OPB950Z

Obsolete (OPB951)

Features:

- Dual channel outputs for Quadrature Output
- Open collector inverter outputs
- 0.010" (0.254 mm) sensor apertures for high resolution
- Snap mount

Electronics

Description:

The OPB950Z consists of an infrared Light Emitting Diode (LED) and a monolithic integrated circuit which incorporates two independent photodiodes, linear amplifiers, Schmitt trigger circuits and output transistors. It features a dual open-collector output that is compatible with TTL/LSTTL and can drive up to 8 TTL loads.

Applications include linear and rotary encoders with high resolution provided by internal 0.010" (0.254 mm) apertures located in front of each Photologic[®] sensor on 0.040" (1.02 mm) center line spacing.

Custom electrical, wire, cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed and direction indication
- Mechanical limit indication
- Rotary encoders
- Edge sensing
- Sliding Door Automotive and Liftgate applications

	Ordering Information									
Part Number		LED Peak Wavelength	Sensor	Slot Width / Depth	Aperture Emitter/ Sensor	Connector				
OPB	8950Z					Wellpex				
-	OPB951 890 nm Obsolete		Dual TTL	0.200" / 0.350"	0.05" / 0.01"	C25002WS-04-LF				

OPB950Z

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPB950Z

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage & Operating Temperature Range	-40° C to +85° C
Input Diode	
Forward DC Current	50 mA
Reverse DC Voltage	2.0 V
Power Dissipation	100 mW
Output Photologic®	
Supply Voltage, V _{cc}	5.5 V
Voltage at Output	16 V
Power Dissipation	200 mW
Sinking Output Current	40 mA

Electrical Characteristics ($T_A = 25^{\circ}$ C and $V_{CC} = +5$ Volts unless otherwise noted)

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
V _{cc}	Operating Supply Voltage	4.5	-	5.5	V	-
E _{ET} ⁽⁺⁾ /E _{ET} ⁽⁻⁾	Hysteresis Ratio	1.1	1.5	2	-	-
MATCH	Channel Match E _{ET} ^(+ A) / E _{ET} ^(+ B)	0.67	1	1.5	I	-
I _{CCL}	Supply Current, Both Outputs Low (LED On, No Target)	-	8.5	12	mA	$E_E = 0.5 \text{ mW/cm}^2$ (no load on output)
I _{ссн}	Supply Current, Both Outputs High (LED Off)	-	3.5	6	mA	$E_{E} = 0 \text{ mW/cm}^{2}$ (no load on output)
I _{CCM}	Supply Current, Mixed Output States (one high, one low)	-	6	-	mA	$E_E = 0 \text{ mW/cm}^2$ and 0.5 mW/cm ²
I _{oh}	High Level Output Current	-	1	30	μΑ	$E_{E} = 0 \text{ mW/cm}^{2}, V_{OH} = 16 \text{ V}$
V _{OL}	Low Level Output Voltage	-	0.21	0.4	V	$E_{E} = 0 \text{ mW/cm}^{2}$, $I_{OL} = 12.8 \text{ mA}$
T _{phl} T _{plh}	Propagation Delay Output High to Low Output Low to High	-	2 10	-	μs μs	V_{cc} = 5 V, R _L = 360 Ω E _E = 0 or 0.5 mW/cm ² , f = 10 kHz, D.C. = 50%
t _r t _f	Output Rise Time Output Fall Time	-	20 15	-	ns ns	-

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPB950Z

Obsolete (OPB951)

Performance

Supply Current vs Ambient Temperature

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPB950Z

Performance

Dimensions are in inches [millimeters]

Please consult OPTEK for target design and sensor location relative to the target.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPB950Z

Obsolete (OPB951)

General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.