NPN High Power Silicon Transistors 2N3902 & 2N5157

Features

- Available in JAN, JANTX, and JANTXV per MIL-PRF-19500/371
- TO-3 (TO-204AA) Package

Maximum Ratings

Ratings	Symbol	2N3902 2N5157		Units
Collector - Emitter Voltage	V _{CEO}	400 500		Vdc
Emitter - Base Voltage	V _{EBO}	5.0 6.0		Vdc
Collector - Base Voltage	V _{CBO}	7.0		Vdc
Base Current	۱ _B	2.0		Adc
Collector Current	۱ _C	3.5		Adc
Total Power Dissipation @ $T_A = +25 \text{ °C} (1)$ @ $T_A = +25 \text{ °C} (2)$	PT	5.0 100		W W
Operating & Storage Temperature Range	T _j , T _{stg}	-65 to +200		°C

Thermal Characteristics

Characteristics	Symbol	Maximum	Units
Thermal Resistance, Junction-to-Case	R _{0JC}	1.25	°C/W

1) Derate linearly @ 28.57 mW/°C for $T_A > +25^{\circ}C$ 2) Derate linearly @ 0.8 mW/°C for $T_C > +75^{\circ}C$

Electrical Characteristics

OFF Characteristics	Symbol	Mimimum	Maximum	Units
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	ICEO		250 250	μAdc
Collector - Emitter Cutoff Current $V_{BE} = 1.5 \text{ Vdc}, V_{CE} = 700 \text{ Vdc}$	ICEX		500	μAdc
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	IEBO		200 200	μAdc
OFF Characteristics				
Base - Emitter Saturation Voltage $I_C = 1.0 \text{ Adc}, I_B = 0.1 \text{ Vdc}$ $I_C = 3.5 \text{ Adc}, I_B = 0.7 \text{ Vdc}$	V _{BE(sat)}		1.5 2.0	Vdc
Collector - Emitter Saturation Voltage $I_C = 1.0 \text{ Adc}, I_B = 0.1 \text{ Adc}$ $I_C = 3.5 \text{ Adc}, I_B = 0.7 \text{ Adc}$	V _{CE(sat)}		0.8 2.5	Vdc

Electrical Characteristics -con't

	(2) $(a a a b)$				
	eristics (2) (con't)	Symbol	Minimum	Maximum	Unit
	nt Transfer Ratio c, V _{CE} = 5.0 Vdc		25		
-	c, $V_{CF} = 5.0 \text{ Vdc}$	Hee	25 30	90	
Ũ	c, $V_{CE} = 5.0 \text{ Vdc}$	H _{FE}	10	50	
-	c, $V_{CF} = 5.0 \text{ Vdc}$		5		
	01		0		
$l_{\rm C} = 100 \rm{m}$	tter Sustaining Voltage Adc 2N3902	Voru		1.0	Vdc
	2N5157	V _{CE(sat})		2.5	vue
DYNAMIC C	haracteristic				
	nort-Circuit Forward Current Transfer Ratio				
	c, V_{CF} = 10 Vdc, f = 1 MHz	h _{fe}	2.5	25	
Output Capaci	tance				
	$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		500	pF
Switching Ch	naracteristic				
Turn-On Time					
	/dc, $I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.1 \text{ Adc}$	ton		0.8	μs
Tum-Off Time V _{CC} =125 V	/dc, $I_{C} = 1.0$ Adc, $I_{B1} = 0.1$ Adc, - $I_{B2} = 0.50$ Adc	toff		1.7	μs
SAFE OPERA	TING AREA				
DC Tests:	$T_{C} = +25$ °C, 1 Cycle, t = 1.0 s (See Figure 3 of M	AIL-PRF-1950	0/371)		
Test 1:	$V_{CE} = 28.6$ Vdc, $I_{C} = 3.5$ Adc				
Test 2:	$V_{CE} = 70$ Vdc, $I_{C} = 1.43$ Adc				
TEST 3:	$V_{CE} = 325 \text{ Vdc}, I_C = 55 \text{ mAdc}$ 2N3902				
	$V_{CE} = 400 \text{ Vdc}, I_{C} = 35 \text{ mAdc}$ 2N5157				
Switching Test					
	ion C (unclamped inductive load) duty cycle \leq 10%; R _S = 0.1 Ω (See Figure 4 of MIL-F	PRF-19500/3	71)		
Test 1:	t_p = approximately 3 ms (vary to obtain I _C), $R_{BB1} = 20 \Omega$, $V_{BB1} = 10$ Vdc; $R_{BB2} = 3 k\Omega$,				
	$V_{BB2} = 1.5$ Vdc, $V_{CC} = 50$ Vdc, $I_C = 3.5$ Adc, L=	_			
Test 2:	$t_{\text{BB2}} = 10$ Vdc, $V_{\text{C}} = 30$ Vdc, $I_{\text{C}} = 0.5$ Adc, $L = 00$ mm, $K = 0.32$, $K_{\text{L}} \leq 14.32$ $t_{\text{P}} = \text{approximately 3 ms (vary to obtain I_{\text{C}}), R_{\text{BB1}} = 100 \Omega$, $V_{\text{BB1}} = 10$ Vdc; $R_{\text{BB2}} = 3$ k Ω ,				
	$V_{BB2} = 1.5 \text{ Vdc}, I_C = 0.6 \text{ Adc}, V_{CC} = 50 \text{ Vdc}, L = 0.6 \text{ Adc}$			002	,
Switching Test	S:	,	, L-		
	ion (clamped inductive load) duty cycle $\leq 10\%$ (See Figure 5 of MIL-PRF-19500/3	571)			
Test 1:	t_p = approximately 30 ms (vary to obtain I _C), R _S =		₁ = 20 Ω, V _D	$R_1 = 10$ Vdc:	
	$R_{BB2} = 100 \Omega, V_{BB2} = 1.5 Vdc, V_{CC} = 50 Vdc, I$				0Ω
	(A suitable clamping circuit or diode can be used	-		- / ···L	
	Clamp Voltage = $400 + 0$, -5 Vdc 2N3902				
	Clamp Voltage = $500 + 0$, -5 Vdc 2N5157				
	(Clamped voltage must be reached)				

(2) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

Outline Drawing

Aeroflex / Metelics, Inc.

975 Stewart Drive, Sunnyvale, CA 94085 Tel: (408) 737-8181 Fax: (408) 733-7645

Sales: 888-641-SEMI (7364)

Hi-Rel Components

9 Hampshire Street, Lawrence, MA 01840 Tel: (603) 641-3800 Fax: (978) 683-3264

www.aeroflex.com/metelics-hirelcomponents

Aeroflex / Metelics, Inc. reserves the right to make changes to any products and services herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license

under any patent rights, copyrights, trademark rights, or any other of the intellectual rights

www.aeroflex.com/metelics

54 Grenier Field Road, Londonderry, NH 03053 Tel: (603) 641-3800 Fax: (603)-641-3500

metelics-sales@aeroflex.com

ISO 9001: 2008 certified companies

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

Copyright 2012 Aeroflex / Metelics. All rights reserved.

of Aeroflex or of third parties.