

rfmd.com

SGL-0263(Z)

1400 MHz to 2500 MHz SILICON GERMANIUM CASCADABLE LOW NOISE AMPLIFIER

RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: SOT-363

Product Description

The SGL-0263 is a high performance SiGe HBT MMIC low noise amplifier featuring 1 micron emitters with F_T up to 50 GHz. This device has an internal temperature compensation circuit permitting operation directly from supply voltages as low as 2.5V. The SGL-0263 has been characterized at V_D =3V for low power and 4V for medium power applications. Only two DC-blocking capacitors, 2 input matching components, a bias resistor, and an optional RF choke are required for operation from 1400 MHz to 2500 MHz.

Features

- High Input/Output Intercept
- Low Noise Figure: 1.3dB typ. at 1900 MHz
- Low Power Consumption
- Single Voltage Supply Operation
- Internal Temperature Compensation

Applications

- Receivers, GPS, RFID
- Cellular, Fixed Wireless, Land Mobile

Parameter	Specification (V _S =3V)			Specification (V _S =4V)			Unit	Condition
Farameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
Small Signal Gain	12.1	13.4	14.7		13.8		dB	1900MHz
		12.5			12.9		dB	2100MHz
		10.8			11.3		dB	2400MHz
Output Power at 1dB Compres- sion	3.5	5.5			11.4		dBm	1900MHz
		6.8			12.3		dBm	2100MHz
		7.9			12.8		dBm	2400MHz
Input Third Order Intercept Point Tone Spacing=1MHz, P _{OUT} per tone=-13dBm	7.5	9.5			15.1		dBm	1900MHz
		13.5			16.8		dBm	2100MHz
		15.5			18.4		dBm	2400MHz
Noise Figure		1.3	1.7		1.9		dB	1900MHz, Z _S =50Ω
		1.5			2.1		dB	2100MHz, Z _S =50Ω
		2.0			2.8		dB	2400MHz, Z _S =50Ω
Input Return Loss	10.0	13.3			21.9		dB	1900 MHz
Output Return Loss	10.0	12.9			17.4		dB	1900MHz
Reverse Isolation		20.7			21.0		dB	1900 MHz
Device Current	9.0	12.5	15.0		23.0		mA	
Thermal Resistance (Junction to Lead)		255					°C/W	

Test Conditions: 1400MHz to 2500MHz Application Circuit, T_{LEAD}=25 °C, Z_0=Z_L=50\Omega

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^M TOTAL RADIO^M and UttimateBlue^M are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices. Inc.

SGL-0263(Z)

Absolute Maximum Ratings

	,	
Parameter	Rating	Unit
Max Device Current (I _D)	45	mA
Max Device Voltage (V _D)	5	V
Max RF Input Power	+10	dBm
Max Junction Temp (T _J)	+150	°C
Operating Temp Range (T _L)	-40 to +85	°C
Max Storage Temp	+150	°C
ESD	1A	Class
MSL	1	

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

 $I_D V_D < (T_J - T_L) / R_{TH}$, j-l

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical RF Performance Over Lead Temperature at 3 V and 4 V -- 1400-2500 MHz Evaluation Board

SGL-0263(Z)

SGL-0263(Z)

Pin	Function	Description	
1	N/C	No electrical connection. Provide an isolated (ungrounded) solder pad for mounting integrity.	
3	RF IN	RF input pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.	
4	DC BIAS	Voltage supply connection. Bypass with suitable capacitors.	
2, 5	GND	Connection to ground. Provide via holes as close to ground leads as possible to reduce ground inductance and schieve optimum RF performance.	
6	RF OUT/BIAS	RF output and voltage supply. DC voltage is present on this pin, therefore a DC-blocking capacitor is necessary for proper operation.	

Suggested Pad Layout

Notes:

1. Provide a ground pad area under device pins 2 & 5 with plated via holes to the PCB ground plane.

RFMD

rfmd.com

2. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.

Package Drawing

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

1400 MHz to 2500 MHz Application Circuit

 $R_{\rm pc}$ may be introduced as a voltage dropping resistor for use with supply voltages greater than the desired device bias voltage.

Evaluation Board Layout

Alternate Marking with Trace Code Only

Ordering Information

Part Number	Description	Reel Size	Devices/Reel	
SGL-0263	Tn-Lead	7"	3000	
SGL-0263Z	RoHS Compliant	7"	3000	
SGL-0263Z-EVB1	SGL-0263Z-EVB1 1400-2500 MHz Application Circuit		N/A	