XPT IGBT Module

MIXA150R1200VA

preliminary

V_{ces}	=	1200 V
I _{C25}	=	250 A
$V_{CE(sat)}$	=	1.7 V

Boost Chopper

Part number

MIXA150R1200VA

E72873

Features / Advantages:

- · Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
 - low EMI
- square RBSOA @ 3x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)
- SONIC[™] diode
- fast and soft reverse recovery
- low operating forward voltage

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode
- power supplies
- · Inductive heating, cookers
- Pumps, Fans

Package: V1-A-Pack

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 17 mm
- Base plate: DCB ceramic
- Reduced weight
 - Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

© 2017 IXYS all rights reserved

MIXA150R1200VA

preliminary

IGBT				Ratings		1	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage		$T_{VJ} = 25^{\circ}C$			1200	V
V _{ges}	max. DC gate voltage					±20	V
V _{GEM}	max. transient gate emitter voltage					±30	V
I _{C25}	collector current		$T_c = 25^{\circ}C$			250	A
I _{C80}			T _c = 80°C			175	A
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			695	W
V _{CE(sat)}	collector emitter saturation voltage	$I_{c} = 150 \text{ A}; V_{GE} = 15 \text{ V}$	$T_{VJ} = 25^{\circ}C$		1.7	2.1	V
			T _{vJ} = 125 °C		1.9		v
V _{GE(th)}	gate emitter threshold voltage	$I_c = 6 \text{ mA}; V_{GE} = V_{CE}$	$T_{VJ} = 25^{\circ}C$	6	6.8	7.5	V
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^{\circ}C$			0.1	mA
			T _{vJ} = 125 °C		0.1		mA
I _{GES}	gate emitter leakage current	$V_{GE} = \pm 20 \text{ V}$				500	nA
Q _{G(on)}	total gate charge	V_{CE} = 600 V; V_{GE} = 15 V; I_{C} =	= 150 A		510		nC
t _{d(on)}	turn-on delay time)			220		ns
t,	current rise time		T 10500		100		ns
t _{d(off)}	turn-off delay time	inductive load	T _{vJ} = 125 °C		400		ns
t _f	current fall time	$V_{CE} = 600 V; I_C = 150 A$ $V_{GE} = \pm 15 V; R_G = 1.2 Ω$			220		ns
E _{on}	turn-on energy per pulse	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 1.2 \Omega$			21.5		mJ
E _{off}	turn-off energy per pulse)			17		mJ
RBSOA	reverse bias safe operating area	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 1.2 \Omega$	T _{vJ} = 125 °C				
I _{CM}		$\int V_{CEmax} = 1200 V$				450	A
SCSOA	short circuit safe operating area	V _{CEmax} = 1200 V					
t _{sc}	short circuit duration	\sim V _{CE} = 900 V; V _{GE} = ±15 V	T _{vJ} = 125 °C			10	μs
I _{sc}	short circuit current	$\int R_{g} = 1.2 \Omega$; non-repetitive			650		A
R _{thJC}	thermal resistance junction to case					0.16	K/W
R _{thCH}	thermal resistance case to heatsink				0.10		K/W
Diode			T 0500			1000	
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			1200	V
F ₂₅	forward current		$T_c = 25^{\circ}C$			190	A
I _{F 80}	former and each to an	1504	$T_c = 80 °C$			130	A
V _F	forward voltage	I _F = 150A	$T_{VJ} = 25^{\circ}C$			2.20	V
			$T_{VJ} = 125^{\circ}C$		1.95		V
I _R	reverse current	$V_{R} = V_{RRM}$	$T_{VJ} = 25^{\circ}C$			0.3	mA
			$T_{VJ} = 125^{\circ}C$		0.8		mA
Q,,,	reverse recovery charge	V _R = 600 V			20		μC
I _{RM}	max. reverse recovery current	 -di _F /dt = 2500 A/us	T _{vJ} = 125°C		175		A
t _{rr}	reverse recovery time	 -di_F/dt = 2500 A/µs I_F = 150A; V_{GE} = 0 V 			350		ns
E _{rec}	reverse recovery energy				10		mJ
R _{thJC}	thermal resistance junction to case					0.28	ļ
R thCH	thermal resistance case to heatsink				0.20		K/W

LIXYS

MIXA150R1200VA

preliminary

Package V1-A-Pack					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
	RMS current	per terminal				100	Α	
T _{vj}	virtual junction temperature			-40		150	°C	
T _{op}	operation temperature			-40		125	°C	
T _{stg}	storage temperature			-40		125	°C	
Weight					37		g	
MD	mounting torque			2		2.5	Nm	
d _{Spp/App}	creepage distance on surface striking distance through air	terminal to terminal	6.0			mm		
d _{Spb/Apb}		terminal to backside	12.0			mm		
V	isolation voltage	t = 1 second		3600			V	
ISOL	t = 1 minute	50/60 Hz, RMS; liso∟ ≤ 1 mA	3000			V		

Data Matrix: Typ (1-19), DC+Prod.Index (20-25), FKT# (26-31) leer (33), lfd.# (33-36)

Part description

- M = Module I = IGBT
- X = XPT IGBT
- A = Gen 1 / std

150 = Current Rating [A]

- R = Boost Chopper 1200 = Reverse Voltage [V]
- VA = V1-A-Pack

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MIXA150R1200VA	MIXA150R1200VA	Blister	24	511595

Equiv	alent Circuits for Simulation	* on die level	$T_{vJ} = 150 \text{ °C}$		
$I \rightarrow V_0$)[IGBT	Diode	
V _{0 max}	threshold voltage		1.1	1.25	V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *		9.2	5.7	mΩ

IXYS reserves the right to change limits, conditions and dimensions.

MIXA150R1200VA

preliminary

Outlines V1-A-Pack

M 2:1

<u>Det</u>ail "Y" M 5:1

1 ±0,2

2 +0,2

Remarks / Bemerkungen:

1. Nominal distance mounting screws on heat sink: 52 mm / Nennabstand Befestigungsschrauben auf Kühlkörper: 52 mm 2. General tolerance / Allgemeintoleranz: DIN ISO 2768 -T1-c

3. Surface treatment of pins: tin plated (Sn) in hot dip / Oberflächenbehandlung der Pins: verzinnt (Sn) im Tauchbad EJOT PT® self-tapping screws (dimension K25) to be recommended for mounting on PCB

selbstschneidende Schraube (Größe K25) empfohlen für die PCB-Montage

Take care on the maximum screw length according to board thickness and the maximum hole depth of 6 mm^L Bei der Wahl der Schraubenlänge die PCB-Dicke und die maximale Lochtiefe von 6mm beachten Recommended mounting torque: 1.5 Nm / Empfohlenes Drehmoment: 1.5 Nm

MIXA150R1200VA

preliminary

IXYS reserves the right to change limits, conditions and dimensions.