- Single- or Dual-Supply Operation - Wide Range of Supply Voltages 1.4 V to 18 V - Very Low Supply Current Drain 300 μA Typ at 5 V 130 μA Typ at 1.4 V - Built-In ESD Protection - High Input Impedance . . . $10^{12} \Omega$ Typ - Extremely Low Input Blas Current 5 pA Typ - Ultrastable Low Input Offset Voltage - Input Offset Voltage Change at Worst-Case Input Conditions Typically 0.23 μV/Month, Including the First 30 Days - Common-Mode Input Voltage Range Includes Ground - Outputs Compatible With TTL, MOS, and CMOS - Pin-Compatible With LM339 # D, N, OR PW PACKAGE (TOP VIEW) ### symbol (each comparator) #### description This device is fabricated using LinCMOSTM technology and consists of four independent differential voltage comparators; each is designed to operate from a single power supply. Operation from dual supplies is also possible if the difference between the two supplies is 1.4 V to 18 V. Each device features extremely high input impedance (typically greater than $10^{12} \Omega$), which allows direct interface to high-impedance sources. The outputs are n-channel open-drain configurations and can be connected to achieve positive-logic wired-AND relationships. The capability of the TLC354 to operate from a 1.4-V supply makes this device ideal for low-voltage battery applications. The TLC354 has internal electrostatic discharge (ESD) protection circuits and has been classified with a 2000-V ESD rating tested under MIL-STD-833C, Method 3015. However, care should be exercised in handling this device as exposure to ESD may result in degradation of the device parametric performance. The TLC354C is characterized for operation from 0° C to 70° C. The TLC354I is characterized for operation over the industrial temperature range of -40° to 85° C. The TLC354M is characterized for operation over the full military temperature range -55° C to 125° C. #### **AVAILABLE OPTIONS** | | Via may | PAC | CHIP | | | |----------------|--------------------------------|----------------------|--------------------|---------------|-------------| | TA | V _{IO} max
AT 25°C | SMALL OUTLINE
(D) | PLASTIC DIP
(P) | TSSOP
(PW) | FORM
(Y) | | 0°C to 70°C | 5 mV | TLC354CD | TLC354CN | TLC354CPW | TLC354Y | | -40°C to 85°C | 5 mV | TLC354ID | TLC354IN | _ | _ | | -55°C to 125°C | 5 mV | TLC354MD | TLC354MN | _ | _ | The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC354CDR). Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. LinCMOS is a trademark of Texas Instruments Incorporated. TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 ## equivalent schematic (each comparator) ## absolute maximum ratings over operating free-air temperature (unless otherwise noted)† | Supply voltage, V _{DD} (see Note 1) | 18 V | |--|------------------------------| | Differential input voltage, V _{ID} (see Note 2) | | | Input voltage, V _I | V _{DD} | | Input voltage range, V _I | | | Output voltage, V _O | 18 V | | Input current, I ₁ | ±5 mA | | Output current, IO | 20 mA | | Duration of output short circuit to ground (see Note 3) | Unlimited | | Continuous total dissipation | See Dissipation Rating Table | | Operating free-air temperature range, T _A : TLC354C | 0°C to 70°C | | TLC354I | –40°C to 85°C | | TLC354M | –55°C to 125°C | | Storage temperature range | | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | 260°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. All voltage values except differential voltages are with respect to network ground. - 2. Differential voltages are at IN+ with respect to IN-. - 3. Short circuits from outputs to VDD can cause excessive heating and eventual device destruction. #### **DISSIPATION RATING TABLE** | PACKAGE | $T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING | DERATING
FACTOR | DERATE
ABOVE T _A | T _A = 70°C
POWER RATING | T _A = 85°C
POWER RATING | T _A = 125°C
POWER RATING | |---------|--|--------------------|--------------------------------|---------------------------------------|---------------------------------------|--| | D | 500 mW | 7.6 mW/°C | 84°C | 500 mW | 494 mW | 190 mW | | N | 500 mW | 9.2 mW/°C | 96°C | 500 mW | 500 mW | 230 mW | | PW | 700 mW | 5.6 mW/°C | 25°C | 448 mW | N/A | N/A | #### **TLC364Y chip information** This chip, when properly assembled, displays characteristics similar to the TLC354C. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. Chips can be mounted with conductive epoxy or a gold-silicon preform. ## recommended operating conditions | | | TLC3 | 54C | TLC | 354I | TLC3 | 54M | UNIT | |--|-------------------------|------|-----|-----|------|------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | | Supply voltage, V _{DD} | | 1.4 | 16 | 1.4 | 16 | 1.4 | 16 | V | | | V _{DD} = 1.4 V | 0 | 0.2 | 0 | 0.2 | 0 | 0.2 | | | Common-mode input voltage, V _{IC} | $V_{DD} = 5 V$ | 0 | 3.5 | 0 | 3.5 | 0 | 3.5 | V | | | V _{DD} = 10 V | 0 | 8.5 | 0 | 8.5 | 0 | 8.5 | | | Operating free-air temperature, TA | | 0 | 70 | -40 | 85 | -55 | 125 | °C | ## electrical characteristics at specified free-air temperature, $V_{DD} = 1.4 \text{ V}$ | | PARAMETER | TEST CO | NDITIONS | T. † | TI | LC354C | | 1 | LC354I | | TI | _C354M | | UNIT | |------|-----------------------------|-----------------------|--------------------------|------------------|------|--------|-----|------|--------|-----|------|--------|-----|------| | | PARAMETER | 1251 CO | NDITIONS | T _A † | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | V/10 | Input offeet voltage | Via – Vianmin | Soo Noto 4 | 25°C | | 2 | 5 | | 2 | 5 | | 2 | 5 | mV | | VIO | Input offset voltage | $V_{IC} = V_{ICRmin}$ | See Note 4 | Full range | | | 6.5 | | | 7 | | | 10 | IIIV | | l. a | Input offset current | | | 25°C | | 1 | | | 1 | | | 1 | | рА | | 10 | input onset current | | | MAX | | | 0.3 | | | 1 | | | 10 | nA | | 1.5 | Input bigg gurrent | | | 25°C | | 5 | | | 5 | | | 5 | | pА | | IB | Input bias current | | | MAX | | | 0.6 | | | 2 | | | 20 | nA | | VICR | Common-mode input voltage | | | 25°C | 0 to | | | 0 to | | | 0 to | | | V | | VICR | range | | _ | 25 0 | 0.2 | | | 0.2 | | | 0.2 | | | V | | | High-level output current | V _{ID} = 1 V | V _{OH} = 5 V | 25°C | | 0.1 | | | 0.1 | | | 0.1 | | nA | | ЮН | riigii-ievei output current | VID = 1 V | V _{OH} = 15 V | Full range | | | 1 | | | 1 | | | 1 | μΑ | | V | Low lovel output voltage | V 0.5.V | Ja. 06 m/ | 25°C | | 100 | 200 | | 100 | 200 | | 100 | 200 | mV | | VOL | Low-level output voltage | $V_{ID} = -0.5 V$, | IOL = 0.6 mA | Full range | | | 200 | | | 200 | | | 200 | IIIV | | loL | Low-level output current | $V_{ID} = -0.5 V$, | V _{OL} = 300 mV | 25°C | 1 | 1.6 | | 1 | 1.6 | | 1 | 1.6 | | mA | | 1 | Supply current | V 0.5.V | Nolood | 25°C | | 130 | 300 | | 130 | 300 | | 130 | 300 | | | IDD | (four comparators) | $V_{ID} = 0.5 V,$ | No load Fu | Full range | | | 400 | | | 400 | | | 400 | μΑ | [†] All characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is 0°C to 70°C for TLC354C, -40°C to 85°C for TLC354I, and -55°C to 125°C for the TLC354M. MAX is 70°C for TLC354C, 85°C TLC354I, and 125°C for the TLC354M. IMPORTANT: See Parameter Measurement Information. NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 1.25 V or below 150 mV with a 10-kΩ resistor between the output and V_{DD}. They can be verified by applying the limit value to the input and checking for the appropriate output state. ## electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ | | PARAMETER | TEST CON | IDITIONS | T. † | TLC | 354C | | TLC | C354I | | TLC | 354M | | UNIT | |-----------------|---------------------------|-------------------------|---------------------------|------------------|------------------------------|------|-----|------------------------------|-------|-----|------------------------------|------|-----|------| | | PARAMETER | 1EST CON | IDITIONS | T _A † | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | V | Input offset voltage | V V min | See Note 5 | 25°C | | 2 | 5 | | 2 | 5 | | 2 | 5 | mV | | VIO | input onset voltage | $V_{IC} = V_{ICR}min,$ | See Note 5 | Full range | | | 6.5 | | | 7 | | | 10 | IIIV | | lio. | Input offset current | | | 25°C | | 1 | | | 1 | | | 1 | | pА | | 110 | input onset current | | | MAX | | | 0.3 | | | 1 | | | 10 | nA | | lin. | Input bias current | | | 25°C | | 5 | | | 5 | | | 5 | | pА | | ΙΒ | input bias current | | | MAX | | | 0.6 | | | 2 | | | 20 | nA | | V. 0.5 | Common-mode input | | | 25°C | 0 to
V _{DD} -1 | | | 0 to
V _{DD} -1 | | | 0 to
V _{DD} -1 | | | V | | VICR | voltage range | | | Full range | 0 to
V _{DD} -1.5 | | | 0 to
V _{DD} -1.5 | | | 0 to
V _{DD} -1.5 | | | V | | lau | High-level output current | V:= - 1 V | V _{OH} = 5 V | 25°C | | 0.1 | | | 0.1 | | | 0.1 | | nA | | ІОН | nign-level output current | V _{ID} = 1 V | V _{OH} = 15 V | Full range | | | 1 | | | 1 | | | 1 | μΑ | | V/0: | Low-level output voltage | V:= - 1 V | la: - 4 m^ | 25°C | | 150 | 400 | | 150 | 400 | | 150 | 400 | mV | | VOL | Low-level output voltage | $V_{ID} = -1 V$ | $I_{OL} = 4 \text{ mA}$ | Full range | | | 700 | | | 700 | | | 700 | IIIV | | l _{OL} | Low-level output current | $V_{ID} = -1 V$, | $V_{OL} = 1.5 \text{ mV}$ | 25°C | 6 | 16 | | 6 | 16 | | 6 | 16 | | mA | | Inn | Supply current | urrent V/2 4 V/ No load | . 1.V. No load | | | 0.3 | 0.6 | | 0.3 | 0.6 | | 0.3 | 0.6 | m A | | IDD | (four comparators) | $V_{ID} = 1 V$ | No load | Full range | | | 0.8 | | | 0.8 | | | 0.8 | mA | [†] All characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is 0°C to 70 °C for TLC354C, -40°C to 85°C for TLC354I, and -55°C to 125°C for the TLC354M. MAX is 70°C for TLC354C, 85°C TLC354I, and 125°C for the TLC354M. IMPORTANT: See Parameter Measurement Information. ## switching characteristics, V_{DD} = 5 V, T_A = 25°C | PARAMETER | TEST CO | TLC35
TI | UNIT | | | | |---------------|--|---------------------------------------|------|-----|-----|----| | | | | MIN | TYP | MAX | | | Response time | R _L connected to 5 V through 5.1 k Ω , | 100-mV input step with 5-mV overdrive | | 650 | | no | | Response time | $C_L = 15 \text{ pF}^{\ddagger}$, See Note 6 | TTL-level input step | | 200 | | ns | [‡]C_L includes probe and jig capacitance. NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V. NOTE 5: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kΩ resistor between the output and V_{DD}. They can be verified by applying the limit value to the input and checking for the appropriate output state. # electrical characteristics at specified free-air temperature, V_{DD} = 1.4 V, T_A = 25°C (unless otherwise noted) | | PARAMETER | TEST CON | IDITIONS | TI | | UNIT | | |-----------------|-----------------------------------|-------------------------|---------------------------|-------------|-----|------|------| | | FARAMETER | TEST CON | IDITIONS | MIN | TYP | MAX | UNIT | | VIO | Input offset voltage | $V_{IC} = V_{ICR} min,$ | See Note 4 | | 2 | 5 | mV | | IIO | Input offset current | | | | 1 | | рА | | I _{IB} | Input bias current | | | | 5 | | рА | | VICR | Common-mode input voltage range | | | 0 to
0.2 | | | V | | ІОН | High-level output current | V _{ID} = 1 V, | V _{OH} = 5 V | | 0.1 | | nA | | VOL | Low-level output voltage | $V_{ID} = -0.5 V$, | $I_{OL} = 0.6 \text{ mA}$ | | 100 | 200 | mV | | loL | Low-level output current | $V_{ID} = -0.5 V$, | $V_{OL} = 300 \text{ mV}$ | 1 | 1.6 | | mA | | I _{DD} | Supply current (four comparators) | $V_{ID} = 0.5 V$, | No load | | 130 | 300 | μΑ | NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 1.25 V or below 150 mV with a 10-k Ω resistor between the output and V_{DD}. They can be verified by applying the limit value to the input and checking for the appropriate output state. # electrical characteristics at specified free-air temperature, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted) | | PARAMETER | TEST CON | DITIONS | TL | .C354Y | | UNIT | |-----------------|-----------------------------------|---|--------------------------|----------------------------|--------|-----|------| | | PARAMETER | TEST CON | TEST CONDITIONS | | | MAX | UNII | | VIO | Input offset voltage | V _{IC} = V _{ICR} min, | See Note 5 | | 2 | 5 | mV | | IIO | Input offset current | | | | 1 | | pА | | I _{IB} | Input bias current | | | | 5 | | pА | | VICR | Common-mode input voltage range | | | 0 to
V _{DD} -1 | | | V | | ІОН | High-level output current | V _{ID} = 1 V, | V _{OH} = 5 V | | 0.1 | | nA | | VOL | Low-level output voltage | $V_{ID} = -1 V$, | I _{OL} = 4 mA | | 150 | 400 | mV | | IOL | Low-level output current | $V_{ID} = -1 V$, | V _{OL} = 1.5 mV | 6 | 16 | | mA | | I_{DD} | Supply current (four comparators) | V _{ID} = 1 V, | No load | | 0.3 | 0.6 | mA | NOTE 5: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kΩ resistor between the output and V_{DD}. They can be verified by applying the limit value to the input and checking for the appropriate output state. # switching characteristics, V_{DD} = 5 V, T_A = 25°C | PARAMETER | TEST CO | ONDITIONS | Т | LC354Y | | UNIT | |---------------|--|---------------------------------------|-----|--------|-----|------| | PARAMETER | TEST CC | ONDITIONS | MIN | TYP | MAX | UNIT | | Response time | R _L connected to 5 V through 5.1 k Ω , | 100-mV input step with 5-mV overdrive | | 650 | | 20 | | Response time | $C_L = 15 \text{ pF}^{\ddagger}$, See Note 6 | TTL-level input step | | 200 | | ns | [‡]C_L includes probe and jig capacitance. NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V. #### PARAMETER MEASUREMENT INFORMATION The digital output stage of the TLC354 can be damaged if it is held in the linear region of the transfer curve. Conventional operational amplifier/comparator testing incorporates the use of a servo loop that is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the following alternative for measuring parameters such as input offset voltage, common-mode rejection, etc., are offered. To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low. A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 1(b) for the V_{ICR} test, rather than changing the input voltages, to provide greater accuracy. A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal but opposite in polarity to the input offset voltage, the output changes state. Figure 1. Method for Verifying That Input Offset Voltage is Within Specified Limits #### PARAMETER MEASUREMENT INFORMATION Figure 2 illustrates a practicle circuit for direct dc measurement of input offset voltage that does not bias the comparator into the linear region. The circuit consists of a switching-mode servo loop in which U1a generates a triangular waveform of approximately 20-mV amplitude. U1b acts as a buffer with C2 and R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input is driven by the output of the integrator formed by U1c through the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage. Voltage divider R9 and R10 provides a step up of the input offset voltage by a factor of 100 to make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be 1% or lower. Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the device. Figure 2. Test Circuit for Input Offset Voltage Measurement #### PARAMETER MEASUREMENT INFORMATION Response time is defined as the interval between the application of an input step function and the instant when the output reaches 50% of its maximum value. Response time, low-to-high-level output, is measured from the trailing edge of the input pulse. Response-time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal, for example, 105-mV or 5-mV overdrive, causes the output to change. **VOLTAGE WAVEFORMS** NOTE A: C_L includes probe and jig capacitance. Figure 3. Response, Rise, and Fall Times Test Circuit and Voltage Waveforms www.ti.com 14-Oct-2022 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | TLC354CD | ACTIVE | SOIC | D | 14 | 50 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | TLC354C | Samples | | TLC354CN | ACTIVE | PDIP | N | 14 | 25 | RoHS & Green | NIPDAU | N / A for Pkg Type | 0 to 70 | TLC354CN | Samples | | TLC354CPW | ACTIVE | TSSOP | PW | 14 | 90 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | P354 | Samples | | TLC354CPWR | ACTIVE | TSSOP | PW | 14 | 2000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | P354 | Samples | | TLC354ID | ACTIVE | SOIC | D | 14 | 50 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | TLC354I | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ## **PACKAGE OPTION ADDENDUM** www.ti.com 14-Oct-2022 Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 #### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TLC354CPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------|--------------|-----------------|------|------|-------------|------------|-------------| | TLC354CPWR | TSSOP | PW | 14 | 2000 | 356.0 | 356.0 | 35.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 #### **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |-----------|--------------|--------------|------|-----|--------|--------|--------|--------| | TLC354CD | D | SOIC | 14 | 50 | 505.46 | 6.76 | 3810 | 4 | | TLC354CN | N | PDIP | 14 | 25 | 506 | 13.97 | 11230 | 4.32 | | TLC354CPW | PW | TSSOP | 14 | 90 | 530 | 10.2 | 3600 | 3.5 | | TLC354ID | D | SOIC | 14 | 50 | 505.46 | 6.76 | 3810 | 4 | # D (R-PDSO-G14) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. PW (R-PDSO-G14) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G14) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. #### **IMPORTANT NOTICE AND DISCLAIMER** TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated