

STPS61150C

Datasheet

150 V power Schottky rectifier

Features

- High junction temperature capability
- Low leakage current
- · Good trade off between leakage current and forward voltage drop
- Low thermal resistance
- High frequency operation
- ECOPACK[®]2 compliant

Applications

- Switching diode
- SMPS
- DC/DC converter
- Telecom power

Description

This dual diode common cathode Schottky rectifier is optimized for high frequency switched mode power supplies.

Packaged in TO-247, the STPS61150C combines high current rating and low volume to enhance both reliability and power density of the application.

Product status				
STPS61150C				
Product summary				
Ι _{F(AV)} 2 x 30 A				
V _{RRM}	150 V			
T _{j(max.)}	175 °C			
V _{F(typ.)}	0.63 V			

1 Characteristics

Table 1. Absolute ratings (limiting values, per diode at 25 °C, unless otherwise specified)

Symbol	Parameter				Unit
V _{RRM}	Repetitive peak reverse voltage			150	V
I _{F(RMS)}	Forward rms current			80	Α
		T _c = 150 °C	Per diode	30	
$I_{F(AV)}$ Average forward current, $\delta = 0.5$, square v	Average forward current, o = 0.5, square wave	T _c = 145 °C	Per device	60	A
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sin	500	Α	
P _{ARM}	Repetitive peak avalanche power	t _p = 10 μs, T _j =	2290	W	
T _{stg}	Storage temperature range				°C
Тј	Maximum operating junction temperature ⁽¹⁾			+175	°C

1. $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameters

Symbol	Parameter		Value	Unit
P	R _{th(j-c)} Junction to case	Per diode	0.9	°C/W
Kth(j-c) Jun		Total	0.6	C/VV
R _{th(c)}	Coupling		0.3	°C/W

When the diodes 1 and 2 are used simultaneously: $\Delta T_{j (diode1)} = P_{(diode1)} \times R_{th(j-c)}$ (per diode) + $P_{(diode2)} \times R_{th(c)}$

For more information, please refer to the following application note :

• AN5088 : Rectifiers thermal management, handling and mounting recommendations

Symbol	Parameter	Test o	Test conditions		Тур.	Max.	Unit
I _R ⁽¹⁾		T _j = 25 °C	V _R = V _{RRM}	-	7	20	μA
IR V	Reverse leakage current	T _j = 125 °C	VR - VRRM	-	7	25	mA
VF ⁽²⁾ F	$ \begin{array}{c c} Forward \mbox{ voltage drop} \end{array} & \begin{array}{c} T_{j} = 25 \ ^{\circ} C \\ \hline T_{j} = 125 \ ^{\circ} C \\ \hline T_{j} = 25 \ ^{\circ} C \\ \hline T_{j} = 125 \ ^{\circ} C \\ \hline \end{array} & \begin{array}{c} I_{F} = 30 \ A \\ \hline \end{array} & \begin{array}{c} - \\ \hline 0.63 \\ \hline - \\ \hline \end{array} & \begin{array}{c} 0.63 \\ \hline \end{array} \\ \begin{array}{c} P_{F} = 60 \ A \\ \hline \end{array} & \begin{array}{c} - \\ \hline \end{array} \\ \begin{array}{c} P_{F} = 60 \ A \\ \hline \end{array} \\ \begin{array}{c} P_{F} = 60 \ A \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ $ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\	T _j = 25 °C	I_ = 30 A	-		0.84	V
		T _j = 125 °C	IF - 30 A	-	0.63	0.67	
		0.92	V				
		T _j = 125 °C	1 _F = 00 A	-	0.76	0.80	

Table 3. Static electrical characteristics (per diode)

1. Pulse test: $t_p = 5 ms$, $\delta < 2\%$

2. Pulse test: t_p =380 µs, δ < 2%

To evaluate the conduction losses, use the following equation: P = 0.54 x I_{F(AV)} + 0.0043 x I_F 2 (RMS)

For more information, please refer to the following application notes related to the power losses :

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

STPS61150C

1.1 Characteristics (curves)

57

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

2.1 TO-247 package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.8 N·m
- Maximum torque value: 1.0 N·m

			Dime	nsions			
Ref.	Millimeters			Inches (for reference only)			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.85		5.15	0.191		0.203	
A1	2.20		2.60	0.086		0.102	
b	1.00		1.40	0.039		0.055	
b1	2.00		2.40	0.078		0.094	
b2	3.00		3.40	0.118		0.133	
с	0.40		0.80	0.015		0.031	
D	19.85		20.15	0.781		0.793	
E	15.45		15.75	0.608		0.620	
е	5.30	5.45	5.60	0.209	0.215	0.220	
L	14.20		14.80	0.559		0.582	
L1	3.70		4.30	0.145		0.169	
L2		18.50			0.728		
ØP	3.55		3.65	0.139		0.143	
ØR	4.50		5.50	0.177		0.217	
S	5.30	5.50	5.70	0.209	0.216	0.224	

Table 4. TO-247 package mechanical data

3 Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS61150CW	STPS61150CW	TO-247	4.36 g	30	Tube

Table 5. Order code

Revision history

Table 6. Document revision history

Date	Revision	Changes
24-Jul-2012	1	First issue.
27-Jun-2018	2	Updated Table 1. Absolute ratings (limiting values, per diode at 25 °C, unless otherwise specified) and Figure 3. Normalized avalanche power derating versus pulse duration (T_j = 125 °C).

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved