8A Dual-Phase Switched-Capacitor Converter

General Description

The MAX77932C is a standalone, dual-phase switchedcapacitor converter with integrated power switches that delivers 8A output current and divides the input voltage by two. The IC is suitable for applications that utilize 2S Li+ batteries while powering circuitry that operates at 1Sequivalent voltage. It is also suitable for applications migrating from 1S to 2S battery configurations. The IC simplifies this migration by converting the 2S battery voltage to 1S-equivalent output and allows designers to preserve the existing downstream 1S power architecture.

The inductorless switched-capacitor converter topology of the IC shrinks the overall footprint and reduces the maximum height of the circuit. Its high switching frequency, up to 1.5MHz, reduces the size and number of capacitors required, further minimizing the solution footprint. The IC ensures safe operation with integrated overvoltage, undervoltage, overcurrent, and thermal protection, and also minimizes EMI with built-in frequency dithering. In addition to the small solution size, lower EMI, and protection features, the ICs class-leading peak efficiency of 98.5% simplifies thermal design and makes it ideal for consumer, medical, and industrial applications.

The IC features an I²C compatible, 2-wire serial interface consisting of a bidirectional serial data line (SDA) and a serial clock line (SCL). The IC supports SCL clock rates up to 3.4MHz. The converter parameters such as OCP, OVLO or UVLO thresholds, switching frequency, soft-start current, and duration are easily adjustable through the I²C interface. The IC consumes a low quiescent current of 30µA when operating and 4µA in shutdown. The IC is available in a tiny, lead-free 0.4mm pitch, 2.4mm x 2.8mm 42-pin wafer-level package (WLP).

Applications

- Smartphones and Tablets
- Ultrabook Computers
- Chromebooks
- DSLR and Mirrorless Cameras
- Power Banks
- 2S Li+ Battery Applications
- Smartphone Direct Charging
- Portable Printers
- Portable Gaming Devices
- Mobile Point-of-Sale (mPOS) Devices
- Two-Way Radios

Benefits and Features

- 8A Switched Capacitor Converter
- 2S to 1S Battery Voltage Conversion (V_{OUT} = V_{IN}/2)
- Integrated Power Switches
- Low I_Q: 30μA Operating, 4μA Shutdown
- Soft-Start with Programmable Current and Timeout
- Programmable Input Overvoltage Lockout
- Programmable Output Overvoltage Lockout
- Programmable Overcurrent Protection
- Programmable Switching Frequency 0.25MHz to 1.5MHz
- Thermal Alarm and Protection
- Chip Enable Input
- Power Good Indicator Output
- Frequency Dithering
- I²C Interface with Interrupt

Ordering Information appears at end of data sheet.

Simplified Block Diagram

8A Dual-Phase Switched-Capacitor Converter

TABLE OF CONTENTS

General Description
Applications
Benefits and Features
Simplified Block Diagram 1
Absolute Maximum Ratings
Package Information
WLP
Electrical Characteristics
Typical Operating Characteristics
Pin Configuration
Pin Description
Functional Diagrams
Block Diagram
Detailed Description
Switched-Capacitor Converter (SCC)
Enable or Disable the Device by EN
Enable or Disable the Device by EN and V _{IO} 17
Enable by I ² C
Startup and Soft-Start
PGOOD
Automatic Mode (Automatic-Skip Mode) and Fixed-Frequency Mode
Undervoltage Lockout
Frequency Dithering
Overcurrent Protections
High Current Alarm. 20
Thermal Alarms and Fault 20
Input Overvoltage Protection (IOVP)
State Diagram
I ² C Interface Description
Register Map
Device Registers
Register Details
Applications Information
Capacitor Selection
Layout Guide
Typical Application Circuits
System Block Diagram A
System Block Diagram B

TABLE OF CONTENTS (CONTINUED)

Ordering Information	37
Revision History	38

8A Dual-Phase Switched-Capacitor Converter

LIST OF FIGURES

Figure 1. Enable Timing Waveform Without VIO 1	6
Figure 2. Enable Timing Waveform with VIO Hold 1	7
Figure 3. Enable Timing Waveform with I ² C Command	8
Figure 4. PGOOD Filter Example Circuit	8
Figure 5. SKIP Mode Operation Diagram 1	9
Figure 6. Device State Diagram	21
Figure 7. I ² C Bit Transfer	22
Figure 8. I ² C Start and Stop	22
Figure 9. System Configurations	23
Figure 10. I ² C Acknowledge	23
Figure 11. I ² C Master Transmits	24
Figure 12. I ² C Master Reads After Setting Register Address 2	24
Figure 13. I ² C Master Block Read	24
Figure 14. Layout Guide	35

8A Dual-Phase Switched-Capacitor Converter

LIST OF TABLES

Table 1. Suggested Input Capacitors	34
Table 2. Suggested Flying Capacitors	34
Table 3. Suggested Output Capacitors	34
Table 4. HVDD/AVDD Output Capacitors	34
Table 5. Bootstrap Output Capacitors	34

8A Dual-Phase Switched-Capacitor Converter

Absolute Maximum Ratings

IN to PGND	-0.3V to +16V	IRQB to DGND0.3V to +6V
BSTxP to PGND		VIO to AGND0.3V to +6V
BSTxN to PGND		SDA to DGND0.3V to V _{VIO} + 0.3V
BSTxP to CFxP	0.3V to +2V	SCL to DGND0.3V to V _{VIO} + 0.3V
BSTxN to CFxN		PGOOD to AGND0.3V to +2.0V
CFxP to PGND	0.3V to V _{OUT} + 6V	OUT Continuous RMS Current8A
CFxN to PGND	0.3V to +6V	Continuous Power Dissipation (Multilayer Board) ($T_A = +70^{\circ}C$,
OUT to PGND		derate 22.67mW/°C above +70°C)
PGND to AGND	0.3V to +0.3V	Operating Temperature Range40°C to +85°C
HVDD to AGND	0.3V to V _{OUT} + 2V	Junction Temperature+150°C
AVDD to AGND	0.3V to +2V	Storage Temperature Range65°C to +150°C
EN to AGND		Soldering Temperature (reflow)+260°C
NC to AGND	0.3V to +2V	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

WLP

Package Code	W422D2+ 1			
Outline Number	<u>21-100293</u>			
Land Pattern Number	Refer to Application Note 1891			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ_{JA})	44.11°C/W			

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Electrical Characteristics

 $(V_{IN} = +7.6V, C_{FLY}/phase = 2x47\mu F, V_{VIO} = +1.8V, f_{SW} = 0.5MHz, T_A = -40^{\circ}C$ to +85°C, limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GLOBAL INPUT SUPPLY	(1				1
Shutdown Supply Current	ISHDN	EN = LOW, V _{IN} = 8.4V, V _{VIO} = 0V, T _A = +25°C		4	15	μA
Quiescent Current 1	I _{Q1}	V _{IN} = 8.4V, automatic mode		30		μA
Shutdown VIO Current	I _{SHDN_VIO}			0		μA
OUT Leakage Current	ILK_OUT	V _{OUT} = 4.2V, AD_EN = 0		1.4		μA
INPUT UNDERVOLTAGE	LOCKOUT					
Lindonvoltago Lookout	V _{UVLO_R}	Rising (when $V_{UVLO_F} = 4.1V$)		4.9		
Undervoltage-Lockout Threshold	V _{UVLO_F}	Falling (OTP options: 4.1V, 4.3V, 4.5V, 4.7V)	3.977	4.1	4.223	V
THERMAL ALARMS AND	SHUTDOWN		•			
Thermal Alarm at +100°C	T _{INT100}	T _J rising, +15°C hysteresis		100		°C
Thermal Alarm at +120°C	T _{INT120}	T _J rising, +15°C hysteresis		120		°C
ENABLE INPUTS AND L	OGIC					
EN Debounce Time	t _{EN}	EN_DEB[2:0] = 010		2		ms
Input LOW Level	VIL				0.4	V
Input HIGH Level	VIH		1.1			V
Input Leakage Current	I _{LK}			0.1		μA
Output High Leakage IRQB		V _{IRQB} = 5.5V, T _A = +85°C		0.1		μA
SWITCHED-CAPACITOR	CONVERTER					
Input Operating Voltage Range	V _{IN}		V _{UVLO} _ F		V _{IOVP}	V
Input OVP	V _{IOVP}	I ² C programmable 9.5V, 10.0V, 10.5V, 11.0V; default 9.5V		9.5		V
Output OVP	V _{OOVP}	Default = 5V		5		V
OCP Threshold	I _{OCP}	I ² C programmable from 4.2A to 11.6A with 200mA step; default 8.8A		8.8		А
	1	I _{OCP} = 8.8A	-10		+10	0/
OCP Accuracy	IOCP_ACC	In the entire I _{OCP} range	-16		+16	%
OCP2 Offset	I _{OCP2}	I ² C programmable from 90mV to 240mV with 10mV step; default 240mV		240		mV
Soft-Start Current	I _{SS}	I ² C programmable options: 145mA, 290mA, 435mA, 580mA; default 580mA		580		mA
Soft-Start Current Accuracy	ISS_ACC	I _{SS} = 290mA	-30		+30	%
Light Load Efficiency 1	ካLIGHT1	I _{OUT} = 1mA, V _{IN} = 7.4V		92		%
Light Load Efficiency 2	η _{LIGHT2}	I _{OUT} = 30mA, V _{IN} = 7.4V		97		%

Electrical Characteristics (continued)

 $(V_{IN} = +7.6V, C_{FLY}/phase = 2x47\mu F, V_{VIO} = +1.8V, f_{SW} = 0.5MHz, T_A = -40^{\circ}C$ to +85°C, limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Peak Efficiency	η _{ΡΕΑΚ}	V _{IN} = 7.4V, f _{SW} = 0.25MHz		98.5		%
Heavy Load Efficiency	η _{ΗΕΑVΥ}	I _{OUT} = 8A, V _{IN} = 7.4V		95		%
S1, S5 NMOS ON Resistance	R _{DSON}	IN to CFxP		11		mΩ
S2, S6 NMOS ON Resistance	R _{DSON}	OUT to CFxN		13		mΩ
S3, S7 NMOS ON Resistance	R _{DSON}	CFxP to OUT		13		mΩ
S4, S8 NMOS ON Resistance	R _{DSON}	CFxN to PGND		13		mΩ
Switching Frequency	f _{SW}	I ² C programmable options: 0.25MHz, 0.5MHz, 0.75MHz, 1MHz, 1.2MHz, 1.5MHz; when 0.5MHz is selected	0.47	0.5	0.53	MHz
Switching Frequency Dither Rate	fsw_dthr	I ² C programmable options: OFF, 3%, 6%, 12%; default 3%	-3		+3	%
Dead Time	tddt	S1 off to S3 on, S3 off to S1 on S2 off to S4 on, S4 off to S2 on S5 off to S7 on, S7 off to S5 on S6 off to S8 on, S8 off to S6 on		10		ns
SKIP Mode Threshold	I _{SKIP}	Enter to SKIP mode, 0.5A hysteresis		1.1		A
OUT Active Discharge Resistance	R _{AD_OUT}	Enable output active discharge; disable output		1k	1.5k	Ω
LINEAR REGULATORS						
AVDD Linear Regulator Output Voltage	V _{AVDD}		1.71	1.8	1.89	V
HVDD Linear Regulator Output Voltage				V _{OUT} + 1.8		V
INTERNAL PULLUP/DOV	VN RESISTANC	E				
EN Pulldown Resistance	R _{PUPD}	Pulled down to AGND, when internal pulldown enabled		1.5		MΩ
SDA AND SCL I/O STAG	E					
SCL, SDA Input Low Level		T _A = +25°C			0.3 x V _{VIO}	V
SCL, SDA Input High Level		T _A = +25°C	0.7 x V _{VIO}			V
SCL, SDA Input Hysteresis		T _A = +25°C		0.05 x V _{VIO}		V
SCL, SDA Logic Input Current		V _{SCL} = V _{SDA} = V _{VIO} = 1.8V	-10		+10	μA
SCL, SDA Input capacitance				10		pF

Electrical Characteristics (continued)

 $(V_{IN} = +7.6V, C_{FLY}/phase = 2x47\mu F, V_{VIO} = +1.8V, f_{SW} = 0.5MHz, T_A = -40^{\circ}C$ to +85°C, limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SDA Output Low Voltage		Sinking 20mA			0.4	V
I ² C COMPATIBLE INTER	FACE TIMING I	FOR STANDARD, FAST, AND FAST-MODE	PLUS			
Clock Frequency	f _{SCL}				1000	kHz
Hold Time (Repeated) START Condition	^t HD;STA		0.26			μs
CLK Low Period	tLOW		0.5			μs
CLK High Period	tніgн		0.26			μs
Setup Time Repeated START Condition	^t SU;STA		0.26			μs
DATA Hold Time	t _{HD:DAT}		0			μs
DATA Valid Time	t _{VD:DAT}				0.45	μs
DATA Valid Acknowledge Time	t _{VD:ACK}				0.45	μs
DATA Setup time	t _{SU;DAT}		50			ns
Setup Time for STOP Condition	tsu;sto		0.26			μs
Bus-Free Time Between STOP and START	t _{BUF}		0.5			μs
Pulse Width of Spikes that Must be Suppressed by the Input Filter				50		ns
I ² C COMPATIBLE INTER	FACE TIMING I	FOR HS-MODE (CB = 100pF)				
Clock Frequency	f _{SCL}				3.4	MHz
Setup Time Repeated START Condition	^t SU;STA		160			ns
Hold Time (Repeated) START Condition	t _{HD;STA}		160			ns
CLK Low Period	t _{LOW}		160			ns
CLK High Period	thigh		60			ns
DATA Setup time	t _{SU;DAT}		10			ns
DATA Hold Time	t _{HD:DAT}		0			ns
Setup Time for STOP Condition	tsu;sto		160			ns
Pulse Width of Spikes that Must be Suppressed by the Input Filter				10		ns
I ² C COMPATIBLE INTER	FACE TIMING I	FOR HS-MODE (CB = 400pF)				
Clock Frequency	f _{SCL}				1.7	MHz

8A Dual-Phase Switched-Capacitor Converter

Electrical Characteristics (continued)

 $(V_{IN} = +7.6V, C_{FLY}/phase = 2x47\mu F, V_{VIO} = +1.8V, f_{SW} = 0.5MHz, T_A = -40^{\circ}C$ to +85°C, limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Setup Time Repeated START Condition	^t SU;STA		160			ns
Hold Time (Repeated) START Condition	^t HD;STA		160			ns
CLK Low Period	t _{LOW}		320			ns
CLK High Period	thigh		120			ns
DATA Setup time	^t SU;DAT		10			ns
DATA Hold Time	thd:dat		0			ns
Setup Time for STOP Condition	tsu;sto		160			ns
Pulse Width of Spikes that Must be Suppressed by the Input Filter				10		ns

Typical Operating Characteristics

 $(V_{IN} = +7.4V, V_{VIO} = +1.8V, C_{FLY}/phase = 2x47\mu$ F; $F_{SW} = 0.5$ MHz, $T_A = +25^{\circ}$ C, unless otherwise noted.)

8A Dual-Phase Switched-Capacitor Converter

Typical Operating Characteristics (continued)

 $(V_{IN} = +7.4V, V_{VIO} = +1.8V, C_{FLY}/phase = 2x47\mu$ F; $F_{SW} = 0.5$ MHz, $T_A = +25^{\circ}$ C, unless otherwise noted.)

1ms/div

8A Dual-Phase Switched-Capacitor Converter

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	TYPE
B7, C7, D7, E7	IN	The Power Input for the IC. Connect a $4.7\mu F$ capacitor between IN and PGND.	Power
B5	BST1P	Supply Input for Internal Gate Driver. Connect a 0.047µF bootstrap capacitor between BST1P and CF1P.	Analog
B2	BST1N	Supply Input for Internal Gate Driver. Connect a 0.047µF bootstrap capacitor between BST1N and CF1N.	Analog
E5	BST2P	Supply Input for Internal Gate Driver. Connect a 0.047µF bootstrap capacitor between BST2P and CF2P.	Analog
E2	BST2N	Supply Input for Internal Gate Driver. Connect a 0.047µF bootstrap capacitor between BST2N and CF2N.	Analog
A6, A7, B6	CF1P	Flying Capacitor Positive Terminal. Connecting 2 x 47µF capacitors between CF1P and CF1N is suggested.	Power
A2, A3, B3	CF1N	Flying Capacitor Negative Terminal	Power

Pin Description (continued)

PIN	NAME	FUNCTION	TYPE
E6, F6, F7	CF2P	Flying Capacitor Positive Terminal. Connecting $2 \times 47 \mu F$ capacitors between CF2P and CF2N is suggested.	Power
E3, F2, F3	CF2N	Flying Capacitor Negative Terminal	Power
A4, A5, B4, C4, D4, E4, F4, F5	OUT	Switched Capacitor Converter Output. Connect 2 x $10\mu F$ capacitors between OUT and PGND.	Power
A1, B1, E1, F1	PGND	Power Ground Pin	Power
C1	AVDD	1.8V Linear Regulator Output. Bypass to PGND with a 1μ F capacitor. Do not apply an external load.	Analog
C6	HVDD	Linear Regulator Outputs V_{OUT} + 1.8V. Bypass to OUT with a 1µF capacitor. Do not apply an external load.	Analog
D1	AGND	Analog Ground Pin	Analog
D6	PGOOD	Power Good Indicator Output	Digital Output
C5	EN	Active-High Chip Enable Input	Digital Input
C3	NC	Do Not Connect	
D5	IRQB	Interrupt Output. Connect a $100k\Omega$ pullup resistor between IRQB and VIO.	Digital Output
C2	SDA	I ² C Interface Data I/O	Digital I/O
D2	SCL	I ² C Interface Clock Input	Digital Input
D3	VIO	I/O Supply Voltage Input. Bypass to AGND with a 1µF capacitor.	Power

Functional Diagrams

Block Diagram

Detailed Description

In modern electronic devices, system level current consumption is ever increasing to fulfill the needs of more powerhungry end applications. This generally requires larger battery energy storage and thus higher power charging to keep the same charging time. For many low-voltage applications, it is sometimes advantageous to configure the battery source as a 2-series battery and use a highly-efficient 2-to-1 voltage converter to supply the system. With the same charging current, it is much faster to charge 2-series batteries than 2-parallel batteries because of the higher charger voltage. On the system side, the 2-to-1 converter acts as a current-doubler, thus delivering much higher current to the system. In this configuration, the system uses the 2-series battery as if it is 2-parallel, with the benefit of charging much faster. The switched-capacitor converter fits this requirement well by providing ultra-high DC-DC conversion efficiency and occupying less PCB design area.

Switched-Capacitor Converter (SCC)

The SCC is a type of DC-DC converter that only utilizes capacitors as the energy storage device. Compared to the buck converter which utilizes inductors, the switched-capacitor converter topology achieves higher efficiency with smaller solution size and lower cost.

The IC is an interleaved, dual-phase switched-capacitor converter. It generates an output voltage of $V_{IN}/2$ and is capable of supplying up to 8A output current. Each phase of the interleaved SCC operates with a fixed 50% duty cycle and reduces the ripple on the output voltage and current.

Enable or Disable the Device by EN

The IC can be enabled or disabled by digitally controlling the EN pin when VIO is kept low. The EN pin is active-high. Once EN is pulled high for longer than the EN debounce time, the IC initiates the soft-start operation. If the soft-start operation is successful, it is followed by the SCC fully-active state. The SCC turns off immediately when EN is low. To always enable the IC, tie the EN pin to VIN.

Figure 1. Enable Timing Waveform Without VIO

Enable or Disable the Device by EN and $\ensuremath{\mathsf{V}_{\mathsf{IO}}}$

The IC can be kept enabled by holding valid V_{IO}, and EN can be configured as push-button operation.

Once the EN pin is pulled high for longer than the EN debounce time, the IC initiates the soft-start followed by the SCC fully active. If V_{IO} is asserted and valid ($V_{IO} > V_{IO}$ _OK threshold) IC before EN is released (means goes HIGH), then this holds the output. If EN goes LOW before V_{IO} is valid, the IC disables the output. After the output is on hold, the SCC can be turned off by turning off the V_{IO} regulator in the application system. The SCC turns off after OFF_DEB has passed after the moment V_{IO} goes low. Usually, V_{IO} is system IO voltage rail so this feature enables the device with a push-button easier and disables when the system is going to shutdown.

Figure 2. Enable Timing Waveform with VIO Hold

Enable by I²C

Some applications can supply VIO before the IC output is enabled. In this case, the host microcontroller can enable the IC output by writing SCC_EN register to 0x1 through I²C. The host can disable the output by writing the SCC_EN register to 0x0 through I²C.

Figure 3. Enable Timing Waveform with I²C Command

Startup and Soft-Start

During the device startup, the flying capacitors (C_{FLY}) are connected in parallel to the output capacitor. An internal current source charges the capacitors up to the voltage close to the target $V_{IN}/2$ in normal operation. The soft-start current can be configured through I²C.

If the output voltage has not reached the voltage close to $V_{IN}/2$ within 120ms (default soft-start timeout setting), the IC generates the interrupt of SS_FLT_INT (Soft-Start Timer Fault Interrupt) and it returns to the STANDBY state. If the soft-start is successful, the SCC enters the normal operation.

PGOOD

PGOOD is a power good indicator output. After soft-start, the PGOOD pin outputs 1.8V. PGOOD remains at 1.8V as long as SCC is operating normally. If the PGOOD feature is used, an external RC filter with $1k\Omega$ and 10nF is required to add at the PGOOD pin.

Figure 4. PGOOD Filter Example Circuit

Automatic Mode (Automatic-Skip Mode) and Fixed-Frequency Mode

When the IC enters normal operation, the SCC operates with 50% duty cycle. The switching frequency can be configured through the SCC_CFG2 register.

In the fixed-frequency mode, the SCC always operates, which provides unregulated $V_{IN}/2$ voltage at the OUT pin. When load current is low, the switcher consumption becomes significant enough to affect efficiency. To save power, the IC can enter the automatic-skip mode to only turn on the switcher when OUT voltage drops below the SKIP operation threshold.

To enable the IC to automatically enter SKIP mode when OUT load current is low, configure as SCC_CFG1.FIX_FREQ = 0. This is the default setting.

To configure the IC to always operate in fixed-frequency mode, configure as SCC_CFG1.FIX_FREQ = 1.

Operation detail for the SKIP mode is illustrated in Figure 5. When the output voltage is higher than REF_DCM, the IC enters into SKIP mode. In SKIP mode, the IC only switches when the output voltage drops below REF_SKIP. The IC stops switching when output voltage reaches the REF_SKIP_H threshold. When a heavy load is applied and the output falls down to the REF_CCM threshold, the IC enters the fixed-frequency mode. By doing it this way, it saves power in light loads and eventually provides higher efficiency at the entire load range as well as still maintaining the output close to $V_{IN}/2$.

Figure 5. SKIP Mode Operation Diagram

Undervoltage Lockout

When V_{IN} falls below V_{UVLO_F} (typ 4.1V, OTP option), the IC enters into the shutdown state and UVLO forces the IC to a dormant state until V_{IN} rises above the V_{UVLO_R} threshold which allows the IC to be securely functional. V_{UVLO_F} is programmable through I²C or OTP.

Frequency Dithering

Switched DC-DC converter operation can produce EMI emissions with a dominant peak frequency. Frequency dithering can reduce the peak emission of the converter by spreading the emission over a frequency band. The IC includes a frequency dithering feature applicable to all synthesized frequencies (from 0.25MHz up to 1.5MHz). Dithering can be disabled or enabled with different programmable spreads (3%, 6%, 12%).

Overcurrent Protections

During operation, the IC provides two layers of overcurrent protection. The output current is monitored for detecting overcurrent condition OCP1. The output voltage is sensed for faster short-circuit protection OCP2.

The IC protects and disables the output if the output current \geq OCP1 or the output voltage \leq V_{IN}/2 - OCP2.

OCP1 can be programmed from 4.2A to 9.6A in steps of 200mA, or additionally to 10.0A, 10.4A, 11.0A, or 11.6A through I^2C . OCP2 is programmable from 110mV to 240mV in steps of 10mV, or additionally set to OFF or 310mV through I^2C .

High Current Alarm

When I_{OUT} reaches 90% of I_{OCP} (progammable to 80% or 90% through I²C), OC_ALM_INT interrupt bit and OC_ALM status bits are set.

When I_{OUT} decreases below 85% of the level of I_{OCP} , the OC_ALM status bit resets.

Thermal Alarms and Fault

The IC has a thermal protection circuit which monitors temperature on the die. If the die temperature exceeds $+155^{\circ}$ C, the IC enters the thermal shutdown state, and the T_SHDN_INT sets. After the thermal shutdown, if the die temperature reduces by $+15^{\circ}$ C, the thermal shutdown is deasserted and the user can re-enable the SCC again.

In addition to the +155°C threshold, there are additional comparators which trip at +100°C and +120°C. T_ALM1 and T_ALM2 interrupts are generated respectively.

Input Overvoltage Protection (IOVP)

When V_{IN} is higher than V_{IOVP} (I²C programmable to 9.5V, 10.0V, 10.5V, or 11.0V), the switched-capacitor converter disables output and enters the standby mode.

State Diagram

Figure 6 shows the operation states and conditions to trigger state transitions.

Figure 6. Device State Diagram

I²C Interface Description

Main I²C Interface

The IC acts as a Slave Transmitter/Receiver and has the following slave addresses:

Slave Address (7 bit) 110 1000

Slave Address (Write) 0xD0 1101 0000

Slave Address (Read) 0xD1 1101 0001

I²C Bit Transfer

One data bit is transferred for each clock pulse. The data on SDA must remain stable during the high portion of the clock pulse as changes in data during this time are interpreted as a control signal.

Figure 7. I²C Bit Transfer

I²C Start And Stop Conditions

Both SDA and SCL remain High when the bus is not busy. The Start (S) condition is defined as a high-to-low transition of the SDA while the SCL is high. The Stop (P) condition is defined as a low-to-high transition of the SDA while the SCL is high.

Figure 8. I²C Start and Stop

I²C System Configuration

A device on the I²C bus that generates a "message" is called a "Transmitter" and a device that receives the message is a "Receiver". The device that controls the message is the "Master" and the devices that are controlled by the "Master" are called "Slaves".

Figure 9. System Configurations

I²C Acknowledge

The number of data bytes between the start and stop conditions for the Transmitter and Receiver are unlimited.

Each 8-bit byte is followed by an Acknowledge bit. The Acknowledge bit is a high level signal put on SDA by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after each byte it receives. Also a master receiver must generate an acknowledge after each byte it receives that has been clocked out of the slave transmitter.

The device that acknowledges must pulldown the SDA line during the acknowledge-clock pulse, so that the SDA line is stable and low during the high period of the acknowledge-clock pulse (setup and hold times must also be met). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave SDA high to enable the master to generate a stop condition.

Figure 10. I²C Acknowledge

8A Dual-Phase Switched-Capacitor Converter

Master Transmits (Write Mode)

Use the following format when the master writes to the slave.

Figure 11. I²C Master Transmits

Master Reads After Setting Register Address (Write Register Address and Read Data)

Use the following format to read a specific register.

Figure 12. I²C Master Reads After Setting Register Address

Master Reads Register Data Without Setting Register Address (Read Mode)

Use the following format to read registers continuously starting from first address.

Figure 13. I²C Master Block Read

8A Dual-Phase Switched-Capacitor Converter

Register Map

Device Registers

ADDRESS	NAME	MSB							LSB	
SCC						1				
0x00	INT_SRC[7:0]	IOVP_IN T	OOVP_I NT	OC_ALM _INT	OCP_IN T	T_ALM1 _INT	T_ALM2 _INT	T_SHDN _INT	SS_FLT _INT	
0x01	INT_SRC_M[7:0]	IOVP_M	OOVP_ M	OC_ALM _M	OCP_M	T_ALM1 _M	T_ALM2 _M	T_SHDN _M	SS_FLT _M	
0x02	STATUS[7:0]	IOVP	OOVP	OC_ALM	RSVD	T_ALM1	T_ALM2	T_SHDN	RSVD	
0x03	SCC_EN[7:0]				RSVD[6:0]				SCC_EN	
0x04	SCC_CFG1[7:0]		RSVD[2:0]		AD_EN		RSVD[2:0]		FIX_FRE Q	
0x05	SCC_CFG2[7:0]	SPR	R[1:0]	DTH	R[1:0]	RSVD				
0x06	OVP_UVLO[7:0]	RSVI	D[1:0]	IOVP_	_R[1:0]	RSVI	D[1:0]	UVLO	UVLO_F[1:0]	
0x07	OCP1[7:0]	OCP_AL M_TH	SPR	R[1:0]			OCP1[4:0]			
0x08	OCP2[7:0]		RSVI	D[3:0]			OCP	2[3:0]		
0x09	<u>OOVP[7:0]</u>		RSVD[2:0]			()OVP_R[4:0	0]		
0x0A	<u>SS_CFG[7:0]</u>	RSVI	D[1:0]	SS_	I[1:0]	RSVD		SS_T[2:0]		
0x0B	EN_CFG1[7:0]	RPUPD_ EN		RSVI	D[3:0]		E	EN_DEB[2:0)]	
0x0C	EN_CFG2[7:0]	DCVIO	RSVD UVLO_F_DEB[1:0]			RSVD	C	OFF_DEB[2:	0]	
0x14	12C_CFG[7:0]	RSVD	_	– – PAIRO			RSVD[2:0]		HS_EXT _EN	
0x15	CHIP REV[7:0]		OTP_VER[3:0] CHIP_REV[3:0]							
0x16	DEVICE ID[7:0]									

Register Details

INT_SRC (0x00)

BIT	7	6	5	4		3	2	1	0
Field	IOVP_INT	OOVP_INT	OC_ALM_I NT	OCP_INT	T_A	LM1_IN T	T_ALM2_IN T	T_SHDN_I NT	SS_FLT_IN T
Reset	0b0	0b0	0b0	0b0		0b0	0b0	0b0	0b0
Access Type	Read Clears All	Read Clears All	Read Clears All	Read Clears All		Read ears All	Read Clears All	Read Clears All	Read Clears All
BITFIELD	BITS		DESCRIPT	ION			DI	ECODE	
IOVP_INT	7	Input Overvo	oltage Protectio	on Interrupt		0b0 0b1: Inp	ut OVP interrup	ot has triggered	1.
OOVP_INT	6	Output Over	voltage Protec	tion Interrupt		0b0 0b1: Ou	tput OVP interr	upt has trigger	ed.
OC_ALM_IN T	5	Output Over	current Alarm I	Interrupt		0b0 0b1: Ov	ercurrent alarm	i interrupt has t	riggered.

8A Dual-Phase Switched-Capacitor Converter

BITFIELD	BITS	DESCRIPTION	DECODE
OCP_INT	4	Output Overcurrent Protection Interrupt	0b0 0b1: Overcurrent protection has triggered.
T_ALM1_INT	3	Thermal Alarm 1 Interrupt	0b0 0b1: Overtemperature alarm 1 (100°C) has triggered.
T_ALM2_INT	2	Thermal Alarm 2 Interrupt	0b0 0b1: Overtemperature alarm 2 (120°C) has triggered.
T_SHDN_IN T	1	Thermal Shutdown Interrupt	0b0 0b1: Thermal shutdown (155°C) interrupt has triggered.
SS_FLT_INT	0	Soft-Start Fault Interrupt	0b0 0b1: Soft-start fault interrupt has triggered.

INT_SRC_M (0x01)

BIT	7	6	5	4		3	2	1	0
Field	IOVP_M	OOVP_M	OC_ALM_M OCP_M T_A		ALM1_M	T_ALM2_M	T_SHDN_M	SS_FLT_M	
Reset	0b0	0b0	0b0	0b0		0b0	0b0	0b0	0b0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
IOVP_M	7	Input Overvo	oltage Protectio	on Interrupt Ma	sk		able IOVP_INT sk IOVP_INT		
OOVP_M	6	Output Over	voltage Protec	tion Interrupt N	lask	0b0: Enable OOVP_M 0b1: Mask OOVP_M			
OC_ALM_M	5	Output Over	current Alarm	Interrupt Mask			able OC_ALM_ sk OC_ALM_II		
OCP_M	4	Output Over	current Protect	tion Interrupt M	ask		able OCP_INT sk OCP_INT		
T_ALM1_M	3	Thermal Ala	rm 1 Interrupt I	Mask			able T_ALM1_l sk T_ALM1_IN		
T_ALM2_M	2	Thermal Ala	Thermal Alarm 2 Interrupt Mask				able T_ALM2_I sk T_ALM2_IN		
T_SHDN_M	1	Thermal Shu	Thermal Shutdown Interrupt Mask				able T_SHDN_ sk T_SHDN_IN		
SS_FLT_M	0	Soft-Start Fa	ault Interrupt M	ask			able SS_INT sk SS_INT		

STATUS (0x02)

BIT	7	6	5	4	3	2	1	0
Field	IOVP	OOVP	OC_ALM	RSVD	T_ALM1	T_ALM2	T_SHDN	RSVD
Reset	0b0							
Access Type	Read Only							

8A Dual-Phase Switched-Capacitor Converter

BITFIELD	BITS	DESCRIPTION	DECODE
IOVP	7	Input Overvoltage Protection Status Bit	0b0: V _{IN} < 10.5V 0b1: V _{IN} ≥ 10.5V
OOVP	6	Output Overvoltage Status Bit	0b0: $V_{OUT} < OVP_TH$ (default 5.6V) 0b1: $V_{OUT} \ge OVP_TH$
OC_ALM	5	Output Overcurrent Alarm Status Bit	0b0: $I_{OUT} < 90\%$ of OCP_TH 0b1: $I_{OUT} \ge 90\%$ of OCP_TH
RSVD	4	Reserved. Reads back 0.	
T_ALM1	3	Thermal Alarm 1 Status Bit	0b0: Junction temperature (T _J) < +100°C 0b1: Junction temperature (T _J) ≥ +100°C
T_ALM2	2	Thermal Alarm 2 Status Bit	0b0: Junction temperature $(T_J) < +120^{\circ}C$ 0b1: Junction temperature $(T_J) \ge +120^{\circ}C$
T_SHDN	1	Thermal Shutdown Status Bit	°° 0b0: Junction temperature (T _J) < +155°C 0b1: Junction temperature (T _J) ≥ +155°C
RSVD	0	Reserved. Reads back 0.	

SCC_EN (0x03)

BIT	7	6	5	4	3	2	1	0	
Field		RSVD[6:0]							
Reset				0b000000				0b0	
Access Type		Write, Read Write, Rea						Write, Read	
BITFIELD	BITS		DESCRIPT	ION		0	ECODE		
RSVD	7:1	Reserved. R	Reserved. Reads back 0.						
SCC_EN	0	Switched-Ca	Switched-Capacitor Converter Enable Bit 0b0: Disable SCC 0b1: Enable SCC						

SCC_CFG1 (0x04)

BIT	7	6	6 5		3	2	1	0		
Field		RSVD[2:0]		AD_EN		RSVD[2:0]		FIX_FREQ		
Reset		0b000		0b1		0b000		0b0		
Access Type		Write, Read		Write, Read		Write, Read Write,				
BITFIELD	BITS		DESCRIPT	ION		D	ECODE			
RSVD	7:5	Reserved. R	eads back 0.							
AD_EN	4	Output Activ	e Discharge E	nable Bit		able Output Ac able Output Ac	0			
RSVD	3:1	Reserved. R	Reserved. Reads back 0.							
FIX_FREQ	0	Fixed-Frequ	Fixed-Frequency Mode Enable Bit			to mode ed-frequency n	node			

8A Dual-Phase Switched-Capacitor Converter

SCC_CFG2 (0x05)

BIT	7	6	5	4		3	2	1	0
Field	SPR	[1:0]	DTH	R[1:0]	F	RSVD FREQ[2:0]			
Reset	0>	(0	0b	11		0b0		0b001	
Access Type	Write,	Read	Write,	Read	Writ	e, Read	ad Write, Read		
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
SPR	7:6	Reserved. F	Reads back 0.						
DTHR	5:4	Frequency [Frequency Dithering Enable and Ratio				0b00: Minimum spread (3%) 0b01: Medium spread (6%) 0b10: Maximum spread (12%) 0b11: OFF		
RSVD	3	Reserved. F	Reads back 0.						
FREQ	2:0	Switching Fr	requency Selec	ction Bit		0b001: 0	I.2MHz I.5MHz I.5MHz		

OVP_UVLO (0x06)

BIT	7	6	5	5 4		2	1	0	
Field	RSVE	D[1:0]	IOVP	R[1:0]	RSVI	RSVD[1:0] UVLO_F[1:0]			
Reset	0b	00	0b	000	Ob	000	0b	00	
Access Type	Write,	Read	Write,	Read	Write,	, Read	Write,	Read	
BITFIELD	BITS		DESCRIPT	ION		D	ECODE		
RSVD	7:6	Reserved. F	Reads back 0.						
IOVP_R	5:4	Input Overvo (Rising)	oltage-Protectio	on Threshold	0b00: 9. 0b01: 10 0b10: 10 0b10: 1	0.0V 0.5V			
RSVD	3:2	Reserved. F	Reads back 0.						
UVLO_F	1:0	Input UVLO	(Falling) Thres	shold	0b00: 4. 0b01: 4. 0b10: 4. 0b11: 4.	.3V .5V			

<u>OCP1 (0x07)</u>

BIT	7	6	5	4	3	2	1	0			
Field	OCP_ALM_ TH	SPR[1:0]		OCP1[4:0]							
Reset	0x1	0b	00	0b10111							
Access Type	Write, Read	Write,	Write, Read		Write, Read						

8A Dual-Phase Switched-Capacitor Converter

BITFIELD	BITS	DESCRIPTION	DECODE
OCP_ALM_T H	7	Output Overcurrent-Alarm Threshold	0b0: 80% of OCP 0b1: 90% of OCP
SPR	6:5	Reserved. Reads back 0.	
OCP1	4:0	Output Overcurrent (Layer1) Threshold	0b00000: 4.2A 0b00001: 4.4A 0b00010: 4.6A 0b00101: 4.6A 0b00101: 5.0A 0b00101: 5.2A 0b00110: 5.4A 0b0110: 5.4A 0b0100: 5.8A 0b0101: 6.2A 0b0101: 6.2A 0b0101: 6.2A 0b0101: 6.2A 0b0101: 6.2A 0b0111: 6.4A 0b0111: 7.0A 0b0111: 7.0A 0b1000: 7.4A 0b10001: 7.8A 0b1001: 7.8A 0b1001: 8.2A 0b1011: 8.0A 0b1011: 8.4A 0b1011: 8.6A 0b1011: 8.6A 0b1101: 9.2A 0b1100: 9.0A 0b1101: 9.4A 0b1101: 9.4A 0b1101: 10.4A 0b1111: 11.0A 0b11111: 11.6A

<u>OCP2 (0x08)</u>

BIT	7	6	5	4	3	3 2 1 0				
Field		RSVI	D[3:0]			OCP2[3:0]				
Reset		0b0	000			0b1101				
Access Type		Write, Read				Write, Read				
BITFIELD	BITS		DESCRIPTION			DECODE				
RSVD	7:4	Reserved. F	Reserved. Reads back 0.							

8A Dual-Phase Switched-Capacitor Converter

BITFIELD	BITS	DESCRIPTION	DECODE
OCP2	3:0	Output Overcurrent (Layer 2) Threshold	0b0000: 110mV 0b0001: 120mV 0b0010: 130mV 0b0010: 130mV 0b0100: 150mV 0b0101: 160mV 0b0111: 160mV 0b0111: 170mV 0b0111: 180mV 0b1000: 190mV 0b1001: 200mV 0b1001: 200mV 0b1011: 220mV 0b1101: 240mV 0b1101: 240mV 0b1111: OFF

OOVP (0x09)

BIT	7	6	5	4	3	2	1	0						
Field		RSVD[2:0]		OOVP_R[4:0]										
Reset		0b000		0b10010										
Access Type		Write, Read		Write, Read										

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:5	Reserved. Reads back 0.	
OOVP_R	4:0	Output Overvoltage-Protection Threshold (Rising)	0b0 0000: 4.150V 0b0 0001: 4.175V 0b0 0010: 4.200V 0b0 0100: 4.225V 0b0 0100: 4.250V 0b0 0101: 4.275V 0b0 0111: 4.300V 0b0 0111: 4.325V 0b0 1000: 4.350V 0b0 1001: 4.375V 0b0 1010: 4.400V 0b0 1011: 4.425V 0b0 1100: 4.450V 0b0 1110: 4.450V 0b0 1111: 4.5V 0b0 1111: 4.5V 0b1 0000: 4.8V 0b1 0001: 4.9V 0b1 0001: 5.0V 0b1 0011: 5.1V 0b1 0101: 5.2V 0b1 0111: 5.5V 0b1 0111: 5.5V 0b1 0111: 5.5V

8A Dual-Phase Switched-Capacitor Converter

SS_CFG (0x0A)

BIT	7	6	5	4		3	2	1	0	
Field	RSVE	D[1:0]	1:0] SS_I[1:0]		F	RSVD SS_T[2:0]				
Reset	Ob	00	0b11			0b0		0b001		
Access Type	Write,	Read	ead Write, Read W			te, Read	Write, Read			
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
RSVD	7:6	Reserved. F	Reads back 0.							
SS_I	5:4	Soft-Start C	Soft-Start Current				0b00: 145mA 0b01: 290mA 0b10: 435mA 0b11: 580mA			
RSVD	3	Reserved. F	Reads back 0.							
SS_T	2:0	Soft-Start Ti				0b000: 0 0b001: 0 0b010: 0 0b011: 0 0b100: 0 0b101: 0 0b101: 0 0b110: 0	0.12s 0.19s 0.25s 0.31s 0.38s 0.44s			

EN_CFG1 (0x0B)

BIT	7	6	5	4	3	2	1	0	
Field	RPUPD_EN		RSV	D[3:0]		EN_DEB[2:0]			
Reset	0b1		0b0	0000		0b010			
Access Type	Write, Read		Write, Read Write						
BITFIELD	BITS		DESCRIPT	ION	DECODE				
RPUPD_EN	7	EN Input Pu	Ildown Resisto	r Enable		0b0: Disable EN pulldown resistor. 0b1: Enable EN pulldown resistor.			
RSVD	6:3	Reserved. R	Reads back 0.						
EN_DEB	2:0	EN Input De	bounce Time		0b001: 0b010: 0b011: 0b100: 0b100: 0b101: 0b110:	000: 0.125ms 001: 1ms 010: 2ms 011: 4ms 100: 8ms 101: 16ms 110: 32ms 111: 64ms			

EN_CFG2 (0x0C)

BIT	7	6	5	4	3	2	1	0
Field	DCVIO	RSVD	UVLO_F_DEB[1:0]		RSVD	OFF_DEB[2:0]		
Reset	0b0	0b0	0b10		0b0	0b110		
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read		

8A Dual-Phase Switched-Capacitor Converter

BITFIELD	BITS	DESCRIPTION	DECODE
DCVIO	7	Write 0, Do not write 1	
RSVD	6	Reserved. Reads back 0.	
UVLO_F_DE B	5:4	Input UVLO (Falling) Debounce Time	0b00: 0s 0b01: 15μs 0b10: 108μs 0b11: 1ms
RSVD	3	Reserved. Reads back 0.	
OFF_DEB	2:0	OFF Debounce Time	0b000: No debounce time 0b001: 8ms 0b010: 16ms 0b011: 32ms 0b100: 64ms 0b101: 125ms 0b110: 250ms 0b111: 500ms

<u>I2C_CFG (0x14)</u>

BIT	7	6	5	4	3	2	1	0
Field	RSVD	-	-	PAIR0		RSVD[2:0]		
Reset	0b0	-	-	0b0		0b000		0b0
Access Type	Write, Read	-	-	Write, Read		Write, Read		
BITFIELD	BITS		DESCRIPT	ION		D	ECODE	
RSVD	7	Reserved. R	eads back 0.					
PAIR0	4	I ² C Sequent	ial Write Mode	Enable		0b0: Disable (Sequential Mode) 0b1: Enable		
RSVD	3:1	Reserved. R	Reserved. Reads back 0.					
HS_EXT_EN	0	I ² C HS Mod	e Extension Er	nable		sable HS mode able HS mode		

CHIP REV (0x15)

BIT	7	6	5	4	3	2	1	0				
Field		OTP_V	ER[3:0]		CHIP_REV[3:0]							
Reset		0b1	000			0b0	010					
Access Type		Read	Only		Read Only							
BITFIEI	LD	BITS			DE	SCRIPTION						
OTP_VER		7:4	OTP	OTP Receipt Version				OTP Receipt Version				
CHIP_REV		3:0	IC R	IC Revision								

8A Dual-Phase Switched-Capacitor Converter

DEVICE ID (0x16)

BIT	7	6	5	4	3	2	1	0			
Field		DEVICE_ID[7:0]									
Reset		0x60									
Access Type		Read Only									
BITFIE	LD	BITS		DESCRIPTION							
DEVICE_ID		7:0	ldent	Identification Number for Device When Communicating to Multiple I ² C Slaves							

Applications Information

Capacitor Selection

The input capacitor, C_{IN} , reduces the current peaks drawn from the input power source and reduces switching noise in the device. The impedance of C_{IN} at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, a 4.7μ F capacitor per phase is sufficient.

The output capacitor, C_{OUT} , is required to keep the output voltage ripple small. C_{OUT} must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. The recommended minimum output capacitance is 10μ F per phase.

The flying capacitor, C_{FLY} , is required to have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. For optimized efficiency, it is recommended to select $2x47\mu$ F for each phase.

Table 1. Suggested Input Capacitors

MFGR.	SERIES	NOMINAL CAPACITANCE (µF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (Inch)	DIMENSIONS L x W x H (mm)
Murata	GRM188B31C475KAAJ	4.7	16	X5R	0603	1.6 x 0.8 x 0.8

Table 2. Suggested Flying Capacitors

MFGR.	SERIES	NOMINAL CAPACITANCE (µF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (Inch)	DIMENSIONS L x W x H (mm)
Murata	GRM188R60J476ME15	47	6.3	X5R	0603	1.6 x 0.8 x 0.8
Murata	GRM219R60J476ME44	47	6.3	X5R	0805	2.0 x 1.2 x 0.85

Table 3. Suggested Output Capacitors

MFGR.	SERIES	NOMINAL CAPACITANCE (µF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (Inch)	DIMENSIONS L x W x H (mm)
Murata	GRM155R60J106ME15	10	6.3	X5R	0402	1.0 x 0.5 x 0.5

Table 4. HVDD/AVDD Output Capacitors

MFGR.	SERIES	NOMINAL CAPACITANCE (µF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (Inch)	DIMENSIONS L x W x H (mm)
Murata	GRM033R61A105ME15	1	10	X5R	0201	0.6 x 0.3 x 0.3

Table 5. Bootstrap Output Capacitors

MFGR.	SERIES	NOMINAL CAPACITANCE (µF)	RATED VOLTAGE (V)	TEMPERATURE CHARACTERISTICS	CASE SIZE (Inch)	DIMENSIONS L x W x H (mm)
Murata	GRM033R60J473KE15	0.047	6.3	X5R	0201	0.6 x 0.3 x 0.3

Layout Guide

Layout Guidelines

- 1. The C_{FLY} capacitors need to be placed as close as possible to the IC. This is a high priority.
- 2. All power traces must be as symmetrical as possible across two phases. For example, the CF1P is symmetrical with CF1N, and the OUT trace is symmetrical on both sides.
- 3. The guide has a power trace under the capacitor. For some designs, this is not allowed. If this is not allowed, keep the same flying capacitor location, and put a lot of via near the OUT pin of the IC to bring it down to another layer, and use multiple layers of the same trace to reinforce the OUT trace. Refer to the *MAX77932 EV kit* as an example.
- 4. For the AGND pin, **do not** directly tie to the top layer PGND. Run via through and tie it to the more stable system ground plane.
- 5. For inner pins, especially BST1P/N, BST2P/N, and HVDD, they need to connect through via. They are critical to the operation of the converter. Use a trace as wide as possible on the connecting layer to connect these pins, and the shortest path possible to the corresponding capacitors.

Figure 14. Layout Guide

Typical Application Circuits

System Block Diagram A

System Block Diagram B

8A Dual-Phase Switched-Capacitor Converter

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX77932CEWO+	-40°C to +85°C	42 WLP (0.4mm Pitch)
MAX77932CEWO+T	-40°C to +85°C	42 WLP (0.4mm Pitch)

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

8A Dual-Phase Switched-Capacitor Converter

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	7/20	Initial release	—

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.