Thyristors **Datasheet**

Po

Additional Information

Functional Diagram

Description

The 2N6394 is designed primarily for half-wave AC control applications, such as motor controls, heating controls and power supplies.

Features

Pin Out

- Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 V
- These are Pb–Free Devices

Maximum Ratings † (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Peak Repetitive Off-State Voltage (Note 1) (T_{J} = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open)	2N6394 2N6395 2N6397 2N6399	V _{drm} , V _{rrm}	50 100 400 800	V
On-State RMS Current (180° Conduction Angles; T _c = 90°C)		I _{T (RMS)}	12	А
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T, = 90°C)		I _{TSM}	100	А
Circuit Fusing Considerations (t = 8.3 ms)		I _{2t}	40	A²s
Forward Peak Gate Power (Pulse Width \leq 1.0 $\mu s, T_{_C}$ = 90°C)	P _{gm}	20	W	
Forward Average Gate Power (t = 8.3 ms, $T_c = 90^{\circ}$ C)		P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 $\mu s, T_{_C}$ = 90°C)		I _{GM}	2.0	А
Operating Junction Temperature Range		T	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +125	°C

†Indicates JEDEC Registered Data

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DBM} and V_{RBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

Rating	Symbol	Value	Unit
† Thermal Resistance, Junction to Case	R _{suc}	2.0	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

† Indicates JEDEC Registered Data.

Electrical Characteristics - OFF (TC = 25° C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Мах	Unit
*Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	1.0	μΑ
$(V_{D} = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 100°C	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - ON (TC = 25° C unless otherwise noted; Electricals apply in both directions)

Characteristic		Min	Тур	Мах	Unit
†Peak Forward On–State Voltage (Note 2) (I_{TM} = 24 A Peak)	V _{TM}	-	1.7	2.2	V
†Gate Trigger Voltage (Continuous DC), All Quadrants (Continuous dc) (V _p = 12 Vdc, R _i = 100 Ohms)		_	5.0	30	mA
†Gate Trigger Voltage (Continuous dc) ($V_p = 12$ Vdc, $R_1 = 100$ Ohms)		-	0.7	1.5	V
Gate Non–Trigger Voltage ($V_p = 12$ Vdc, $R_1 = 100$ Ohms, $T_1 = 125^{\circ}$ C)		0.2	-	_	V
†Holding Current ($V_p = 12$ Vdc, Initiating Current = 200 mA, Gate Open)		-	6.0	50	mA
Turn-On Time (I_{TM} = 12 A, I_{GT} = 40 mAdc, V_{D} = Rated V_{DRM})		-	1.0	2.0	μs
Turp Off Time (I/ $_{\text{TM}}$ = 12 A, I _B = 12 A)	1	-	-	15	
Turn-Off Time (V_D = Rated V_{DRM}) (I_{TM} = 12 A, I_R = 12 A, T_J = 125°C)	۲ _q	-	-	35	μs

†Indicates JEDEC Registered Data 2. Pulse Test: Pulse Width \leq 300 $\mu sec,$ Duty Cycle \leq 2%

Thyristors Datasheet

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate–of–Rise of Off-State Voltage Expovnential ($V_D = Rated V_{DRM'} T_J = 125^{\circ}C$)	dv/dt(c)	-	50	-	V/µs

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Figure 1. Current Derating

Figure 2. Maximum On-State Characteristics

Figure 3. On–State Characteristics

Figure 4. Maximum Non-Repetitive Surge Current

Figure 5. Typical Thermal Response

Typical Characteristics

Figure 6. Typical Gate Trigger Current vs. Pulse Width

Figure 8. Typical Gate Trigger Voltage vs. Temperature

Figure 7. Typical Gate Trigger Current vs. Temperature

Figure 9. Typical Holding Current vs. Temperature

Dimensions

Part Marking System

M =Month

A =Assembly Site XX =Lot Serial Code G =Pb-Free Package

Inches Millimeters Dim Min Max Min Max Α 0.590 0.620 14.99 15.75 В 0.380 0.420 9.65 10.67 С 0.178 0.188 4.52 4.78 D 0.025 0.035 0.89 0.64 F 0.142 0.147 3.61 3.73 G 0.095 0.105 2.41 2.67 Н 0.110 0.130 2.79 3.30 J 0.018 0.024 0.46 0.61 к 0.540 0.575 13.72 14.61 0.060 1.91 L 0.075 1.52 Ν 0.195 0.205 4.95 5.21 Q 0.105 0.115 2.67 2.92 R 2.16 0.085 0.095 2.41 S 0.045 0.060 1.14 1.52 т 0.235 0.255 5.97 6.47 υ 0.000 0.050 0.00 1.27 ۷ 0.045 ____ 1.15 Ζ 0.080 2.04

Pin Assignment			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

Ordering Information

Device	Package	Shipping
2N6394G		1000 Units / Box
2N6394TG		1000 Units / Box
2N6395G	TO-220AB (Pb-Free)	1000 Units / Box
2N6397G		1000 Units / Box
2N6397TG	(101100)	1000 Units / Box
2N6399G		1000 Units / Box
2N6399TG		1000 Units / Box

Dimensioning and tolerancing per ansi y14.5m, 1982.
Controlling dimension: inch.

3. Dimension z defines a zone where all body and lead irregularities are allowed.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

