Description	(R/W) Register t interrupt output	Ũ	Default Value	0000 0010
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
					GPO_en	tristate_en	int_polarity
Bit No.	Description			Bit Value	Value Descript	tion	
0	<i>int_polarity</i> The interrupt pin ca <i>High</i> or <i>Low</i> .	an be configui	red to be active	0 1	interrupt.	n driven <i>Low</i> to indi in driven <i>High</i> to ind	

FINAL

Address (hex): 7E

Register Name cnfg_protection		Description		(R/W) Protection register to protect against erroneous software writes.		Default Value	1000 0101
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
			protecti	on_value			
Bit No.	Description			Bit Value	Value Description		
[7:0]	<i>protection_value</i> This register can be software writes a sp			0000 0000 - 1000 0100	Protected mode.		
	before being able to device. Three mode	o modify any ot	her register in the	1000 0101	Fully unprotected.		
	(i) protected (ii) fully unprotected			1000 0110	Single unprotecte	d.	
	(iii) single unprotect When protected, not be written to. When register in the devic unprotected, only o the device automat	o other register I fully unprotec e can be writte ne register car	ted, any writeable en to. When single be written before	1000 0111 – 1111 1111	Protected mode.		

ADVANCED COMMUNICATIONS

Address (hex): 7F

Register Name	cnfg_uPsel		Description	(R/W)* Register value on the UPS following reset, a EPROM mode.	SEL device pins	Default Value	0000 0000**
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
						upsel_value	
Bit No.	Description			Bit Value	Value Description	on	
[7:3]	Not used.			-	-		
[2:0]	on the UPSEL pin this is used to set interface. Followi further effect on t *In order that the EPROM and subs processor, this re mode. The value EPROM will be th	s of the device a t the mode of the ng power-up, the the microprocess e device can be " equently commu- gister is program programmed in l e value loaded ir this register is e	e microprocessor se pins have no sor interface. booted" from an unicate with a mable in EPROM ocation 7F of the	000 001 010 011 100 101 110 111 (value at reset)	Not used. Interface in EPR Interface in Mul Interface in Inte Interface in Mot Interface in Seri Not used. Not used.	tiplexed mode. I mode. orola mode.	

FINAL

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

FINAL

ACS8520 SETS

Electrical Specifications

JTAG

The JTAG connections on the ACS8520 allow a full boundary scan to be made. The JTAG implementation is fully compliant to IEEE 1149.1^[5], with the following minor exceptions, and the user should refer to the standard for further information.

- 1. The output boundary scan cells do not capture data from the core, and so do not support INTEST. However this does not affect board testing.
- 2. In common with some other manufacturers, pin TRST is internally pulled *Low* to disable JTAG by default. The standard is to pull *High*. The polarity of TRST is as the standard: TRST *High* to enable JTAG boundary scan mode, TRST *Low* for normal operation.

The JTAG timing diagram is shown in Figure 22.

Over-voltage Protection

The ACS8520 may require Over-Voltage Protection on input reference clock ports according to ITU

Figure 22 JTAG Timing

recommendation K.41^[16]. Semtech protection devices are recommended for this purpose (see separate Semtech data book).

ESD Protection

Suitable precautions should be taken to protect against electrostatic damage during handling and assembly. This device incorporates ESD protection structures that protect the device against ESD damage at ESD input levels up to at least ±2 kV using the Human Body Model (HBD) MIL-STD-883D Method 3015.7, for all pins except pins 24, 25, 26 and 27 (AMI I/Os) which are protected up to at least ±1 kV.

Latchup Protection

This device is protected against latchup for input current pulses of magnitude up to at least ± 100 mA to JEDEC Standard No. 78 August 1997.

F8110D_022JTAGTiming_01

Table 31 JTAG Timing (for use with Figure 22)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Cycle Time	t _{CYC}	50	-	-	ns
TMS/TDI to TCK rising edge time	t _{SUR}	3	-	-	ns
TCK rising to TMS/TDI hold time	t _{HT}	23	-	-	ns
TCK falling to TDO valid	t _{DOD}	-	-	5	ns

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Maximum Ratings

Important Note: The Absolute Maximum Ratings, Table 32, are stress ratings only, and functional operation of the device at conditions other than those indicated in the Operating Conditions sections of this specification are not implied. Exposure to the absolute maximum ratings for an extended period may reduce the reliability or useful lifetime of the product.

Table 32 Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
Supply Voltage VDDa, VDDb, VDDc, VDDd, VD1+, VD2+, VD3+, VA1+, VA2+, VA3+, VAMI+, VDD_DIFFa, VDD_DIFFb	V _{DD}	-0.5	3.6	V
Power Supply (DC voltage) VDD5	V _{DD5}	-	5.5	V
Input Voltage (non-supply pins)	V _{IN}	-	5.5	V
Output Voltage (non-supply pins)	V _{OUT}	-	5.5	V
Ambient Operating Temperature Range	T _A	-40	+85	Oo
Storage Temperature	T _{STOR}	-50	+150	Oo

Operating Conditions

Table 33 Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units
Power Supply (dc voltage) VDDa, VDDb, VDDc, VDDd, VD1+, VD2+, VD3+, VA1+, VA2+, VA3+, VAMI+, VDD_DIFFa, VDD_DIFFb	V _{DD}	3.0	3.3	3.6	V
Power Supply (DC voltage) VDD5	V _{DD5}	3.0	3.3/5.0	5.5	V
Ambient Temperature Range	Τ _Α	-40	-	+85	Oo
Supply Current (Typical - one 19 MHz output)	I _{DD}	-	130	222	mA
Total Power Dissipation	P _{TOT}	-	430	800	mW

DC Characteristics

Table 34 DC Characteristics: TTL Input Port

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
V _{IN} High	V _{IH}	2	-	-	V
V _{IN} Low	V _{IL}	-	-	0.8	V
Input Current	I _{IN}	-	-	10	μΑ

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Table 35 DC Characteristics: TTL Input Port with Internal Pull-up

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
V _{IN} High	V _{IH}	2	-	-	V
V _{IN} Low	V _{IL}	-	-	0.8	V
Pull-up Resistor	PU	25	-	90	kΩ
Input Current	I _{IN}	-	-	120	μΑ

Table 36 DC Characteristics: TTL Input Port with Internal Pull-down

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
V _{IN} High	V _{IH}	2	-	-	V
V _{IN} Low	V _{IL}	-	-	0.8	V
Pull-down Resistor	PD	25	-	90	kΩ
Input Current	I _{IN}	-	-	120	μΑ

Table 37 DC Characteristics: TTL Output Port

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
V_{OUT} Low (I _{OL} = 4mA)	V _{OL}	0	-	0.4	V
V _{OUT} High (I _{OH} = 4mA)	V _{OH}	2.4	-	-	V
Drive Current	Ι _D	-	-	4	mA

Table 38 DC Characteristics: PECL Input/Output Port

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
PECL Input <i>Low</i> Voltage Differential Inputs (Note ii)	V _{ILPECL}	V _{DD} -2.5	-	V _{DD} -0.5	V
PECL Input <i>High</i> Voltage Differential Inputs (Note ii)	V _{IHPECL}	V _{DD} -2.4	-	V _{DD} -0.4	V
Input Differential Voltage	V _{IDPECL}	0.1	-	1.4	V
PECL Input <i>Low</i> Voltage Single-ended Input (Note iii)	V _{ILPECL_S}	V _{DD} -2.4	-	V _{DD} -1.5	V

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Table 38 DC Characteristics: PECL Input/Output Port (cont...)

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
PECL Input <i>High</i> Voltage Single-ended Input (Note iii)	V _{ILPECL_S}	V _{DD} -1.3	-	V _{DD} -0.5	V
Input <i>High</i> Current Input Differential Voltage V _{ID} = 1.4V	I _{IHPECL}	-10	-	+10	μΑ
Input <i>Low</i> Current Input Differential Voltage V _{ID} = 1.4V	I _{ILPECL}	-10	-	+10	μΑ
PECL Output <i>Low</i> Voltage (Note iv)	V _{OLPECL}	V _{DD} -2.10	-	V _{DD} -1.62	V
PECL Output High Voltage (Note iv)	V _{OHPECL}	V _{DD} -1.25	-	V _{DD} -0.88	V
PECL Output Differential Voltage (Note iv)	V _{ODPECL}	580	-	900	mV

Notes: (i) Unused differential input ports should be left floating and set in LVDS mode, or the positive and negative inputs tied to V_{DD} and GND respectively.

(ii) Assuming a differential input voltage of at least 100 mV.

(iii) Unused differential input terminated to V_{DD} -1.4 V.

(iv) With 50 Ω load on each pin to V_{DD}-2 V, i.e. 82 Ω to GND and 130 Ω to V_{DD}.

Figure 23 Recommended Line Termination for PECL Input/Output Ports

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

ACS8520 SETS

Table 39 DC Characteristics: LVDS Input/Output Port

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
LVDS Input Voltage Range Differential Input Voltage = 100 mV	V _{VRLVDS}	0		2.40	V
LVDS Differential Input Threshold	V _{DITH}	-100	-	+100	mV
LVDS Input Differential Voltage	V _{IDLVTSDS}	0.1	-	1.4	V
LVDS Input Termination Resistance Must be placed externally across the LVDS \pm input pins of ACS8520. Resistor should be 100 Ω with 5% tolerance	R _{TERM}	95	100	105	Ω
LVDS Output <i>High</i> Voltage (Note (i))	V _{OHLVDS}	-	-	1.585	V
LVDS Output <i>Low</i> Voltage (Note (i))	V _{OLLVDS}	0.885	-	-	V
LVDS Differential Output Voltage	V _{ODLVDS}	250	-	450	mV
LVDS Change in Magnitude of Differential Output Voltage for complementary States (Note (i))	V _{DOSLVDS}	-	-	25	mV
LVDS Output Offset Voltage Temperature = 25°C (Note (i))	V _{OSLVDS}	1.125	-	1.275	V

Note: (i) With 100Ω load between the differential outputs.

Figure 24 Recommended Line Termination for LVDS Input/Output Ports

ADVANCED COMMUNICATIONS DC Characteristics: AMI Input/Output Port

(Across all operating Conditions, unless otherwise stated.)

The Alternate Mark Inversion (AMI) signal is DC balanced and consists of positive and negative pulses with a peakto-peak voltage of 2.0 ±0.2 V.

The electrical specifications are taken from option a) of Table 2/G.703 - Digital 64 kbit/s centralized clock interface, from ITU G.703^[6].

The electrical characteristics of the 64 kbit/s interface are as follows:

Nominal bit rate: 64 kbit/s. The tolerance is determined by the network clock stability.

Table 40 DC Characteristics: AMI Input/Output Port

There should be a symmetrical pair carrying the composite timing signal (64 kHz and 8 kHz). The use of transformers is recommended.

Over-voltage protection requirement: refer to Recommendation K.41^[16]

Code conversion rules:

The data signals are coded in AMI code with 100% duty cycle. The composite clock timing signals convey the 64 kHz bit-timing information using AMI coding with a 50% to 70% duty ratio and the 8 kHz octet phase information by introducing violations in the code rule. The structure of the signals and voltage level are shown in Figure 25, Figure 26 and Figure 27.

Parameter	Symbol	Minimum	Typical	Maximum	Units
Input Pulse Width	t _{PW}	1.56	7.8	14.04	μS
Input Pulse Rise/Fall Time	t _{R/F}	-	-	5	μS
AMI Input Voltage <i>High</i>	V _{IH AMI}	2.5	-	V _{DD} + 0.3	V
AMI Input Voltage <i>Middle</i>	V _{VIM AMI}	1.5	1.65	1.8	V
AMI Input Voltage Low	V _{VIL AMI}	0	-	1.4	V
AMI Output Current Drive	I _{AMIOUT}	-	-	20	mA
AMI Output <i>High</i> Voltage Output Current = 20mA	V _{OH AMI}	V _{DD} - 0.16	-	-	V
AMI Output <i>Low</i> Voltage Output Current = 20mA	V _{OL AMI}	-	-	0.16	V
Nominal Test Load Impedance	R _{TEST}	-	110	-	Ω
'Mark" Amplitude After Transformer	V _{MARK}	0.9	1.0	1.1	V
'Space" Amplitude After Transformer	V _{SPACE}	- 0.1	0	0.1	V

FINAL

Note... after suitable input/output transformer (also see G.703^[6]).

Figure 26 AMI Input and Output Signal Levels

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Figure 27 Recommended Line Termination for AMI Output/Output Ports

Note... The AMI inputs 11 and 12 should be connected to the external AMI clock source by 470 nF coupling capacitor C1.

The AMI differential output T08POS/T08NEG should be coupled to a line transformer with a turns ratio of 3:1. Components C2 = 470 pF and C3 = 2 nF. If a transformer with a turns ratio of 1:1 is used, a 3:1 ratio potential divider R_{load} must be used to achieve the required 1 V p-p voltage level for the positive and negative pulses.

Jitter Performance

Output jitter generation measured over 60 second interval, UI p-p max measured using C-MAC E2747 12.800 MHz TCXO on ICT Flexacom tester.

Test Definition		Conditions	Jitter Spec	ACS8520 Jitter			
Specification	Filter	Bandwidth	I/P Freq	Lock Mode	UI	UI (TYP)	
G813 ^[11] for 155 MHz o/p option 1	65 kHz - 1.3 MHz	4 Hz	19 MHz	Direct lock	0.1 p-p	0.067 р-р	
				8k lock		0.065 р-р	
G813 ^[11] & G812 ^[10] for 2.048 MHz option 1	20 Hz - 100 kHz	4 Hz	2.048 MHz	8k lock	0.05 p-p	0.012 р-р	
G813 ^[11] for 155 MHz o/p option 2	12 kHz - 1.3 MHz	18 Hz	19 MHz	Direct lock/ 8k lock	0.1 р-р	0.072 р-р	
	12 kHz - 1.3 MHz	8 Hz	19 MHz	Direct lock/ 8k lock	0.1 р-р	0.072 р-р	
	12 kHz - 1.3 MHz	4 Hz	19 MHz	Direct lock/ 8k lock	0.1 р-р	0.078 р-р	
	12 kHz - 1.3 MHz	2.5 Hz	19 MHz	Direct lock/ 8k lock	0.1 р-р	0.078 р-р	
	12 kHz - 1.3 MHz	1.2 Hz	19 MHz	Direct lock/ 8k lock	0.1 р-р	0.078 p-p	
	12 kHz - 1.3 MHz	0.6 Hz	19 MHz	Direct lock/ 8k lock	0.1 р-р	0.076 p-p	
G812 ^[10] for 1.544 MHz o/p	10 Hz - 40 kHz	4 Hz	1.544 MHz	8k lock	0.05 р-р	0.006 p-p	

Table 41 Output Jitter Generation

ADVANCED COMMUNICATIONS

ACS8520 SETS

DATASHEET

Test Definition		Conditions	Jitter Spec	ACS8520 Jitter			
Specification	Filter	Bandwidth	I/P Freq	Lock Mode	UI	UI (TYP)	
G812 ^[10] for 155 MHz electrical	500 Hz - 1.3 MHz	4 Hz	19 MHz	8k lock	0.5 p-p	0.118 р-р	
G812 ^[10] for 155 MHz electrical	65 kHz - 1.3 MHz	4 Hz	19 MHz	8k lock	0.075 p-p	0.065 p-p	
ETS-300-462-3 ^[3] for 2.048 MHz SEC o/p	20 Hz - 100 kHz	4 Hz	2.048 MHz	8k lock	0.5 p-p	0.012 р-р	
ETS-300-462-3 ^[3] for 2.048 MHz SEC o/p	49 Hz - 100 kHz	4 Hz	2.048 MHz	8k lock	0.2 p-p	0.012 р-р	
ETS-300-462-3 ^[3] for 2.048 MHz SSU o/p	20 Hz - 100 kHz	4 Hz	2.048 MHz	8k lock	0.05 p-p	0.012 р-р	
ETS-300-462-5 ^[4] for 155 MHz o/p	500 Hz - 1.3 MHz	4 Hz	19 MHz	8k lock	0.5 p-p	0.118 р-р	
ETS-300-462-5 ^[4] for 155 MHz o/p	65 kHz - 1.3 MHz	4 Hz	19 MHz	8k lock	0.1 р-р	0.067 р-р	
GR-253-CORE ^[17] net i/f, 51.84 MHz o/p	100 Hz - 0.4 MHz	4 Hz	19 MHz	8k lock	1.5 p-p	0.027 р-р	
GR-253-CORE ^[17] net i/f, 51.84 MHz o/p	20 kHz to 0.4 MHz	4 Hz	19 MHz	8k lock	0.15 p-p	0.017 р-р	
GR-253-CORE ^[17] net i/f, 155 MHz o/p	500 Hz - 1.3 MHz	4 Hz	19 MHz	8k lock	1.5 р-р	0.118 р-р	
GR-253-CORE ^[17] net i/f, 155 MHz o/p	65 kHz - 1.3 MHz	4 Hz	19 MHz	8k lock	0.15 p-p	0.067 р-р	
GR-253-CORE ^[17] cat II elect i/f, 155 MHz	12 kHz - 1.3 MHz	4 Hz	19 MHz	8k lock	0.1 р-р	0.076 р-р	
					0.01 rms	0.006 rms	
GR-253-CORE ^[17] cat II elect i/f, 51.84 MHz	12 kHz - 400 kHz	4 Hz	19 MHz	8k lock	0.1 р-р	0.018 р-р	
					0.01 rms	0.003 rms	
GR-253-CORE ^[17] DS1 i/f, 1.544 MHz	10 Hz - 40 kHz	4 Hz	1.544 MHz	8k lock	0.1 р-р	0.001 р-р	
					0.01 rms	<0.001 rms	
AT&T 62411 ^[2] for 1.544 MHz	10 Hz - 8 kHz	4 Hz	1.544 MHz	8k lock	0.02 rms	<0.001 rms	
AT&T 62411 ^[2] for 1.544 MHz	8 Hz - 40 kHz	4 Hz	1.544 MHz	8k lock	0.025 rms	<0.001 rms	
AT&T 62411 ^[2] for 1.544 MHz	10 Hz - 40 kHz	4 Hz	1.544 MHz	8k lock	0.025 rms	<0.001 rms	
AT&T 62411 ^[2] for 1.544 MHz	Broadband	4 Hz	1.544 MHz	8k lock	0.05 rms	<0.001 rms	
G-742 ^[8] for 2.048 MHz	DC - 100 kHz	4 Hz	2.048 MHz	8k lock	0.25 rms	0.012 rms	
G-742 ^[8] for 2.048MHz	18 kHz - 100 kHz	4 Hz	2.048 MHz	8k lock	0.05 p-p	0.012 р-р	
G-736 ^[7] for 2.048MHz	20 Hz - 100 kHz	4 Hz	2.048 MHz	8k lock	0.05 р-р	0.012 р-р	
GR-499-CORE ^[18] & G824 ^[14] for 1.544 MHz	10 Hz - 40kHz	4 Hz	1.544 MHz	8k lock	5.0 р-р	0.006 p-p	
GR-499-CORE ^[18] & G824 ^[14] for 1.544 MHz	8 kHz - 40kHz	4 Hz	1.544 MHz	8k lock	0.1 р-р	0.006 p-p	
GR-1244-CORE ^[19] for 1.544 MHz	> 10 Hz	4 Hz	1.544 MHz	8k lock	0.05 p-p	0.006 p-p	

Note...This table is only for comparing the ACS8520 output jitter performance against values and quoted in various specifications for given conditions. It should not be used to infer compliance to any other aspects of these specifications.

ACS8520 SETS

DATASHEET

ADVANCED COMMUNICATIONS

FINAL

Input/Output Timing

Figure 28 Input/Output Timing with Phase Build-out Off

Package Information

EMTECH

ADVANCED COMMUNICATIONS

FINAL

- To be determined at seating plane.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- _____ Details of pin 1 identifier are optional but will be located within the zone indicated.
- $\underline{5}$ Exact shape of corners can vary.
- A1 is defined as the distance from the seating plane to the lowest point of the package body.
- 2 These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 8 Shows plating.

 Table 42
 100 Pin LQFP Package Dimension Data (for use with Figure 29)

100 LQFP Package Dimensions in mm	D/E	D1/ E1	A	A1	A2	е	AN1	AN2	AN3	AN4	R1	R2	L	L1	S	b	b1	С	с1
Min.	-	-	1.40	0.05	1.35	-	11 ⁰	11 ⁰	00	0 ⁰	0.08	0.08	0.45	-	0.20	0.17	0.17	0.09	0.09
Nom.	16.00	14.00	1.50	0.10	1.40	0.50	12 ⁰	12 ⁰	-	3.5 ⁰	-	-	0.60	1.00 (ref)	-	0.22	0.20	-	-
Max.	-	-	1.60	0.15	1.45	-	13 ⁰	13 ⁰	-	7 ⁰	-	0.20	0.75	-	-	0.27	0.23	0.20	0.16

ACS8520 SETS

DATASHEET

Revision 3.02/October 2005 © Semtech Corp.

ADVANCED COMMUNICATIONS

Thermal Conditions

The device is rated for full temperature range when this package is used with a 4 layer or more PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum operating temperature must be reduced when the device is used with a PCB with less than these requirements.

FINAL

Figure 30 Typical 100 Pin LOFP Footprint

F8530D_030QFNFootprt100_02

Notes: (i) Solderable to this limit.

(ii) Square package - dimensions apply in both X and Y directions.

(iii) Typical example. The user is responsible for ensuring compatibility with PCB manufacturing process, etc.

ADVANCED COMMUNICATIONS

FINAL

ACS8520 SETS

DATASHEET

Application Information

ADVANCED COMMUNICATIONS

FINAL

Abbreviations

AMI	Alternate Mark Inversion
APLL	Analogue Phase Locked Loop
BITS	Building Integrated Timing Supply
DFS	Digital Frequency Synthesis
DPLL	Digital Phase Locked Loop
DS1	1544 kbit/s interface rate
DTO	Discrete Time Oscillator
E1	2048 kbit/s interface rate
I/O	Input - Output
LOF	Loss of Frame Alignment
LOS	Loss Of Signal
LQFP	Low profile Quad Flat Pack
LVDS	Low Voltage Differential Signal
MTIE	Maximum Time Interval Error
NE	Network Element
OCXO	Oven Controlled Crystal Oscillator
PBO	Phase Build-out
PDH	Plesiochronous Digital Hierarchy
PECL	Positive Emitter Coupled Logic
PFD	Phase and Frequency Detector
PLL	Phase Locked Loop
POR	Power-On Reset
ppb	parts per billion
ppm	parts per million
р-р	peak-to-peak
R/W	Read/Write
rms	root-mean-square
RO	Read Only
RoHS	Restrictive Use of Certain Hazardous
	Substances (directive)
SDH	Synchronous Digital Hierarchy
SEC	SDH/SONET Equipment Clock
SETS	Synchronous Equipment Timing source
SONET	Synchronous Optical Network
SSU	Synchronization Supply Unit
STM	Synchronous Transport Module
TDEV	Time Deviation
ТСХО	Temperature Compensated Crystal Oscillator
UI	Unit Interval
WEEE	Waste Electrical and Electronic Equipment (directive)

References

[1] ANSI T1.101-1999 (1999) Synchronization Interface Standard

[2] AT & T 62411 (12/1990) ACCUNET[®] T1.5 Service description and Interface Specification

[3] ETSI ETS 300 462-3, (01/1997) Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 3: The control of jitter and wander within synchronization networks

[4] ETSI ETS 300 462-5 (09/1996) Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 5: Timing characteristics of slave clocks suitable for operation in Synchronous Digital Hierarchy (SDH) equipment

[5] IEEE 1149.1 (1990) Standard Test Access Port and Boundary-Scan Architecture

[6] ITU-T G.703 (10/1998) Physical/electrical characteristics of hierarchical digital interfaces

[7] ITU-T G.736 (03/1993) Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s

[8] ITU-T G.742 (1988) Second order digital multiplex equipment operating at 8448 kbit/s, and using positive justification

[9] ITU-T G.783 (10/2000) Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks

[10] ITU-T G.812 (06/1998) Timing requirements of slave clocks suitable for use as node clocks in synchronization networks

[11] ITU-T G.813 (08/1996) Timing characteristics of SDH equipment slave clocks (SEC)

[12] ITU-T G.822 (11/1988) Controlled slip rate objectives on an international digital connection

[13] ITU-T G.823 (03/2000) The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy

DATASHEE

ADVANCED COMMUNICATIONS

[14] ITU-T G.824 (03/2000)

The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy

[15] ITU-T G.825 (03/2000)

The control of jitter and wander within digital networks which are based on the Synchronous Digital Hierarchy (SDH)

[16] ITU-T K.41 (05/1998)

Resistibility of internal interfaces of telecommunication centres to surge overvoltages

[17] Telcordia GR-253-CORE, Issue 3 (09/ 2000) Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria

[18] Telcordia GR-499-CORE, Issue 2 (12/1998) Transport Systems Generic Requirements (TSGR) Common requirements

[19] Telcordia GR-1244-CORE, Issue 2 (12/2000) Clocks for the Synchronized Network: Common Generic Criteria

Trademark Acknowledgements

FINAL

Semtech and the Semtech S logo are registered trademarks of Semtech Corporation.

ACCUNET[®] is a registered trademark of AT & T.

AMD is a registered trademark of Advanced Micro Devices, Inc.

C-MAC is a registered trademark of C-MAC MicroTechnology - a division of Solectron Corporation.

ICT Flexacom is a registered trademark of ICT Electronics.

Motorola is a registered trademark of Motorola, Inc.

Telcordia is a registered trademark of Telcordia Technologies.

DATASHEET

Front page bullets, back page Ordering

Information and Abbreviations sections

The Revision Status of the datasheet, as shown in the center of the datasheet header bar, may be DRAFT,

PRELIMINARY, or FINAL, and refers to the status of the Device (not the datasheet) within the design cycle. DRAFT status is used when the design is being realized but is not yet physically available, and the datasheet content reflects the intention of the design. The datasheet is raised to PRELIMINARY status when initial prototype devices are physically available, and the datasheet content more accurately represents the realization of the design. The datasheet is only raised to FINAL status after the device has been fully characterized, and the datasheet content updated with measured, rather than simulated parameter values.

This is a FINAL release (Revision 3.02) of the ACS8520 datasheet. Changes made for this document revision are given in Table 43, together with a brief summary of previous revisions. For specific changes between earlier revisions, refer (where available) to those earlier revisions. Always use the current version of the datasheet.

References to availability of a lead (Pb)-free packaged version

Revision	Reference	Description of changes
1.00/February 2002	See particular revision	Initial datasheet and minor releases at Preliminary status. Refer to
1.01/February 2002		particular release for the changes made for that release.
1.02/April 2002		
1.03/April 2002		
1.04/May 2002		
1.05/September 2002		
1.06/September 2002		
2.00/January 2003		Major revision. First release at FINAL status and completely revised.
3.00/September 2003		Major revision.
3.01/October 2003		Minor revision
3.02/October 2005	Regs: 1D, 3C, 3D, 63, 64, 65 and 79	Register description updated.
	Figures 23 and 24	Figures updated.
	Page 21	"patent -pending" reference updated to "patented".
	Figure 5	Title change and note added to Figure.
	Figure 30	Redrawn Figure.
	Table 32	New row added for VDD5.
	Figure 19 and pin 68 (Table 2)	References added such that A(1) = CLKE in serial mode.
	Back page	Former US mailing address removed. (Mail now delivered to main address).
	Trademark Acknowledgements and Revision Status/History	Sections updated.

FINAL

ADVANCED COMMUNICATIONS

Table 43 Revision History

EMTECH

Revision Status/History

(ACS8520T) added.

ADVANCED COMMUNICATIONS

FINAL

ACS8520 SETS

DATASHEET

Notes

ADVANCED COMMUNICATIONS

FINAL

Table 44 Parts List

Ordering Information

Part Number Description			
ACS8520	SETS Synchronous Equipment Timing Source for Stratum 3/4E/4 and SMC Systems		
ACS8520T	Lead (Pb)-free packaged version of ACS8520; RoHS and WEEE compliant.		

Disclaimers

Life support- This product is not designed or intended for use in life support equipment, devices or systems, or other critical applications. This product is not authorized or warranted by Semtech for such use.

Right to change- Semtech Corporation reserves the right to make changes, without notice, to this product. Customers are advised to obtain the latest version of the relevant information before placing orders.

Compliance to relevant standards- Operation of this device is subject to the User's implementation and design practices. It is the responsibility of the User to ensure equipment using this device is compliant to any relevant standards.

Contacts

For Additional Information, contact the following:

Semtech Corporation Advanced Communications Products

- E-mail: sales@semtech.com acsupport@semtech.com
- Internet: <u>http://www.semtech.com</u>
- USA: 200 Flynn Road, Camarillo, CA 93012-8790 Tel: +1 805 498 2111, Fax: +1 805 498 3804
- FAR EAST:
 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, R.O.C.

 Tel: +886 2 2748 3380
 Fax: +886 2 2748 3390
- EUROPE: Semtech Ltd., Units 2 and 3, Park Court, Premier Way, Abbey Park Industrial Estate, Romsey, Hampshire, S051 9DN Tel: +44 (0)1794 527 600 Fax: +44 (0)1794 527 601

