LB11899J

Monolithic Digital IC Three-in-One Motor Driver for Portable VCR

Overview

LB11899J is a three-in-one motor driver for portable VCR.

Function

- Capstan motor drive unit
 - 3-phase, 120 degrees full conducting, direct PWM drive Built in PWM oscillator
 - Current limiter (It is fixed internally and setup externally.)
 - Forward/reverse rotation
 - 2 levels FG amplifier (Built-in gain resistor)
 - Control amplifier output pin
 - Over voltage protection function Built-in
- Drum motor drive unit
 - 3-phase, 120 degrees full conducting soft switching sensorless drive
 - FG sensorless function
 - 2 levels PG amplifier
 - FG and PG mixing output (Separated output is also possible.)
 - Over voltage protection function Built-in
- Loading motor drive unit
 - H-bridge forward/reverse rotation Motor voltage switch Short brake Input control for 3 values Over voltage protection function Built-in
- Common unit Over-heat protection function (Thermal Shut Down)

Specifications

Absolute Maximum Ratings at Ta = 25°C

	V			
Parameter	Symbol	Conditions	Ratings	Unit
IC power source voltage	VCC max		6.5	V
Motor power source 1	CV _{CO} max		30.0	V
Motor power source 2	DV _{CO} max		30.0	V
Motor power source 2	LV _{CO} max		30.0	V
Applied input voltage	VI1 max		-0.3 to V _{CC} +0.3	V
Motor output current1	ICOUT max	Peak current	1.1	А
Motor output current2	IDOUT max	Peak current (within 2sec)	0.65	А
	IDOUT2max	Constant current	0.2	А
Motor output current3	ILOUT max	Peak current (within 2sec)	0.65	А
	ILOUT2max	Constant current	0.2	А

Continued on next page.

ORDERING INFORMATION

See detailed ordering and shipping information on page 16 of this data sheet.

Continued from preceding pa	age.			
Parameter	Symbol	Conditions	Ratings	Unit
Allowable internal power	Pd max1	IC alone	0.6	W
dissipation	Pd max2	Specified board	1.8	W
Pin voltage range 1	VPIN max1	CRSS, CRSP, CUOUT, CVOUT, CWOUT	CMGND-VF to CV _{CC} +VF	V
Pin voltage range 2	VPIN max2	DRS, DCOM, DUOUT, DVOUT, DWOUT	DMGND-VF to DV _{CC} +VF	V
Pin voltage range 3	VPIN max3	LOUT1, LOUT2	LGND-VF to LV _{CC} +VF	V
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Range at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Power source voltage 1	VCC		4 to 6	V
Power source voltage 2	cv _{co}		8 to 28	V
Power source voltage 3	DVCO		8 to 16	V
Power source voltage 4	LVCO		8 to 16	V
Electric potential difference between MGND and SGND	∆GND	(MGND)-(SGND)	-0.3 to +0.4	V

Electrical Characteristics

Deservator	Querrahad		Ratings				
Parameter	Symbol Conditions		min	typ	max	Unit	
Common Unit at Ta = 25°C, VCC = 5V,	CV _{CO} = DV _{CO}	= LV _{CO} = 12V					
Power source current 1	ICC			17	25	mA	
Power source current 2	ICVCO			0.15	2	mA	
Power source current 3	IDVCO			0.53	2	mA	
Power source current 4	ILV _{CO}			1	2	mA	
Power source current 5	IV _{CC} Q	$VCC = 0V, ICV_{CO} + IDV_{CO} + ILV_{CO}$		100	200	μA	
Thermal shutdown temperature	TSD	*Design Target Value	140	160	180	°C	
Thermal shutdown hysteresis	∆TSD	*Design Target Value		15		°C	
Capstan Motor Unit at Ta = 25°C, VCC	= 5V, CV _{CO} = 7	12V					
Output saturation voltage 1	CVSAT	I _O = 0.8A, Source+Sink		2.4	3.5	V	
Hall signal input level	VHALL		100			mVp-p	
Hall in-phase input voltage	VCM		1.0		V _{CC} -1. 7	V	
CILM pin input voltage range	VCLIM		0		VCC	V	
CILM pin input current	ICLIM	CILIM = 3V		0.5	2.0	μA	
CILIM control start voltage	VCLIMST	$CRSS = 0.5\Omega, VCRSP \ge 10mV$	2.44	2.515	2.590	V	
CILIM gain	GCLIM	CCTL = 5V, CRSS = 0.5Ω	0.49	0.53	0.57	V/V	
CILIM pin short brake release voltage	BROFF1		1.1		1.4	V	
CCTL input voltage range	VCCTL		0		VCC	V	
CCTL input current	ICCTL	CCTL = 3V		0.5	2.0	μA	
CCTL control start voltage	OCCTL	CRSS = 0.5Ω , VCRSP $\ge 10mV$	2.44	2.515	2.590	V	
CCTL gain	GCCTL	CILIM=5V, CRSS = 0.5Ω	0.49	0.53	0.57	V/V	
CCTL pin short brake release voltage	BROFF1		1.1		1.4	V	
CCTL pin short brake flow current	IBROFF1			0.1	0.3	μA	
F/R forward voltage	VFW		1.5		VCC	V	

* Note: Thermal design must be set for a junction temperature of 140°C.

* It is a design target value and measurement is not carried out.

Parame	ter	Symbol	Conditions	,	Ratings			
r drame		Cymbol		min	typ	Max	Unit	
F/R reverse voltage		VRW		0		1	V	
F/R input current		IFR	FRC = 3V		100	200	μA	
FG amplifier reference	e voltage	VFGR		2.40	2.50	2.60	V	
Linear amplifier gain D		GDC		29.5	31.1	32.7	times	
	36kHz	G36		20.0	25.0	30.0	times	
Hysteresis amplifier or	utput voltage	VHO	I _{HO} = 4mA		0.2	0.4	V	
Hysteresis of hysteres	is amplifier	VHS	Both hysteresis	56	72	86	mV	
Hysteresis amplifier or	utput duty ratio	FGDT	360Hz Fgin = 40mVp-p	49	50	51	%	
PWM carrier frequenc	у	FOSC	CPWM = 680pF	18.5	21.7	25.0	kHz	
Over voltage protectio	n current	IPROTC	VCC=0V	1			mA	
MGND –SGND Resist	ance	RMSUB			10	30	Ω	
Internal current limiter	setup voltage	CLIM	RS = 100Ω	0.58	0.63	0.68	V	
Drum Motor Unit at T	a = 25°C, VCC = 5	5V, DV _{CO} = 12V	•	· ·				
Output saturation volta	age 2	DVSAT	IO=0.5A, Source+Sink		1.8	2.6	V	
DCTL input voltage ra	nge	VDCTL		0		VREG	V	
DCTL input current		IDCTL	DCTL = 3V			0.5	μA	
DCTL control start vol	tage	ODCTL	VDRS ≥ 10mV	2.40	2.50	2.60	V	
DCTL gain		GDCTL	DRS=0.5Ω,	0.40	0.50	0.60	V/V	
PCOUT output current	t1	IPCOU	Source side	20	45		μA	
PCOUT output curren	12	IPCOD	Sink side	20	45		μA	
VCOIN input current		IVCOIN	VCOIN = 3V, sink current		-	1	μA	
Minimum VCO freque	псу	FVCO min	CX = 0.022µF, VCOINN = Open	330	410	500	Hz	
Maximum VCO freque	ency	FVCO max	CX = 0.022µF, VCOIN = 5V	15.0	18.0	21.0	kHz	
C1/C2 source current	ratio	RSOURCE	1-(IC1SOURCE/IC2SOURCE)	-12	0	12	%	
C1/C2 sink current rat	io	RSINK	1-(IC1SINK/IC2SINK)	-12	0	12	%	
C1 source/sink curren	t ratio	RC1	IC1SOURCE/IC1SINK	40	50	60	%	
C2 source/sink curren	t ratio	RC2	IC2SOURCE/IC2SINK	40	50	60	%	
FGO output high level		VFGH		4.7			V	
FGO output low level	-	VFGL				0.4	V	
PG amplifier reference	5	VPGREF		2.8	3.0	3.2	V	
PG amplifier input offs	-	OPG		-4	0.0	+4	mV	
PG amplifier input bias		IPG	PG- = 2.5V, source current			0.25	μA	
Linear amplifier gain	-	GAMP	Freq = 1kHz	50		0.20	dB	
Hysteresis amplifier th	reshold level 1	VHYS1		70	100	130	mV	
Hysteresis amplifier th		VHYS2		140	200	260	mV	
PG output high level v		VPH		4.7	200	200	V	
PG output low level vo		VPL		4./		0.2	V	
FG/PG mix MID voltage		Vmid		2.4	2.5	2.6	V V	
Over voltage protectio		IPROTD	VCC=0V		2.0	2.0		
Internal current limiter setup voltage		DILM	RS = 100Ω	1	0.00	0.07	mA V	
Loading Unit at Ta =				0.30	0.33	0.37	v	
	1 (HIGH)		1			-		
	2 (Middle)	V _{IN} H		4		5	V	
		V _{IN} M		2		3	V	
	3 (LOW)	V _{IN} L		0		1	V	
Input current		IL _{IN} 0	L _{IN} = 0V, source side	1 1	130	200	μA	

Continued from	preceding page.
----------------	-----------------

Parameter	Symbol		Conditions	Ratings			
				min	min	max	Unit
	VSAT U-1		L_VREF = LV _{CC} Between output and LV _{CC} I _O = 0.6A, CW/CCW mode		2.0	2.5	V
Saturation voltage	oltage VSAT L-2		L_VREF = LV _{CC} Between output and LV _{CC} I _O = 0.6A, CW/CCW mode		1.3	1.8	v
	VSATI	<u> </u>	L_VREF = LV _{CC} SINK+SOURCE I _O = 0.4A, CW/CCW mode		2.8	3.5	v
Output transistor leak current	Upper ILU		V _{CC} = 0V			50	μA
	Lower	ILL	V _{CC} = 0V			50	μA
Over voltage protection current	IPROT	L	VCC=0V	1			mA

Block Diagram

Pin Assignment

TOP VIEW

Pin Des	scription	-		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
3	CVCO	8V to 28V	Power pin of capstan motor driver	
19	DVCO	8V to 28V	Power pin of drum motor driver	
12	LVCO	8V to 28V	Power pin of loading motor driver	
34	VCC	4V to 6V	Power pin to provide all voltages other than the output transistor and pre-drive	
6	CMGND		Capstan motor GND	
33	SGND		GND for all other than output	
1	HU+		U-phase Hall element input pin HU+>HU- state for logic H	V _{CC}
2	HU-	1.5V to V _{CC} -1.5V		
43	HV+		V-phase Hall element input pin. HV+>HV- state for logic H	
44	HV-			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
41	HW+		W-phase Hall element input pin. HW+>HW- state for logic H	
42	HW-			
37	CFGIN-	1V to V _{CC} -1.5V	Capstan FGAMP reverse input pin	vcc
38	CFGOUT		Capstan FGMP linear output pin Return resistor is incorporated with	37 4 2 $k\Omega \neq 300\Omega$ 4 4 300Ω 4 4 4 4 4 4 4 4 4 4
			the amplification degree of about 31-fold.	
39	CFGS		FG Schmidt amp output pin of capstan block	20kΩ ≸ 5kΩ 39 7/7 //7 //7
40	FRC	0V to V _{CC}	Capstan forward/reverse control pin	40 300Ω 40 300Ω 300Ω 1.2V 1.2V

	d from preceding	, page.	I	
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
5	CRSS		Capstan current detection filter pin Connect the current detected at C-RFP to this pin after passing through the CR filter.	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & &$
35	PWM		Capacitor connection pin for PWM oscillation at capstan	
36	CILIM	0V to V _{CC}	Capstan current limit setting pin	
28	CCTL	0V to V _{CC}	Capstan speed control voltage application pin	
7	CWOUT		Capstan W-phase output pin	cvco
8	CVOUT		Capstan V-phase output pin	
9	CUOUT		Capstan U-phase output pin	
5	CRSP		PWRTR GND and current return resistor connection pin	
		I	1	Continued on next page

Continue	d from preceding	page.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
30	DFC		Drum frequency characteristics compensation pin. Insertion of a capacitor to GND stops oscillation of the closed loop of current control system	
24	DCTL	0V to V _{CC}	Drum speed control pin. Control is the constant current control to which current return is applied from DRS.	
22	PGIN+		Drum PG amplifier non-inverted input pin Biased internally to (3/5)×V _{CC}	V _{CC} V _{CC} 10kΩ 300Ω
21	PGIN-		Drum PG amplifier inverted input pin	21 π π π π π π π π π π π π π
20	PG01		Drum PG amplifier linear output pin	5kΩ \$ 300Ω 500Ω \$ \$ 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Pin No	d from preceding Symbol	Pin voltage	Pin Description	Equivalent Circuit
25	PGO2		Drum PG Schmidt amplifier output pin	Vcc
26	BFGO		Drum motor reverse counter-electromotive voltage detection output pin (three-phase synthesizing)	Vcc
23	VCOIN		VCO circuit voltage input pin of drum block. The PCOUT pin voltage is input via CR filter.	23 1kΩ 23 4.7kΩ
14	DUOUT		Drum motor driver output pin	
15	DVOUT	_		
16	DWOUT DRF		Minimum potential of drum motor driver output transistor. Constant-current control is made through detection of this voltage. The current limiter also functions by detecting this potential.	
17	DCOM		Motor coil neutral point input pin. The coil voltage waveform is detected with reference to this voltage.	DVCO (14)(15)(6) $(14)(15)(6)$ $(14)(15)(16)$ $(15)(16)(16)$ $(14)(15)(16)$ $(14)(15)(16)$ $(14)(15)(16)$ $(14)(15)(16)$ $(14)(15)(16)$ $(14)(15)(16)$ $(14)(15)(16)$ $(14)(16)(16)$ $(14)(16)(16)$ $(14)(16)(16)$ $(14)(16)(16)$ $(14)(16)(16)$ $(14)(16)(16)(16)$ $(14)(16)(16)(16)$ $(14)(16)(16)(16)(16)$ $(14)(16)(16)(16)(16)(16)(16)(16)(16)(16)(16$

Continue	d from preceding	page.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
32	C1		Triangular wave generating capacitor connection pin of drum block. This triangular wave performs soft- switching of the coil output waveform.	
31	C2			
29	СХ		In the VCO circuit, the operation frequency range and minimum operation frequency are determined by means of the capacitor value connected to this pin and GND.	
27	LIN	0V to V _{CC}	Loading logic input pin	
13	LOUT1		Loading motor driver output pin	
10	LOUT2			
11	LGND		Loading output transistor GND pin	

Timing Chart and Truth Table

1. Capstan Motor Driver Drive waveform (FRC = L)

2. Capstan Motor Driver Drive waveform (FRC = H)

	Course Ciple	Hall input			FDO
	Source→Sink	U	V	W	FRC
1	$V\toW$	н	н	L	Н
	$W\toV$				L
2	$U\toW$	н	L	L	Н
	$W\toU$				L
3	$U\toV$	Н	L	Н	Н
	$V\toU$				L
4	$W\toV$	L	L	н	Н
	$V\toW$				L
5	$W\toU$	L	Н	Н	Н
	$U\toW$				L
6	$V\toU$	L	Н	L	Н
	$U\toV$				L

Note) H of FRC means the voltage of 1.5V or more while L means the voltage of 1.0V or less. (At $V_{CC} = 5V$) Note) For the Hall input, the input H means the condition in which (+) relative to each phase input (-) is higher by 0.1V.

The input L means the condition in which (+) relative to (-) is lower by 0.1V or more.

Control function & control limiting function

Caution: For the VCRF voltage of control characteristics, the peak value is to be measured. Cautions for use)

- When the direct reversion brake is to be used, keep the voltage at the CILIM terminal 3.1V or less so that IOMAX is not exceeded.
- \bullet The capacitor to be used between power supply and GND should be an electrolytic capacitor of $47 \mu F$ or more.

4. Drum Motor Driver Drive current waveform

5. Loading Motor Truth table

Input	Ou	Mada		
LIN	LOUT1	LOUT2	Mode	
L	L	н	Reverse	
M (or OPEN)	L	L	Brake	
Н	Н	L	Forward	

PACKAGE DIMENSIONS

unit : mm

SSOP44J (275mil) Exposed Pad

CASE 940AG ISSUE O

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)	
LB11899J-MPB-E	SSOP44J (275mil) (Pb-Free)	30 / Fan-Fold	
LB11899J-TRM-E	SSOP44J (275mil) (Pb-Free)	2000 / Tape & Reel	

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized upplication, Buyer shall indemify and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright may and is not for resale in any manner.