

24-BIT, 192-kHz SAMPLING, ADVANCED SEGMENT, AUDIO STEREO DIGITAL-TO-ANALOG CONVERTER

FEATURES

- 24-Bit Resolution
- Analog Performance:
 - Dynamic Range: 132 dB (9 V RMS, Mono)
 129 dB (4.5 V RMS, Stereo)
 127 dB (2 V RMS, Stereo)
 - THD+N: 0.0004%
- Differential Current Output: 7.8 mA p-p
- 8× Oversampling Digital Filter:
 - Stop-Band Attenuation: –130 dB
 - Pass-Band Ripple: ±0.00001 dB
- Sampling Frequency: 10 kHz to 200 kHz
- System Clock: 128, 192, 256, 384, 512, or 768 f_S With Autodetect
- Accepts 16- and 24-Bit Audio Data
- PCM Data Formats: Standard, I²S, and Left-Justified
- Optional Interface Available to External Digital Filter or DSP
- Digital De-Emphasis
- Digital Filter Rolloff: Sharp or Slow
- Soft Mute
- Zero Flag

- Dual-Supply Operation:
 5-V Analog, 3.3-V Digital
- 5-V Tolerant Digital Inputs
- Small 28-Lead SSOP Package

APPLICATIONS

- A/V Receivers
- DVD Players
- Musical Instruments
- HDTV Receivers
- Car Audio Systems
- Digital Multitrack Recorders
- Other Applications Requiring 24-Bit Audio

DESCRIPTION

The PCM1794 is a monolithic CMOS integrated circuit that includes stereo digital-to-analog converters and support circuitry in a small 28-lead SSOP package. The data converters use TI's advanced segment DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The PCM1794 provides balanced current outputs, allowing the user to optimize analog performance externally. Sampling rates up to 200 kHz are supported.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE CODE	OPERATION TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA
DOMAZOADD		0000		DOM4704	PCM1794DB	Tube
PCM1794DB	28-lead SSOP	28DB	–25°C to 85°C	PCM1794	PCM1794DBR	Tape and reel

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

		PCM1794
Supply voltage	V _{CC} 1, V _{CC} 2L, V _{CC} 2R	-0.3 V to 6.5 V
Supply vollage	–0.3 V to 4 V	
Supply voltage differen	nces: V _{CC} 1, V _{CC} 2L, V _{CC} 2R	±0.1 V
Ground voltage differe	nces: AGND1, AGND2, AGND3L, AGND3R, DGND	±0.1 V
Digital input voltage	LRCK, DATA, BCK, SCK, FMT1, FMT0, MONO, CHSL, DEM, MUTE, RST,	-0.3 V to 6.5 V
Digital Input voltage	ZERO	-0.3 V to (V _{DD} + 0.3 V) < 4 V
Analog input voltage	-0.3 V to (V _{CC} + 0.3 V) < 6.5 V	
Input current (any pins	±10 mA	
Ambient temperature	under bias	-40°C to 125°C
Storage temperature		–55°C to 150°C
Junction temperature	150°C	
Lead temperature (sol	260°C, 5 s	
Package temperature	(IR reflow, peak)	250°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

all specifications at $T_A = 25^{\circ}C$, $V_{CC}1 = V_{CC}2L = V_{CC}2R = 5$ V, $V_{DD} = 3.3$ V, $f_S = 44.1$ kHz, system clock = 256 f_S, and 24-bit data, unless otherwise noted

			PCM1794	PCM1794DB	
	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
RES	OLUTION	24		Bits	
DATA	FORMAT				
Audio data interface format			Standard, I ² S, lef	Standard, I ² S, left justified	
	Audio data bit length 16-, 24-bit selectable		ctable		
	Audio data format		MSB first, 2s complement		
fS	Sampling frequency		10	200	kHz
	System clock frequency		128, 192, 256, 384,	512, 768 fS	
DIGI	TAL INPUT/OUTPUT				
	Logic family		TTL compat	ible	
VIH			2		VDC
VIL	- Input logic level			0.8	VDC
Ι _Η	- Input logic current	$V_{IN} = V_{DD}$		10	μA
١L		$V_{IN} = 0 V$		-10	
VOH		$I_{OH} = -2 \text{ mA}$	2.4		VDC
VOL	Output logic level	$I_{OL} = 2 \text{ mA}$		0.4	VDC

ELECTRICAL CHARACTERISTICS (Continued)

all specifications at $T_A = 25^{\circ}$ C, $V_{CC}1 = V_{CC}2L = V_{CC}2R = 5$ V, $V_{DD} = 3.3$ V, $f_S = 44.1$ kHz, system clock = 256 f_S , and 24-bit data, unless otherwise noted

		PCM1794DB				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
YNAMIC PERFORMANCE (2-V RMS OU	TPUT) (1)(2)					
	f _S = 44.1 kHz		0.0004%	0.0008%		
THD+N at V _{OUT} = 0 dB	f _S = 96 kHz		0.0008%			
	f _S = 192 kHz		0.0015%			
	EIAJ, A-weighted, f _S = 44.1 kHz	123	127			
Dynamic range	EIAJ, A-weighted, f _S = 96 kHz		127		dB	
	EIAJ, A-weighted, f _S = 192 kHz		127			
	EIAJ, A-weighted, f _S = 44.1 kHz	123	127			
Signal-to-noise ratio	EIAJ, A-weighted, $f_S = 96 \text{ kHz}$		127		dB	
-	EIAJ, A-weighted, f _S = 192 kHz		127			
	f _S = 44.1 kHz	120	123			
Channel separation	f _S = 96 kHz		122		dB	
	f _S = 192 kHz		120			
Level linearity error	V _{OUT} = -120 dB		±1		dB	
NAMIC PERFORMANCE (4.5-V RMS O				I		
	f _S = 44.1 kHz		0.0004%			
THD+N at $V_{OUT} = 0 \text{ dB}$	f _S = 96 kHz		0.0008%			
	f _S = 192 kHz		0.0015%			
	EIAJ, A-weighted, f _S = 44.1 kHz		129			
Dynamic range	EIAJ, A-weighted, f _S = 96 kHz		129		dB	
,	EIAJ, A-weighted, f _S = 192 kHz		129			
	EIAJ, A-weighted, f _S = 44.1 kHz		129			
Signal-to-noise ratio	EIAJ, A-weighted, f _S = 96 kHz		129		dB	
3	EIAJ, A-weighted, f _S = 192 kHz		129			
	f _S = 44.1 kHz		124			
Channel separation	f _S = 96 kHz		123		dB	
	f _S = 192 kHz	121				
NAMIC PERFORMANCE (MONO MODI	÷	I				
•	f _S = 44.1 kHz		0.0004%			
THD+N at V _{OUT} = 0 dB	f _S = 96 kHz		0.0008%			
	f _S = 192 kHz		0.0015%			
	EIAJ, A-weighted, f _S = 44.1 kHz		132			
Dynamic range	EIAJ, A-weighted, f _S = 96 kHz		132		dB	
,	EIAJ, A-weighted, $f_S = 192 \text{ kHz}$		132			
	EIAJ, A-weighted, f _S = 44.1 kHz		132			
Signal-to-noise ratio	EIAJ, A-weighted, f _S = 96 kHz		132		dB	
	EIAJ, A-weighted, $f_S = 192 \text{ kHz}$		132		20	

(1) Filter condition:

THD+N: 20-Hz HPF, 20-kHz apogee LPF

Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted

Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted

Channel separation: 20-Hz HPF, 20-kHz AES17 LPF

Analog performance specifications are measured using the System Two[™] Cascade audio measurement system by Audio Precision[™] in the averaging mode.

(2) Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 24.

(3) Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 25.

Audio Precision and System Two are trademarks of Audio Precision, Inc. Other trademarks are the property of their respective owners.

ELECTRICAL CHARACTERISTICS (Continued) all specifications at $T_A = 25^{\circ}C$, $V_{CC}1 = V_{CC}2L = V_{CC}2R = 5 V$, $V_{DD} = 3.3 V$, $f_S = 44.1 \text{ kHz}$, system clock = 256 f_S , and 24-bit data, unless otherwise noted

			F	PCM1794	DB	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALO	OG OUTPUT					-
	Gain error		-6	<u>+2</u>	6	% of FSR
	Gain mismatch, channel-to-channel		-3	±0.5	3	% of FSR
	Bipolar zero error	At BPZ	-2	±0.5	2	% of FSR
	Output current	Full scale (0 dB)		7.8		mA p-p
	Center current	At BPZ		-6.2		mA
DIGITA	L FILTER PERFORMANCE					
	De-emphasis error				±0.004	dB
FILTER	CHARACTERISTICS-1: SHARP ROLLO	DFF				
		±0.00001 dB			0.454 fs	
	Pass band	-3 dB			0.49 fs	1
	Stop band		0.546 fs		0	1
	Pass-band ripple		<u>_</u>		±0.00001	dB
	Stop-band attenuation	Stop band = $0.546 \text{ f}_{\text{S}}$	-130			dB
	Delay time			55/fs		s
FILTER	CHARACTERISTICS-2: SLOW ROLLO	FF		0		_
		±0.04 dB	1		0.254 fs	
	Pass band	-3 dB			0.46 fs	1
	Stop band		0.732 fs		0	
	Pass-band ripple				±0.001	dB
	Stop-band attenuation	Stop band = $0.732 \text{ f}_{\text{S}}$	-100			dB
	Delay time			18/fS		S
POWER	R SUPPLY REQUIREMENTS					_
VDD			3	3.3	3.6	VDC
V _{CC} 1	-					
V _{CC} ^{2L}	Voltage range		4.75	5	5.25	VDC
V _{CC} 2R				-		
00		f _S = 44.1 kHz		12	15	
IDD		f _S = 96 kHz		23		mA
00	- (1)	f _S = 192 kHz		45		
	Supply current ⁽¹⁾	f _S = 44.1 kHz		33	40	
lcc		f _S = 96 kHz		35		mA
00		f _S = 192 kHz		37		
		f _S = 44.1 kHz		205	250	
	Power dissipation (1)	f _S = 96 kHz		250		mW
	-	f _S = 192 kHz		335		1
TEMPE	RATURE RANGE	1 -	1			
	Operation temperature		-25		85	°C
θJA	Thermal resistance	28-pin SSOP		100		°C/W

(1) Input is BPZ data.

PIN ASSIGNMENTS

Terminal Functions

TERM	INAL		
NAME	PIN	I/O	DESCRIPTIONS
AGND1	19	-	Analog ground (internal bias)
AGND2	24	-	Analog ground (internal bias)
AGND3L	27	-	Analog ground (L-channel DACFF)
AGND3R	16	-	Analog ground (R-channel DACFF)
BCK	6	I	Bit clock input (1)
CHSL	2	I	L-, R-channel select (1)
DATA	5	I	Serial audio data input ⁽¹⁾
DEM	3	I	De-emphasis enable (1)
DGND	8	-	Digital ground
FMT0	11	I	Audio data format select (1)
FMT1	12	I	Audio data format select (1)
IOUTL+	25	0	L-channel analog current output +
IOUTL-	26	0	L-channel analog current output –
IOUTR+	17	0	R-channel analog current output +
IOUTR-	18	0	R-channel analog current output -
I _{REF}	20	-	Output current reference bias pin
LRCK	4	I	Left and right clock (f _S) input ⁽¹⁾
MONO	1	I	Monaural mode enable (1)
MUTE	10	I	Mute control ⁽¹⁾
RST	14	I	Reset ⁽¹⁾
SCK	7	I	System clock input ⁽¹⁾
V _{CC} 1	23	-	Analog power supply, 5 V
V _{CC} 2L	28	-	Analog power supply (L-channel DACFF), 5 V
V _{CC} 2R	15	_	Analog power supply (R-cahnnel DACFF), 5 V
VCOML	22	-	L-channel internal bias decoupling pin
VCOMR	21	-	R-channel internal bias decoupling pin
V _{DD}	9	-	Digital power supply, 3.3 V
ZERO	13	0	Zero flag

(1) Schmitt-trigger input, 5-V tolerant

FUNCTIONAL BLOCK DIAGRAM

TYPICAL PERFORMANCE CURVES

DIGITAL FILTER

Digital Filter Response

De-Emphasis Filter

ANALOG DYNAMIC PERFORMANCE

Supply Voltage Characteristics

NOTE: $T_A = 25^{\circ}C$, $V_{DD} = 3.3$ V, measurement circuit is Figure 25 ($V_{OUT} = 4.5$ V rms).

TEXAS INSTRUMENTS www.ti.com

Temperature Characteristics

NOTE: V_{DD} = 3.3 V, V_{CC} = 5 V, measurement circuit is Figure 25 (V_{OUT} = 4.5 V rms).

PCM1794

NOTE: f_S = 48 kHz, 32768 point 8 average, T_A = 25°C, V_{DD} = 3.3 V, NOTE: f_S = 48 kHz, 32768 point 8 average, T_A = 25°C, V_{DD} = 3.3 V, $V_{CC} = 5 V$, measurement circuit is Figure 25.

 $V_{CC} = 5$ V, measurement circuit is Figure 25.

AS RUMENTS www.ti.com

Figure 15. –60-db Output Spectrum, BW = 20 kHz Figure 16. –60-db Output Spectrum, BW = 100 kHz

NOTE: $f_S = 48 \text{ kHz}$, $T_A = 25^{\circ}\text{C}$, $V_{DD} = 3.3 \text{ V}$, $V_{CC} = 5 \text{ V}$, measurement circuit is Figure 25.

Figure 17. THD+N vs Input Level

SYSTEM CLOCK AND RESET FUNCTIONS

System Clock Input

The PCM1794 requires a system clock for operating the digital interpolation filters and advanced segment DAC modulators. The system clock is applied at the SCK input (pin 7). The PCM1794 has a system clock detection circuit that automatically senses the frequency at which the system clock is operating. Table 1 shows examples of system clock frequencies for common audio sampling rates.

Figure 18 shows the timing requirements for the system clock input. For optimal performance, it is important to use a clock source with low phase jitter and noise. One of the Texas Instruments PLL1700 family of multiclock generators is an excellent choice for providing the PCM1794 system clock.

		SYST	TEM CLOCK FRE	QUENCY (fSCK)	(MHz)	
SAMPLING FREQUENCY	128 fS	192 f _S	256 fS	384 fS	512 fS	768 f _S
32 kHz	4.096	6.144	8.192	12.288	16.384	24.576
44.1 kHz	5.6488	8.4672	11.2896	16.9344	22.5792	33.8688
48 kHz	6.144	9.216	12.288	18.432	24.576	36.864
96 kHz	12.288	18.432	24.576	36.864	49.152	73.728
192 kHz	24.576	36.864	49.152	73.728	(1)	(1)

Table 1. System Clock Rates for Common Audio Sampling Frequencies

(1) This system clock rate is not supported for the given sampling frequency.

Figure 18. System Clock Input Timing

Power-On and External Reset Functions

The PCM1794 includes a power-on reset function. Figure 19 shows the operation of this function. With $V_{DD} > 2 V$, the power-on reset function is enabled. The initialization sequence requires 1024 system clocks from the time $V_{DD} > 2 V$.

The PCM1794 also includes an external reset capability using the RST input (pin 14). This allows an external controller or master reset circuit to force the PCM1794 to initialize to its default reset state.

Figure 20 shows the external reset operation and timing. The \overrightarrow{RST} pin is set to logic 0 for a minimum of 20 ns. The \overrightarrow{RST} pin is then set to a logic 1 state, thus starting the initialization sequence, which requires 1024 system clock periods. The external reset is especially useful in applications where there is a delay between the PCM1794 power up and system clock activation.

Figure 20. External Reset Timing

AUDIO DATA INTERFACE

Audio Serial Interface

The audio interface port is a 3-wire serial port. It includes LRCK (pin 4), BCK (pin 6), and DATA (pin 5). BCK is the serial audio bit clock, and it is used to clock the serial data present on DATA into the serial shift register of the audio interface. Serial data is clocked into the PCM1794 on the rising edge of BCK. LRCK is the serial audio left/right word clock.

The PCM1794 requires the synchronization of LRCK and the system clock, but does not need a specific phase relation between LRCK and the system clock.

If the relationship between LRCK and the system clock changes more than ± 6 BCK, internal operation is initialized within 1/f_S and the analog outputs are forced to the bipolar zero level until resynchronization between LRCK and the system clock is completed.

PCM Audio Data Formats and Timing

The PCM1794 supports industry-standard audio data formats, including standard right-justified, I²S, and left-justified. The data formats are shown in Figure 22. Data formats are selected using the format bits, FMT1 (pin 12), and FMT0 (pin 11) as shown in Table 2. All formats require binary twos-complement, MSB-first audio data. Figure 21 shows a detailed timing diagram for the serial audio interface.

Figure 21. Timing of Audio Interface	Figure	21.	Timing	of	Audio	Interface
--------------------------------------	--------	-----	--------	----	-------	-----------

(2) Left Justified Data Format; L-Channel = HIGH, R-Channel = LOW

(3) I²S Data Format; L-Channel = LOW, R-Channel = HIGH

FUNCTION DESCRIPTIONS

Audio data format

Audio format is selected using FMT0 (pin 11) and FMT1 (pin 12). The PCM1794 also supports monaural mode and DF bypass mode using MONO (pin 1) and CHSL (pin 2). The PCM1794 can select the DF rolloff characteristics.

MONO	CHSL	FMT1	FMT0	FORMAT	STEREO/MONO	DF ROLLOFF
0	0	0	0	1 ² S	Stereo	Sharp
0	0	0	1	Left-justified format	Stereo	Sharp
0	0	1	0	Standard, 16-bit	Stereo	Sharp
0	0	1	1	Standard, 24-bit	Stereo	Sharp
0	1	0	0	I ² S	Stereo	Slow
0	1	0	1	Left-justified format	Stereo	Slow
0	1	1	0	Standard, 16-bit	Stereo	Slow
0	1	1	1	Digital filter bypass	Mono	-
1	0	0	0	1 ² S	Mono, L-channel	Sharp
1	0	0	1	Left-justified format	Mono, L-channel	Sharp
1	0	1	0	Standard, 16-bit	Mono, L-channel	Sharp
1	0	1	1	Standard, 24-bit	Mono, L-channel	Sharp
1	1	0	0	1 ² S	Mono, R-channel	Sharp
1	1	0	1	Left-justified format	Mono, R-channel	Sharp
1	1	1	0	Standard, 16-bit	Mono, R-channel	Sharp
1	1	1	1	Standard, 24-bit	Mono, R-channel	Sharp

Table 2. Audio Data Format Select	Table	2.	Audio	Data	Format	Select
-----------------------------------	-------	----	-------	------	--------	--------

Soft Mute

The PCM1794 supports mute operation. When MUTE (pin 10) is set to HIGH, both analog outputs are transitioned to the bipolar zero level in -0.5-dB steps with a transition speed of $1/f_S$ per step. This system provides pop-free muting of the DAC output.

De-Emphasis

The PCM1794 has a de-emphasis filters for the sampling frequency of 44.1 kHz. The de-emphasis filter is controlled using DEM (pin 3).

Zero Detect

When the PCM1794 detects that the audio input data in the L-channel and the R-channel is continuously zero for 1024 LRCKs in the PCM mode or that the audio input data is continuously zero for 1024 WDCKs in the external filter mode, the PCM1794 sets ZERO (pin 13) to HIGH.

TYPICAL CONNECTION DIAGRAM

Figure 23. Typical Application Circuit

APPLICATION INFORMATION

APPLICATION CIRCUIT

The design of the application circuit is very important in order to actually realize the high S/N ratio of which the PCM1794 is capable. This is because noise and distortion that are generated in an application circuit are not negligible.

In the circuit of Figure 24, the output level is 2 V RMS, and 127 dB S/N is achieved. The circuit of Figure 25 can realize the highest performance. In this case the output level is set to 4.5 V RMS and 129 dB S/N is achieved (stereo mode). In monaural mode, if the output of the L-channel and R-channel is used as a balanced output, 132 dB S/N is achieved (see Figure 26).

I/V Section

The current of the PCM1794 on each of the output pins (I_{OUT}L+, I_{OUT}L-, I_{OUT}R+, I_{OUT}R-) is 7.8 mA p-p at 0 dB (full scale). The voltage output level of the I/V converter (Vi) is given by following equation:

Vi = 7.8 mA p-p \times R_f (R_f : feedback resistance of I/V converter)

An NE5534 operational amplifier is recommended for the I/V circuit to obtain the specified performance. Dynamic performance such as the gain bandwidth, settling time, and slew rate of the operational amplifier affects the audio dynamic performance of the I/V section.

Differential Section

The PCM1794 voltage outputs are followed by differential amplifier stages, which sum the differential signals for each channel, creating a single-ended I/V op-amp output. In addition, the differential amplifiers provide a low-pass filter function.

The operational amplifier recommended for the differential circuit is the Linear Technology LT1028, because its input noise is low.

PCM1794

SLES080C - MAY 2003 - REVISED NOVEMBER 2006

Figure 24. Measurement Circuit, V_{OUT} = 2 V RMS

PCM1794

SLES080C - MAY 2003 - REVISED NOVEMBER 2006

APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE

Figure 27. Connection Diagram for External DIgital Filter (Internal DF Bypass Mode) Application

Application for Interfacing With an External Digital Filter

For some applications, it may be desirable to use a programmable digital signal processor as an external digital filter to perform the interpolation function. The following pin settings enable the external digital filter application mode.

- MONO (pin 1) = LOW
- CHSL (Pin 2) = HIGH
- FMT0 (Pin 11) = HIGH
- FMT1 (pin 12) = HIGH

The pins used to provide the serial interface for the external digital filter are shown in the connection diagram of Figure 27. The word clock (WDCK) must be operated at $8 \times$ or $4 \times$ the desired sampling frequency, f_S.

System Clock (SCK) and Interface Timing

The PCM1794 in an application using an external digital filter requires the synchronization of WDCK and the system clock. The system clock is phase-free with respect to WDCK. Interface timing among WDCK, BCK, and DATA is shown in Figure 29.

Audio Format

The PCM1794 in the external digital filter interface mode supports right-justified audio formats including 24-bit audio data, as shown in Figure 28.

Figure 28. Audio Data Input Format for External Digital Filter (Internal DF Bypass Mode) Application

PCM1794

SLES080C - MAY 2003 - REVISED NOVEMBER 2006

	PARAMETER	MIN	MAX	UNITS
t(BCY)	BCK pulse cycle time	20		ns
t(BCL)	BCK pulse duration, LOW	7		ns
t(BCH)	BCK pulse duration, HIGH	7		ns
t(BL)	BCK rising edge to WDCK falling edge	5		ns
t(LB)	WDCK falling edge to BCK rising edge	5		ns
t(DS)	DATA setup time	5		ns
^t (DH)	DATA hold time	5		ns

Figure 29. Audio Interface Timing for External Digital Filter (Internal DF Bypass Mode) Application

THEORY OF OPERATION

Figure 30. Advanced Segment DAC

The PCM1794 uses TI's advanced segment DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The PCM1794 provides balanced current outputs.

Digital input data via the digital filter is separated into 6 upper bits and 18 lower bits. The 6 upper bits are converted to inverted complementary offset binary (ICOB) code. The lower 18 bits, associated with the MSB, are processed by a five-level third-order delta-sigma modulator operated at 64 f_S by default. The 1 level of the modulator is equivalent to the 1 LSB of the ICOB code converter. The data groups processed in the ICOB converter and third-order delta-sigma modulator are summed together to create an up-to-66-level digital code, and then processed by data-weighted averaging (DWA) to reduce the noise produced by element mismatch. The data of up to 66 levels from the DWA is converted to an analog output in the differential-current segment section.

This architecture has overcome the various drawbacks of conventional multibit processing and also achieves excellent dynamic performance.

Analog output

The following table and Figure 31 show the relationship between the digital input code and analog output.

	800000 (–FS)	000000 (BPZ)	7FFFFF (+FS)
I _{OUT} N [mA]	-2.3	-6.2	-10.1
IOUTP [mA]	-10.1	-6.2	-2.3
V _{OUT} N [V]	-1.725	-4.65	-7.575
VOUTP [V]	-7.575	-4.65	-1.725
Vout [V]	-2.821	0	2.821

NOTE: V_{OUT}N is the output of U1, V_{OUT}P is the output of U2, and V_{OUT} is the output of U3 in the measurement circuit of Figure 24.

Figure 31. The Relationship Between Digital Input and Analog Output

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
PCM1794DB	NRND	SSOP	DB	28	47	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	PCM1794	
PCM1794DBG4	NRND	SSOP	DB	28	47	TBD	Call TI	Call TI	-25 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
PCM1794DB	DB	SSOP	28	47	500	10.6	500	9.6
PCM1794DBG4	DB	SSOP	28	47	500	10.6	500	9.6

DB0028A

PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

DB0028A

EXAMPLE BOARD LAYOUT

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DB0028A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated