
LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

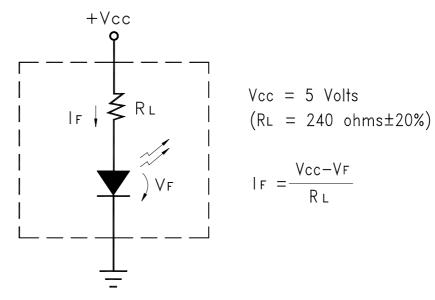
Features

- * Integral current limiting resistor LED.
- * Chip resistor built in, required with 5 volts supply.
- * Cost effective (save external resistor space and cost)

Package Dimensions

Part No.	Lens	Source Color		
LTL-4233-R1	Green Diffused	Green		

Notes:


- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Part No.: LTL-4233-R1 Page: of 4

Absolute Maximum Ratings at TA=25℃

Parameter	Maximum Rating	Unit	
DC Forward Voltage (TA=25°C)	7.5	V	
Derating Linear From 50°C	0.071	V/°C	
Reverse Voltage	5	V	
Operating Temperature Range	-40°C to + 85°C		
Storage Temperature Range	-55°C to + 100°C		
Lead Soldering Temperature [1.6mm(.063") From Body]	260°C for 5 Seconds		

Equivalent circuit:

$$Vcc = 5 \text{ Volts}$$

(RL = 240 ohms±20%)

$$I_F = \frac{V_{CC} - V_F}{R_L}$$

Part No.: LTL-4233-R1 Page: 2 of 4

LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Electrical / Optical Characteristics at TA=25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	12.6	40		mcd	V _{CC} = 5V Note 1,4
Viewing Angle	2 θ 1/2		36		deg	Note 2 (Fig.5)
Peak Emission Wavelength	λр		565		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd		569		nm	Note 3
Spectral Line Half-Width	Δλ		30		nm	
Forward Current	IF	8	12	16	mA	$V_{CC} = 5V$
Reverse Current	IR			100	μ A	$V_R = 5V$

- Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.
 - 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
 - 3. The dominant wavelength, $\,\lambda_{\,d}$ is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
 - 4. The Iv guarantee should be added \pm 15%.

Part No.: LTL-4233-R1 4 Page: 3 of

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

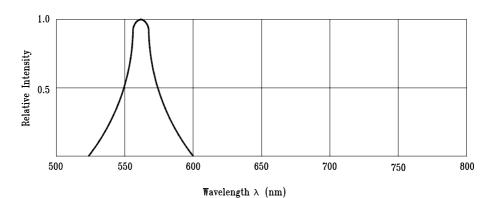
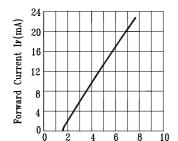



Fig.1 Relative Intensity vs. Wavelength

Applied Forward Voltage Vcc (V) Fig.2 Forward Current vs. Applied Forward Voltage 5 Volts Devices

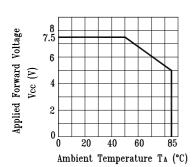
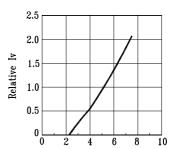



Fig4. Maximum Allowed Applied Forward Voltage vs. 5 Volts Devices

Forward Current (mA) Fig.3 Relative Luminous Intensity vs. Applied Forward Voltage 5 Volts Devices

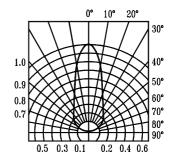


Fig.5 Spatial Distribution

Part No.: LTL-4233-R1 Page: 4 of 4