GaN on SiC HEMT Pulsed Power Transistor 45 W Peak, DC-3500 MHz, 1 ms Pulse, 10% Duty Rev. V2 #### **Features** - · GaN on SiC Depletion Mode Transistor - Common-Source Configuration - Broadband Class AB Operation - Thermally Enhanced Cu/Mo/Cu Package - RoHS* Compliant - +50V Typical Operation - MTTF = 600 years (T_J < 200°C) ### **Application** · Civilian and Military Pulsed Radar ### **Description** The MAGX-000035-045000 is a gold metalized unmatched Gallium Nitride (GaN) on Silicon Carbide (SiC) RF power transistor optimized for civilian and military radar pulsed applications between DC - 3500 MHz. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth and ruggedness over a wide bandwidth for today's demanding application needs. The MAGX-000035-045000 is constructed using a thermally enhanced Cu/Mo/Cu flanged ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation in extreme mismatched load conditions unparalleled with older semiconductor technologies. #### MAGX-000035-045000 ### **Ordering Information** | Part Number | Description | | | |--------------------|------------------------------|--|--| | MAGX-000035-045000 | Bulk Packaging | | | | MAGX-S10035-045000 | Sample Board (2.7 - 3.5 GHz) | | | ^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC. # GaN on SiC HEMT Pulsed Power Transistor 45 W Peak, DC-3500 MHz, 1 ms Pulse, 10% Duty Rev. V2 # Electrical Specifications¹: Freq. = 2700-3500 MHz, T_A = 25°C | Parameter | Test Conditions | Symbol | Min. | Тур. | Max. | Units | |--|---|------------------|------|------|------|-------| | RF Functional Tests: $V_{DD} = 50 \text{ V}$, I_{C} | RF Functional Tests: V _{DD} = 50 V, I _{DQ} = 100 mA, 1 ms Pulse, 10% Duty | | | | | | | Output Power | P _{IN} = 4 W | P _{OUT} | 45 | 54 | - | W | | Power Gain | P _{IN} = 4 W | G _P | 10.5 | 11.3 | - | dB | | Drain Efficiency | P _{IN} = 4 W | η_{D} | 48 | 55 | - | % | | Input Return Loss | P _{IN} = 4 W | IRL | - | -8 | - | dB | | Load Mismatch Stability | P _{IN} = 4 W | VSWR-S | - | 5:1 | - | - | | Load Mismatch Tolerance | P _{IN} = 4 W | VSWR-T | - | 10:1 | - | - | # Electrical Specifications¹: Freq. = 1030-1090 MHz, T_A = 25°C | Parameter | Test Conditions | Symbol | Min. | Тур. | Max. | Units | |---|-------------------------|-------------------|------|------|------|-------| | RF Functional Tests: V _{DD} = 50 V, I _{DQ} = 100 mA, 1 ms Pulse, 10% Duty | | | | | | | | Output Power | P _{IN} = 0.9 W | P _{OUT} | - | 60 | - | W | | Power Gain | P _{IN} = 0.9 W | G₽ | - | 18 | - | dB | | Drain Efficiency | P _{IN} = 0.9 W | η_{D} | - | 64 | - | % | | Input Return Loss | P _{IN} = 0.9 W | IRL | - | -8 | - | dB | | Load Mismatch Stability | P _{IN} = 0.9 W | VSWR-S | - | 5:1 | - | - | | Load Mismatch Tolerance | P _{IN} = 0.9 W | VSWR-T | - | 10:1 | - | - | ## Electrical Characteristics: $T_A = 25$ °C | Parameter | Test Conditions | Symbol | Min. | Тур. | Max. | Units | |------------------------------|---|----------------------|------|------|------|-------| | DC Characteristics | DC Characteristics | | | | | | | Drain-Source Leakage Current | V _{GS} = -8 V, V _{DS} = 175 V | I _{DS} | - | - | 3.0 | mA | | Gate Threshold Voltage | $V_{DS} = 5 \text{ V}, I_{D} = 6 \text{ mA}$ | V _{GS (TH)} | -5 | -3 | -2 | V | | Forward Transconductance | V _{DS} = 5 V, I _D = 1500 mA | G _M | 1.1 | - | - | S | | Dynamic Characteristics | | | | | | | | Input Capacitance | $V_{DS} = 0 \text{ V}, V_{GS} = -8 \text{ V}, F = 1 \text{ MHz}$ | C _{ISS} | - | 13.2 | - | pF | | Output Capacitance | $V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V}, \ F = 1 \text{ MHz}$ | Coss | - | 5.6 | - | pF | | Reverse Transfer Capacitance | $V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V}, \ F = 1 \text{ MHz}$ | C _{RSS} | - | 0.5 | - | pF | # **GaN on SiC HEMT Pulsed Power Transistor** 45 W Peak, DC-3500 MHz, 1 ms Pulse, 10% Duty Rev. V2 ## **Absolute Maximum Ratings**^{2,3,4} | Parameter | Limit | |---|----------------------------------| | Supply Voltage (V _{DD}) (Pulsed) | +65 V | | Supply Voltage (V _{Gg}) | -8 to 0 V | | Supply Current (I_{DMAX}) for pulsed operation at V_{DD} = 50 V | 3 A | | Input Power (P_{IN}) for pulsed operation at V_{DD} = 50 V | P _{IN} (nominal) + 3 dB | | Absolute Max. Junction/Channel Temperature | 200°C | | Power Dissipation at 85 °C for pulsed operation at V _{DD} = 50 V | 48 W | | MTTF (T _J <200°C) | 600 years | | Thermal Resistance, (T_J = 200 °C) V_{DD} = 50 V, I_{DQ} = 100 mA, Pulsed 1 ms, 10% Duty Cycle | 2.3 °C/W | | Operating Temperature | -40 to +95°C | | Storage Temperature | -65 to +150°C | | Mounting Temperature | See solder reflow profile | | ESD Min Charged Device Model (CDM) | 200 V | | ESD Min Human Body Model (HBM) | 550 V | Operation of this device above any one of these parameters may cause permanent damage. Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime. ^{4.} For saturated performance it is recommended that the sum of (3*V_{DD} + abs(V_{GG})) <175 V. GaN on SiC HEMT Pulsed Power Transistor 45 W Peak, DC-3500 MHz, 1 ms Pulse, 10% Duty Rev. V2 ## Test Fixture Assembly (2700-3500 MHz) #### **Test Fixture Impedances** | F (MHz) | Z _{IF} (Ω) | Z _{OF} (Ω) | |---------|---------------------|---------------------| | 2700 | 7.7 - j3.9 | 7.5 + j3.0 | | 2900 | 8.0 - j5.2 | 7.9 + j1.8 | | 3100 | 7.2 - j6.8 | 7.5 + j8.3 | | 3300 | 5.2 - j7.7 | 6.8 + j3.9 | | 3500 | 3.1 - j7.1 | 6.0 + j7.1 | #### **Correct Device Sequencing** #### Turning the device ON - 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V. - 2. Turn on V_{DS} to nominal voltage (+50V). - 3. Increase V_{GS} until the I_{DS} current is reached. - 4. Apply RF power to desired level. #### **Turning the device OFF** - 1. Turn the RF power off. - 2. Decrease V_{GS} down to $V_{\text{P.}}$ - 3. Decrease V_{DS} down to 0 V. - 4. Turn off V_{GS} M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. Contact factory for Gerber file or additional circuit information. Rev. V2 ## **Application Section** ## **Typical Performance Curves** 2700 - 3500 MHz, 1 ms Pulse, 10% Duty, V_{DD} = 50 V, Idq = 100 mA, T_A = 25°C #### **Output Power Vs. Input Power** #### Drain Efficiency Vs. Output Power Rev. V2 # **Application Section** ## **Typical Performance Curves** 2700 - 3500 MHz, 1 ms Pulse, 10% Duty, V_{DD} = 50 V, Idq = 100 mA, T_A = 25°C #### Gain vs. Frequency #### Input Return Loss vs. Frequency Rev. V2 # **Application Section** ### **Typical Performance Curves** 1030 - 1090 MHz, 1 ms Pulse, 10% Duty, V_{DD} = 50 V, Idq = 100 mA, T_A = 25°C #### Output Power vs. Input Power #### Drain Efficiency Vs. Output Power #### Gain vs. Output Power #### Input Return Loss vs. Frequency Rev. V2 ## Outline Drawing MAGX-000035-045000